CHAPTER

13

Joining Tables

About this chapter

Contents

This chapter describes database queries that look at information in more than

one table. To do this, SQL provides the JOIN operator. There are several

different ways to join tables together in queries, and this chapter describes

some of the more important ones.

Topic Page
The sample database 244
Displaying a list of tables 245
Joining tables with the cross product 246
Restricting a join 247
Self joins 249
How tables are related 250
Join operators 251

243

The sample database

The sample database

This chapter demonstrates joins using the sample database, asademo.db,
included with Adaptive Server Anywhere. The sample database consists of
nine tables, storing information about a fictional company.

product employee
id <pk>_integer sales_order_items
name char(15) id <pk.fk> integer %gaﬂ; d e %
description char(30) line_id <pk> smallint emp ?naﬁ'le cha?(ZO)
size char(18) id = prod_id| prod_id <fk> integer emp_lname char(20)
color char(6) quantity integer dep(ld <fk> integer
quantity integer ship_date date street char(40)
unit_price numeric(15,2) city char(20)
id=id state char(4)
emp_id = sales_rep |zip_code char(9)
phone char(10)
customer status char(1)
- - ss_number char(11)
id <pk> integer sales_order salary numeric(20,3)
fname char(15) id <pl> integer start_date date ‘
Iname char(20) cust_id <fk> integer termination_date date
address char(35) order_date date bitth date date
city char(20) | id =cust_id| fin_code_id <fk> char(2) bene health ins char(1)
state char(2) region char(7) bene_life_ins char(1)
zip char(10) sales_rep <fk> integer bene_day_care char(1)
phone char(12) T sex char(1)
company_name char(35) code = fin_code_id
fin_code
<pk>
contact % <pe z::[(fo) dept_id = dept_id
id <pk>integer description char(50) emp_id = dept_head_id
last_name char(15)
first_name char(15)
title char(2) code = code
street char(30) 1
city char(20) fin_data
state char(2) year <pk> char(4 department
zip char(5) quarter <pk> char(2 dept_id <pk> integer
phone char(10) code <pk.fk> char(2 dept_name char(40)
fax char(10) amount numeric(9) dept_head_id <fk> integer

Each box in the diagram represents a table in the database. The names listed

in each box are the column names for the table.

Each box contains a list of the columns in that table. The column name
appears first. Next, the letters pk identify those columns that are part of the

primary key and fk those that are part of a foreign key. The data type of each
column appears last.

The arrows represent foreign key relationships between the tables.

&=~ These three new terms are defined below.

244

Chapter 13 Joining Tables

Displaying a list of tables

In Interactive SQL, you can display a list of tables by pressing the F7 key.
The tables for the database are prefixed with dba (the owner of the tables).

Tables

DBA. cuztomer

DBA. department

DBA employes

DBA. fin_code

DBA fin_data

DEA. product

DBA zales order

DBA, zales_order_items
dbo.jdbe_columnprivileges
dbo.jdbe_function_escapes
dbo.jdbe_kelpkeys
dbo.jdbe_indexhelp
dbo.jdbe_tableprivileges LI

Inzert I Cancel | LColurnns... |

The cursor keys can be used to scroll through the list of tables. Each table in
the list is prefixed with a user name. This prefix is the ID of the user that
created the table—the owner of the table.

Positioning the highlight on a particular table and pressing the Columns
button displays the list of columns for that table. The ESCAPE key takes you
back to the table list and pressing it again will take you back to the command
window. Pressing ENTER instead of ESCAPE copies the highlighted table or
column name into the command window at the current cursor position.

Press ESCAPE to leave the list.

245

Joining tables with the cross product

Joining tables with the cross product

One of the tables in the sample database is sales_order, which lists the
orders placed to the company. Each order has a sales_rep column,
containing the employee ID of the sales representative responsible for the
order. There are 648 rows in the sales_order table.

You can get information from two tables at the same time by listing both
tables in the FROM clause of a SELECT query.

Example The following example lists all the data in the employee table and the
sales_order table:

SELECT *
FROM sales order CROSS JOIN employee

The results of this query, displayed in the Interactive SQL data window,
match every row in the employee table with every row in the sales_order
table. Since there are 75 rows in the employee table and 648 rows in the
sales_order table, there are 75 x 648 = 48,600 rows in the result of the join.
Each row consists of all columns from the sales_order table followed by all
columns from the employee table. This join is called a full cross product.

The cross product join is a simple starting point for understanding joins, but
not very useful in itself.

246

Chapter 13 Joining Tables

Restricting a join

Example 1

Example 2

Correlation names

The most natural way to make a join useful is to insist that the sales_rep in
the sales_order table be the same as the one in the employee table in every
row of the result. Then each row contains information about an order and the
sales rep responsible for it.

To do this, add a ON phrase to the previous query to show the list of
employees and their course registrations:

SELECT *
FROM sales order JOIN employee
ON sales order.sales rep = employee.emp id

The table name is given as a prefix to identify the columns. Although not
strictly required in this case, using the table name prefix clarifies the
statement, and is required when two tables have a column with the same
name. A table name used in this context is called a qualifier.

The results of this query contain only 648 rows (one for each row in the
sales_order table). Of the original 48,600 rows in the join, only 648 of them
have the employee number equal in the two tables.

The following query is a modified version that fetches only some of the
columns and orders the results.

SELECT employee.emp lname, sales order.id,
sales order.order date
FROM sales order JOIN employee
ON sales order.sales rep = employee.emp id
ORDER BY employee.emp lname

If there are many tables in a SELECT command, you may need to type
several qualifier names. This typing can be reduced by using a correlation
name.

A correlation name is an alias for a particular instance of a table. This alias
is valid only within a single statement. You create a correlation name by
putting a short form for a table name immediately after the table name,
separated by the word AS. You then must use the short form as a qualifier
instead of the corresponding table name.

SELECT e.emp lname, s.id, s.order date

FROM sales order AS s JOIN employee AS e
ON s.sales rep = e.emp_ id

ORDER BY e.emp lname

Here, two correlation names s and e are created for the sales_order and
employee tables.

247

Restricting a join

248

If you change e.emp_id back to employee.emp_id, Adaptive Server
Anywhere reports an error. If you make a correlation name for an instance of
a table, you must use that correlation name when qualifying which table a
column is from; you cannot use the original table name anymore.

& For a further application of correlation names, see "Self joins" on page
249.

Chapter 13 Joining Tables

Self joins

Correlation names, introduced in the previous section, "Restricting a join" on
page 247, are also necessary when joining a single table to itself. In such a
situation, your statement contains two separate instances, or copies, of the
same table. You can only identify a particular instance by means of a
correlation name.

As an example, you might wish to create a list that gives the name of each
employee’s manager. You can only accomplish this task by joining the
employee table to itself.

SELECT e.emp fname, e.emp lname,
m.emp fname, m.emp lname
FROM employee AS e JOIN employee AS m
ON e.manager id = m.emp id
ORDER BY e.emp lname, e.emp fname

Because this statement includes two copies of the employee table, you must
use correlation names to tell them apart. The above command assigns the
correlation names e and m to these two copies, respectively. The join
condition is that the manager_id value for an employee in instance e of the
employee table is equal to the employee_id in instance m of the table.

emp_fname enp_lname emp_fname enp_lname
Alex Ahmed Scott Evans
Joseph Barker Jose Martinez
Irene Barletta Scott Evans
Jeannette Bertrand Jose Martinez
Janet Bigelow Mary Anne Shea
Barbara Blaikie Scott Evans

Jane Braun Jose Martinez

249

How tables are related

How tables are related

In order to understand how to construct other kinds of joins, you must first
understand how the information in one table is related to that in another.

The primary key for a table identifies each row in the table. Tables are
related to each other using a foreign key.

This section shows how primary and foreign keys together let you construct
queries from more than one table.

Rows are identified by a primary key

Every table in the employee database has a primary key. A primary key is
one or more columns that uniquely identify a row in the table. For example,
an employee number uniquely identifies an employee—emp_id is the
primary key of the employee table.

The sales_order_items table is an example of a table with two columns that
make up the primary key. The order ID by itself does not uniquely identify a
row in the sales_order_items table because there can be several items in an
order. Also, the line_id number does not uniquely identify a row in the
sales_order_items table. Both the order ID name and line_id are required to
uniquely identify a row in the sales_order_items table. The primary key of
the table is both columns taken together.

Tables are related by a foreign key

Foreign key

250

There are several tables in the employee database that refer to other tables in
the database. For example, the sales_order table has a sales_rep column to
indicate which employee is responsible for an order. Only enough
information to uniquely identify an employee is kept in the sales_order
table. The sales_rep column in the sales_order table is a foreign key to the
employee table.

A foreign key is one or more columns that contain primary key values from
another table. Each foreign key relationship in the employee database is
represented by an arrow between two tables. The arrow starts at the foreign
key side of the relationship and points to the primary key side of the
relationship.

Chapter 13 Joining Tables

Join operators

Many common joins are between two tables related by a foreign key. The
most common join restricts foreign key values to be equal to primary key
values. The example you have already seen restricts foreign key values in the
sales_order table to be equal to the primary key values in the employee
table.

SELECT emp lname, id, order date
FROM sales order JOIN employee
ON sales order.sales rep = employee.emp id

The query can be more simply expressed using a KEY JOIN.

Joining tables using key joins

Key joins are the best way to join two tables related by a single foreign key.
For example,

SELECT emp lname, id, order date
FROM sales order
KEY JOIN employee

gives the same results as a query with a ON phrase that equates the two
employee number columns:

SELECT emp lname, id, order date
FROM sales order JOIN employee
ON sales order.sales rep = employee.emp id

The join operator KEY JOIN is just a short cut for typing the ON phrase; the
two queries are identical.

If you look at the diagram of the employee database, foreign keys are
represented by lines between tables. Anywhere that two tables are joined by
a line in the diagram, you can use the KEY JOIN operator.

Joining two or Two or more tables can be joined using join operators. The following query

more tables uses four tables to list the total value of the orders placed by each customer.
It connects the four tables customer, sales_order, sales_order_items and
product using the single foreign-key relationships between each pair of
these tables.

251

Join operators

SELECT company name,

CAST (SUM(sales order items.quantity *

product.unit price) AS INTEGER) AS value

FROM customer

KEY JOIN sales order

KEY JOIN sales order items

KEY JOIN product
GROUP BY company name

company_name value
Able Inc. 6120
AMF Corp. 3624
Amo & Sons 3216
Amy's Silk Screening 2028
Avco Ent 1752

The CAST function used in this query converts the data type of an
expression. In this example the sum that is returned as an integer is converted
to a value.

Joining tables using natural joins

Example

Errors using
NATURAL JOIN

252

The NATURAL JOIN operator joins two tables based on common column
names. In other words, Adaptive Server Anywhere generates a ON phrase
that equates the common columns from each table.

For example, for the following query:

SELECT emp lname, dept name
FROM employee
NATURAL JOIN department

the database engine looks at the two tables and determines that the only
column name they have in common is dept_id. The following ON phrase is
internally generated and used to perform the join:

FROM employee JOIN department
ON employee.dept id = department.dept id

This join operator can cause problems by equating columns you may not
intend to be equated. For example, the following query generates unwanted
results:

Chapter 13 Joining Tables

SELECT *
FROM sales order
NATURAL JOIN customer

The result of this query has no rows.

The database engine internally generates the following ON phrase:

FROM sales order JOIN customer
ON sales order.id = customer.id

The id column in the sales_order table is an ID number for the order. The
ID column in the customer table is an ID number for the customer. None of
them matched. Of course, even if a match were found, it would be a
meaningless one.

You should be careful not to use join operators blindly. Always remember
that the join operator just saves you from typing the ON phrase for a foreign
key or common column names. You should be conscious of the ON phrase,
or you may be creating queries that give results other than what you intend.

253

Join operators

254

