CHAPTER 14

Obtaining Aggregate Data

About this chapter This chapter describes how to construct queries that tell you aggregate
information. Examples of aggregate information are as follows:

¢ The total of all values in a column
¢ The number of distinct entries in a column

¢ The average value of entries in a column

Contents Topic Page
A first look at aggregate functions 256
Using aggregate functions to obtain grouped data 257
Restricting groups 259

255

A first look at aggregate functions

A first look at aggregate functions

256

Suppose you want to know how many employees there are. The following
statement retrieves the number of rows in the employee table:

SELECT count (*)
FROM employee

count(*)

75

The result returned from this query is a table with only one column (with title
count(*)) and one row, which contains the number of employees.

The following command is a slightly more complicated aggregate query:

SELECT count (*),
min(birth date),
max (birth date)

FROM employee

count(*) | min(birth_date) | max(birth_date)

75 ‘ 1936-01-02 ‘ 1973-01-18

The result set from this query has three columns and only one row. The three
columns contain the number of employees, the birthdate of the oldest
employee, and the birthdate of the youngest employee.

COUNT, MIN and MAX are called aggregate functions. Each of these
functions summarizes information for an entire table. In total, there are six
aggregate functions: MIN, MAX, COUNT, AVG, SUM, and LIST. All but
COUNT have the name of a column as a parameter. As you have seen,
COUNT has an asterisk as its parameter.

Chapter 14 Obtaining Aggregate Data

Using aggregate functions to obtain grouped

data

A common error
with GROUP BY

In addition to providing information about an entire table, aggregate
functions can be used on groups of rows.

To list the number of orders each sales representative is
responsible for:

¢ Type the following:

SELECT sales rep, count(*)
FROM sales order
GROUP BY sales rep

sales_rep count(*)
129 57

195 50

299 114

467 56

667 54

The results of this query consist of one row for each sales rep ID number,
containing the sales rep ID, and the number of rows in the sales_order table
with that number.

Whenever GROUP BY is used, the resulting table has one row for each
different value found in the GROUP BY column or columns.

A common error with GROUP BY is to try to get information which cannot
properly be put in a group. For example,

SELECT sales rep, emp lname, count(*)
FROM sales order

KEY JOIN employee
GROUP BY sales rep

gives the following error:

Function or column reference to 'emp_lname' in the select list must also
appear in a GROUP BY

SQL does not realize that each of the result rows for an employee with a
given ID have the same value of emp_Iname. An error is reported since SQL
does not know which of the names to display.

However, the following is valid:

257

Using aggregate functions to obtain grouped data

SELECT sales rep, max(emp lname), count(*)
FROM sales order

KEY JOIN employee
GROUP BY sales rep

The max function chooses the maximum (last alphabetically) surname from
the detail rows for each group. The surname is the same on every detail row
within a group so the max is just a trick to bypass a limitation of SQL.

258

Chapter 14 Obtaining Aggregate Data

Restricting groups

You have already seen how to restrict rows in a query using the WHERE
clause. You can restrict GROUP BY clauses by using the HAVING
keyword.

To list all sales reps with more than 55 orders:
¢ Type the following:

SELECT sales rep, count(*)
FROM sales order

KEY JOIN employee

GROUP BY sales rep

HAVING count(*) > 55

sales_rep count(*)
129 57
299 114
467 56
1142 57

Order of clauses
GROUP BY must always appear before HAVING. In the same manner,
WHERE must appear before GROUP BY.

HAVING clauses and WHERE clauses can be combined. When combining
these clauses, the efficiency of the query can depend on whether criteria are
placed in the HAVING clause or in the WHERE clause. Criteria in the
HAVING clause restrict the rows of the result only after the groups have
been constructed. Criteria in the WHERE clause are evaluated before the
groups are constructed, and save time.

To list all sales reps with more than 55 orders and an ID of more
than 1000:

¢ Type the following:

SELECT sales rep, count(*)
FROM sales order

KEY JOIN employee

WHERE sales rep > 1000
GROUP BY sales rep

HAVING count(*) > 55

259

Restricting groups

260

The following statement produces the same results.

To list all sales reps with more than 55 orders and an ID of more
than 1000:

¢ Type the following:

SELECT sales rep, count(*)
FROM sales order

KEY JOIN employee

GROUP BY sales rep

HAVING count(*) > 55

AND sales rep > 1000

The first statement is faster because it can eliminate making up groups for
some of the employees. The second statement builds a group for each sales
rep and then eliminates the groups with wrong employee numbers. For
example, in the first statement, the database engine would not have to make
up a group for the sales rep with employee ID 129. In the second command,
the database engine would make up a group for employee 129 and eliminate
that group with the HAVING clause.

Fortunately, Adaptive Server Anywhere detects this particular problem and
changes the second query to be the same as the first. Adaptive Server
Anywhere performs this optimization with simple conditions (nothing
involving OR or IN). For this reason, when constructing queries with both a
WHERE clause and a HAVING clause, you should be careful to put as many
of the conditions as possible in the WHERE clause.

