CHAPTER 17

Introduction to Subqueries

About this chapter This chapter shows how to use the results of one query as part of another
SELECT statement. This is a useful tool in building more complex and

informative queries.

Contents

Topic Page
Preparing to use subqueries 278
A simple subquery 279
Comparisons using subqueries 281
Using subqueries instead of joins 284

277

Preparing to use subqueries

Preparing to use subqueries

Example 1

Example 2

278

Sometimes it is useful to use the results of one statement as part of another
statement.

For example, suppose that you need a list of order items for products that are
low in stock.

You can look up the products for which there are less than 20 items in stock
in the product table.

To list all products for which there are less than 20 items in stock:
¢ Type the following:

SELECT id, description, quantity
FROM product
WHERE quantity < 20

id | description | quantity

401 ‘ Wool cap ‘ 12

This query shows that only wool caps are low in stock.

You can list all the order items for wool caps with the following query:

To list all orders for wool caps, most recent first:
¢ Type the following:

SELECT *

FROM sales order items
WHERE prod id = 401
ORDER BY ship date DESC

id line_id prod_id quantity ship_date
2082 1 401 48 1994-07-09
2053 1 401 60 1994-06-30
2125 2 401 36 1994-06-28
2027 1 401 12 1994-06-17
2062 1 401 36 1994-06-17

This two-step process of identifying items low in stock and identifying
orders for those items can be combined into a single query using subqueries.

Chapter 17 Introduction to Subqueries

A simple subquery

Example 1

Example 2

SQL provides another way to find orders for items low in stock. The
following query incorporates a subquery.

To list order items for products low in stock:
¢ Type the following:

SELECT *
FROM sales order items
WHERE prod id IN
(SELECT id
FROM product
WHERE quantity < 20
ORDER BY ship date DESC

id line_id prod_id quantity ship_date
2082 1 401 48 1994-07-09
2053 1 401 60 1994-06-30
2125 2 401 36 1994-06-28
2027 1 401 12 1994-06-17
2062 1 401 36 1994-06-17

By using a subquery, the search can be carried out in just one query, instead
of using one query to find the list of low-stock products and a second to find
orders for those products.

The subquery in the statement is the phrase enclosed in parentheses:

(SELECT id
FROM product
WHERE quantity < 20

The subquery makes a list of all values in the id column in the product table
satisfying the WHERE clause search condition.

Consider what would happen if an order for ten tank tops were shipped so
that the quantity column for tank tops contained the value 18. The query
using the subquery, would list all orders for both wool caps and tank tops.
On the other hand, the first statement you used would have to be changed to
the following:

SELECT *

FROM sales order items

WHERE prod id IN (401, 300)
ORDER BY ship date DESC

279

A simple subquery

The command using the subquery is an improvement because it still works
even if data in the database is changed.

Example 3 As another example, you can list orders for everything except those products
in short supply with the query:

SELECT *
FROM sales order items
WHERE prod id NOT IN
(SELECT id
FROM product
WHERE quantity < 20)
ORDER BY ship date DESC

280

Chapter 17 Introduction to Subqueries

Comparisons using subqueries

Two tables in the sample database are concerned with financial results. The
fin_code table is a small table holding the different codes for financial data
and their meanings:

To list the contents of the fin_code table:
¢ Type the following:

SELECT *
FROM fin code

code type description

el expense Fees

e2 expense Services

e3 expense Sales & Marketing
e4 expense R&D

es5 expense Administration

rl revenue Fees

r2 revenue Services

The fin_data table holds financial data for each financial code for each
quarter.

To list the contents of the fin_data table:
¢ Type the following:

SELECT *
FROM fin data

year quarter code amount
1992 Ql el 101

1992 Ql e2 403

1992 Ql e3 1437
1992 Ql ed 623

1992 Ql e5 381

The following query uses a subquery to list just the revenue items from the
fin_data table.

281

Comparisons using subqueries

Notes about
subqueries

282

< To list the revenue items from the fin_data table:

¢ Type the following:

SELECT *
FROM fin data
WHERE fin data.code IN
(SELECT fin code.code
FROM fin code

WHERE type = 'revenue')
year quarter code amount
1992 Ql rl 1023
1992 Q2 rl 2033
1992 Q3 rl 2998
1992 Q4 rl 3014
1993 Ql rl 3114

This example has used qualifiers to clearly identify the table to which the
code column in each reference belongs. In this particular example, the
qualifiers could have been omitted.

Subqueries are restricted to one column name listed between SELECT and
FROM: one select-list item. The following example does not make sense,
since SQL would not know which column from fin_code to compare to the
fin_data.code column.

SELECT *
FROM fin data
WHERE fin data.code IN
(SELECT fin code.code, fin code.type
FROM fin code
WHERE type = 'revenue')

Further, while subqueries used with an IN condition may return several rows,
a subquery used with a comparison operator must return only one row. For
example the following command results in an error since the subquery
returns two rows:

SELECT *
FROM fin data
WHERE fin data.code =
(SELECT fin code.code
FROM fin code
WHERE type = 'revenue')

The IN comparison allows several rows. Two other keywords can be used as
qualifiers for operators to allow them to work with multiple rows: ANY and
ALL.

Chapter 17 Introduction to Subqueries

The following query is identical to the successful query above:

SELECT *
FROM fin data
WHERE fin data.code = ANY
(SELECT fin code.code
FROM fin code
WHERE type = 'revenue')

While the = ANY condition is identical to the IN condition, ANY can also be
used with inequalities such as, or, to give more flexible use of subqueries.

The word ALL is similar to the word ANY. For example, the following
query lists financial data that is not revenues:

SELECT *
FROM fin data
WHERE fin data.code <> ALL
(SELECT fin code.code
FROM fin code
WHERE type = 'revenue')

This is equivalent to the following command using NOT IN:

SELECT *
FROM fin data
WHERE fin data.code NOT IN
(SELECT fin code.code
FROM fin code
WHERE type = 'revenue')

283

Using subqueries instead of joins

Using subqueries instead of joins

Using a join .

Using a subquery

284

Suppose you need a chronological list of orders and the company that placed
them, but would like the company name instead of their customer ID. You
can get this result using a join as follows:

To list the order id, date, and company name for each order since
the beginning of 1994:

¢ Type the following:

SELECT sales order.id,
sales order.order date,
customer.company name
FROM sales order
KEY JOIN customer
WHERE order date > '1994/01/01'
ORDER BY order date

id order_date company_name
2473 1994-01-04 Peachtree Active Wear
2474 1994-01-04 Sampson & Sons

2036 1994-01-05 Hermanns

2106 1994-01-05 Salt & Pepper's

2475 1994-01-05 Cinnamon Rainbow's

The following statement obtains the same results using a subquery instead of
a join:
SELECT sales_order.id,
sales order.order date,
(SELECT company name FROM customer
WHERE customer.id = sales order.cust id)
FROM sales order
WHERE order date > '1994/01/01"'
ORDER BY order date

The subquery refers to the cust_id column in the sales_order table even
though the sales_order table is not part of the subquery. Instead, the
sales_order.cust_id column refers to the sales_order table in the main body
of the statement. This is called an outer reference. Any subquery that
contains an outer reference is called a correlated subquery.

Chapter 17 Introduction to Subqueries

Using an outer join

®,
”n

A subquery can be used instead of a join whenever only one column is
required from the other table. (Recall that subqueries can only return one
column.) In this example, you only needed the company_name column so
the join could be changed into a subquery.

If the subquery might have no result, this method is called an outer join. The
join in previous sections of the tutorial is more fully called an inner join.

To list all customers in Washington State together with their most
recent order ID:

¢ Type the following:

SELECT company name, state,
(SELECT MAX(id)
FROM sales order
WHERE sales order.cust id = customer.id)
FROM customer

WHERE state = 'WA'
company_name state | MAX(id)
Custom Designs WA 2547
It's a Hit! WA (NULL)

The It's a Hit! company placed no orders, and the subquery returns NULL
for this customer. Companies who have not placed an order would not be
listed if an inner join was used.

You could also specify an outer join explicitly. In this case a GROUP BY
clause is also required.

SELECT company name, state,
MAX (sales order.id)
FROM customer
KEY LEFT OUTER JOIN sales order
WHERE state = 'WA'
GROUP BY company name, state

285

Using subqueries instead of joins

286

