CHAPTER 2

The Embedded SQL Interface

About this chapter This chapter describes the Embedded SQL programming interface to
Adaptive Server Anywhere.

Contents .
Topic Page
Application development using Embedded SQL 8
Embedded SQL data types 17
Using host variables 20
The SQL Communication Area 27
Fetching data 32
Static and dynamic SQL 37
The SQL descriptor area (SQLDA) 45
Using stored procedures in Embedded SQL 51
Library functions 55
Embedded SQL commands 70

Database examples 72

Application development using Embedded SQL

Application development using Embedded SQL

Embedded SQL consists of SQL statements intermixed with C or C++
source code. These SQL statements are translated by a SQL preprocessor
into C or C++ source code. The SQL preprocessor is run before compilation.

This code, together with the Adaptive Server Anywhere interface library
communicates the appropriate information to the database server when the
program is run. The interface library is a dynamic link library (DLL) or
shared library on most platforms.

Supported compilers

The C language SQL preprocessor has been used in conjunction with the
following compilers:

Operating system Compiler Version
Windows 95 and NT Watcom C/C++ 9.5 and above
Windows 95 and NT Microsoft Visual C/C++ 1.0 and above
Windows 95 and NT Borland C++ 4.5

Windows 3.x Watcom C/C++ 9.0 and above
Windows 3.x Microsoft C / C++ 5.0,5.1,6.0,7.0
Windows 3.x Microsoft Visual C/C++ 1.0,1.5
Windows 3.x Borland C++ 2.0,3.0,4.0,4.5
UNIX GNU gcc, native compiler

Chapter 2 The Embedded SQL Interface

Development process overview

T
e

C Source Code

i

SQL
Preprocessor

C Compiler

Linker DLL Import

A

Custom

Application d pLL ;@abase

Once the program has been successfully preprocessed and compiled, it is
linked with the import library for the Adaptive Server Anywhere interface
library to form an executable file. When the database is running, this
executable file will use the Adaptive Server Anywhere DLL to interact with
the database. The database does not have to be running when the program is
preprocessed.

One Windows 3.x import library works for all compilers and memory
models. For Windows 95 and Windows NT, there are separate import
libraries for Watcom C/C++, for Microsoft Visual C++, and for Borland
CH++.

Watcom C/C++ supports 32-bit application development under Windows
3.x. For this environment, a static interface library (not a DLL) is provided.

Application development using Embedded SQL

& Using import libraries is the standard development method for
applications that call functions in DLLs. Adaptive Server Anywhere also
provides an alternative, and recommended, method, which avoids the use of
import libraries. For more information, see "Loading the interface library
dynamically" on page 13.

Running the SQL preprocessor

Command line

The SQL preprocessor is an executable named sglpp.exe.

The SQLPP command line is as follows:
SQLPP [switches] sql-filename [output-filename]

The SQL preprocessor processes a C program with Embedded SQL before
the C or C++ compiler is run. The preprocessor translates the SQL
statements into C/C++ language source that is put into the output file. The
normal extension for source programs with Embedded SQL is .sqgc. The
default output filename is the sg/-filename with an extension of .c. If the sql-
filename already has a .c extension, then the output filename extension is .cc
by default.

& For a full listing of the command-line switches, see "The SQL
preprocessor” on page 124 of the book Adaptive Server Anywhere Reference
Manual.

Embedded SQL header files

10

All header files are installed in the ./ subdirectory of your Adaptive Server
Anywhere installation directory.

Chapter 2 The Embedded SQL Interface

Import libraries

Filename Description

sqlca.h Main header file included in all Embedded SQL programs. This
file includes the structure definition for the SQL Communication
Area (SQLCA) and prototypes for all Embedded SQL database
interface functions.

sqlda.h SQL Descriptor Area structure definition included in Embedded
SQL programs that use dynamic SQL.

sqldef'h Definition of Embedded SQL interface data types. This file also
contains structure definitions and return codes needed for starting
the database server from a C program.

sqlerr.h Definitions for error codes returned in the sqlcode field of the
SQLCA.

sqlstate.h Definitions for ANSI/ISO SQL standard error states returned in
the sqlstate field of the SQLCA.

pshpkl.h, These headers ensure that structure packing is handled correctly.

pshpk2.h, They support Watcom C/C++, Microsoft Visual C++, IBM

poppk.h Visual Age, and Borland C/C++ compilers.

All import libraries are installed in the /ib subdirectory, under the operating
system subdirectory of the Adaptive Server Anywhere installation directory.
For example, Windows 95 and Windows NT import libraries are stored in
the win32\lib subdirectory.

Operating system Compiler Import library

Windows 95 and NT Watcom C/C++ dblibwfw.lib

Windows 95 and NT Watcom C/C++ stack | dblibfws.lib
calling convention.

Windows 95 and NT Watcom C/C++ dblibtw.lib

Windows 95 and NT Borland C++ dblibtb.lib

Windows 95 and NT Microsoft Visual dblibtm.lib
CH++

Windows 3.x

All compilers dblibw.lib

11

Application development using Embedded SQL

A simple example

The following is a very simple example of an Embedded SQL program.

#include <stdio.h>
EXEC SQL INCLUDE SQLCA;
main ()
{
db init(&sglca);
EXEC SQL WHENEVER SQLERROR GOTO error;
EXEC SQL CONNECT "dba" IDENTIFIED BY '"sqgl";
EXEC SQL UPDATE employee
SET emp lname = 'Plankton'
WHERE emp id = 195;
EXEC SQL COMMIT WORK;
EXEC SQL DISCONNECT;
db fini(&sglca);
return(0);

error:
printf ("update unsuccessful -- sglcode = %$1d.n",
sglca.sglcode) ;

return(-1);

}

This example connects to the database, updates the surname of employee
number 1056, commits the change and exits. There is virtually no interaction
between the SQL and C code. The only thing the C code is used for in this
example is control flow. The WHENEVER statement is used for error
checking. The error action (GOTO in this example) is executed after any
SQL statement that causes an error.

Note that the first section of this chapter uses UPDATE and INSERT
examples because they are simpler.

& For a description of fetching data, see "Fetching data" on page 32.

Structure of Embedded SQL programs

12

SQL statements are placed (embedded) within regular C or C++ code. All
Embedded SQL statements start with the words EXEC SQL and end with a
semicolon (;). Normal C language comments are allowed in the middle of
Embedded SQL statements.

Every C program using Embedded SQL must contain the following
statement before any other Embedded SQL statements in the source file.

EXEC SQL INCLUDE SQLCA;

Chapter 2 The Embedded SQL Interface

The first Embedded SQL statement executed by the C program must be a
CONNECT statement. The CONNECT statement is used to establish a
connection with the database server and to specify the user ID that is used for
authorizing all statements executed during the connection.

The CONNECT statement must be the first Embedded SQL statement
executed. Some Embedded SQL commands do not generate any C code, or
do not involve communication with the database. These commands are thus
allowed before the CONNECT statement. Most notable are the INCLUDE
statement and the WHENEVER statement for specifying error processing.

User IDs and database authorization

The CONNECT statement specifies a user ID and password to be used for
checking the permissions for any dynamic SQL statements that are used in
the program (defined in "Dynamic SQL statements" on page 37). It is also
used for authorization of any static statements that are contained in modules
preprocessed without the SQL preprocessor —1 option. The —1 option
provides user identification.

Static SQL statements in modules that are preprocessed with the —1 option
will have the authorization checked at execution time using the user ID and
password specified with the —1 option. This is how privileged commands
can be executed by non-privileged users under C program control.

Loading the interface library dynamically

The usual practice for developing applications that use functions from DLLs
is to link the application against an import library, which contains the
required function definitions.

This section describes an alternative to using an import library for
developing Adaptive Server Anywhere applications. The Adaptive Server
Anywhere interface library can be loaded dynamically, without having to
link against the import library, using the esqgldll.c module in the src
subdirectory of your installation directory. Using esq/dll.c is recommended,
because it is easier to use and more robust in its ability to locate the interface
DLL.

< To load the interface DLL dynamically:

1 Your program must call db_init_dll to load the DLL, and must call
db_fini_dll to free the DLL. The db_init_dll call must be before any
function in the database interface, and no function in the interface can be
called after db_fini_dll.

13

Application development using Embedded SQL

You must still call the db_init and db_fini library functions.

2 You must #include the esqldll. h header file before the EXEC SQL
INCLUDE SQLCA statement or #include <sg/ca.h> line in your
Embedded SQL program.

3 A SQL OS macro must be defined. The header file sqg/ca.h, which is
included by esqdll.c, attempts to determine the appropriate macro and
defines it. However, certain combinations of platforms and compilers
may cause this to fail. In this case, you must add a #define to the top of
this file, or make the definition by using a compiler option.

Macro | Platforms
_SQL_OS_WINNT | Windows 95 and Windows NT
~SQL_OS_WINDOWS | Windows 3.x

4 Compile esqldll.c.

5 Instead of linking against the imports library, link the object module
esqldll. obj with your Embedded SQL application objects.

Example The following example illustrates how to use esqldll.c and esqldil.h.

#include <stdio.h>
#include "esgldll.h"

EXEC SQL INCLUDE SQLCA;
#include "sqgldef.h"
#include <windows.h>

EXEC SQL BEGIN DECLARE SECTION;
int X;

a sqgl statement number statl;
EXEC SQL END DECLARE SECTION;

#define TRUE 1
#define FALSE 0

void printSQLError (void)
{
char buffer[200];

sqglerror message(&sqglca, buffer, sizeof (buffer));
#ifdef SQL OS WINDOWS

printf("Error %$1d -- %Fs\n", SQLCODE, buffer);
#else
printf("Error %$1d -- %s\n", SQLCODE, buffer);
#endif

14

Chapter 2 The Embedded SQL Interface

char *dllpaths[] = { "s:\\jasonhi\\",
NULL };

#include <windows.h>

int main(void)

{

struct sglda fd * sqgldal;
int result;
char string[200];

printf("Initing DLL\n");

result = db_init dll(dllpaths);

switch(result) {

case ESQLDLL OK:
printf ("OK\n") ;
break;
case ESQLDLL DLL NOT FOUND:
printf ("DLL NOT FOUND\n");
return(10);

case ESQLDLL WRONG VERSION:
printf ("WRONG VERSION\n") ;
return(10);

}

if(!db init(&sqglca)) {
printf("dbo_init failed.\n");
db fini dll();

return(10);

}

#ifdef SQL OS WINNT
result = db string connect(&sqglca,
"UID=dba;PWD=sql; DBF=d:\\asa6\\sample.db") ;

#elif defined(SQL OS WINDOWS)
result = db _string connect(&sqglca,
"UID=dba; PWD=sql; DBF=c:\\wsgl50\\sample.db") ;

#elif defined(_SQL OS 0S232)
result = db _string connect(&sqglca,
"UID=dba; PWD=sql; DBF=h:\\wsgl50\\sample.db") ;

#endif
if(! result) {
printf("db string connect returned = %d\n",

result);
printSQLError () ;

156

Application development using Embedded SQL

}
sqldal = alloc descriptor(sqglcaptr, 20);
EXEC SQL PREPARE :statl FROM
'select * from employee
WHERE empnum = 80921';
if(SQLCODE != 0) {
printSQLError () ;
}
EXEC SQL DECLARE curs CURSOR FOR :statl;
if(SQLCODE != 0) {
printSQLError () ;
}
EXEC SQL OPEN curs;
if(SQLCODE != 0) {
printSQLError () ;
}
EXEC SQL DESCRIBE :statl INTO sqgldal;
if(SQLCODE != 0) {
printSQLError () ;
}
sqgqldal->sqglvar[l].sqgltype = 460;
fill sqglda(sgldal);
EXEC SQL FETCH FIRST curs INTO DESCRIPTOR sqgldal;
if(SQLCODE != 0) {
printSQLError () ;
}
printf("name = %Fs\n", (char _fd *)sgldal-
>sqglvar[l].sgldata);
x = sqgldal->sqgld;
printf ("COUNT = %d\n", x);
free filled sqglda(sgldal);
db string disconnect(&sqglca, "");
db fini(&sqglca);
db fini dll();

return(0);

16

Chapter 2 The Embedded SQL Interface

Embedded SQL data types

To transfer information between a program and the database server, every
piece of data must have a data type. The Embedded SQL data type constants
are prefixed with DT , and can be found in the sgl/def-h header file. You can
create a host variable of any one of the supported types. You can also use
these types in a SQLDA structure for passing data to and from the database.

The following data types are supported by the Embedded SQL programming
interface:

¢

¢
¢
¢
¢

* & o o

<

DT_SMALLINT 16 bit, signed integer.
DT_INT 32 bit, signed integer.

DT_FLOAT 4 byte floating point number.
DT_DOUBLE 8 byte floating point number.
DT_DECIMAL Packed decimal number.

typedef struct DECIMAL ({
char arrayl[l];
} DECIMAL;

DT_STRING NULL-terminated blank-padded character string.
DT_DATE NULL-terminated character string that is a valid date.
DT_TIME NULL-terminated character string that is a valid time.

DT_TIMESTAMP NULL-terminated character string that is a valid
timestamp.

DT_FIXCHAR Fixed-length blank padded character string.

DT_VARCHAR Varying length character string with a two byte length
field. When supplying information to the database server, you must set
the length field. When fetching information from the database server, the
server sets the length field (not padded).

typedef struct VARCHAR {
unsigned short int len;
char arrayl[l];

} VARCHAR;

DT_BINARY Varying length binary data with a two byte length field.
When supplying information to the database server, you must set the
length field. When fetching information from the database server, the
server sets the length field.

typedef struct BINARY {
unsigned short int len;
char arrayl[l];

17

Embedded SQL data types

DATE and TIME
database types

18

} BINARY;

¢ DT_TIMESTAMPSTRUCT SQLDATETIME structure with fields for
each part of a timestamp.

typedef struct sgldatetime {

unsigned short year; /* e.g. 1992 */
unsigned char month; /* 0-11 */

unsigned char day of week; /* 0-6 0=Sunday */
unsigned short day of year; /* 0-365 */
unsigned char day; /* 1-31 */

unsigned char hour; /* 0-23 */

unsigned char minute; /* 0-59 */

unsigned char second; /* 0-59 */

unsigned long microsecond; /* 0-999999 */
} SQLDATETIME;

The SQLDATETIME structure can be used to retrieve fields of DATE,
TIME, and TIMESTAMP type (or anything that can be converted to one
of these). Often, applications have their own formats and date
manipulation code. Fetching data in this structure makes it easier for a
programmer to manipulate this data. Note that DATE, TIME and
TIMESTAMP fields can also be fetched and updated with any character

type.

& For more information, see the DATE_FORMAT,

TIME FORMAT, TIMESTAMP_FORMAT, and DATE_ORDER
database options in "Database Options" on page 127 of the book
Adaptive Server Anywhere Reference Manual.

¢ DT_VARIABLE NULL-terminated character string. The character
string must be the name of a SQL variable whose value is used by the
database server. This data type is used only for supplying data to the
database server. It cannot be used when fetching data from the database
server.

The structures are defined in the sglca.h file. The VARCHAR, BINARY and
DECIMAL types contain a one-character array and are thus not useful for
declaring host variables but they are useful for allocating variables
dynamically or typecasting other variables.

There are no corresponding Embedded SQL interface data types for the
various DATE and TIME database types. These database types are all
fetched and updated using either the SQLDATETIME structure or character
strings.

There are no Embedded SQL interface data types for LONG VARCHAR and
LONG BINARY database types. These database types are fetched and
updated in pieces.

Chapter 2 The Embedded SQL Interface

& For more information see "GET DATA statement" on page 479 of the
book Adaptive Server Anywhere Reference Manual and "SET statement" on
page 546 of the book Adaptive Server Anywhere Reference Manual.

19

Using host variables

Using host variables

Host variables are C variables that are identified to the SQL preprocessor.
Host variables can be used to send values to the database server or receive
values from the database server.

Host variables are quite easy to use, but they have some restrictions.
Dynamic SQL is a more general way of passing information to and from the
database server using a structure known as the SQL Descriptor Area
(SQLDA). Dynamic SQL is discussed in "Static and dynamic SQL" on page
37.

Declaring host variables

Example

20

Host variables are defined by putting them into a declaration section.
According to the IBM SAA and ANSI Embedded SQL standards, host
variables are defined by surrounding the normal C variable declarations with
the following:

EXEC SQL BEGIN DECLARE SECTION;
/* C variable declarations */
EXEC SQL END DECLARE SECTION;

These host variables can then be used in place of value constants in any SQL
statement. When the database server executes the command, the value of the
host variable is used. Note that host variables cannot be used in place of table
or column names; dynamic SQL is required for this. The variable name is
prefixed with a colon (:) in a SQL statement to distinguish it from other
identifiers allowed in the statement.

A standard SQL preprocessor does not scan C language code except inside a
DECLARE SECTION. Thus, TYPEDEEF types and structures are not
allowed. Initializers on the variables are allowed inside a DECLARE
SECTION.

¢ The following sample code illustrates the use of host variables on an
INSERT command. The variables are filled in by the program and then
inserted into the database:

EXEC SQL BEGIN DECLARE SECTION;

long employee number;

char employeeiname[BO];

char employee initials([8];

char employee phone[15];

EXEC SQL END DECLARE SECTION;

/* program fills in variables with appropriate
values

*/

Chapter 2 The Embedded SQL Interface

EXEC SQL INSERT INTO Employee

VALUES (:employee number,
:employee initials,

:employee name,
:employee phone);

&> For a more extensive example, see "Static cursor example" on page

74.

C host variable types

Only a limited number of C data types are supported as host variables. Also,
certain host variable types do not have a corresponding C type.

There are macros defined in the sqlca.h header file that can be used to
declare a host variable of these types: VARCHAR, FIXCHAR, BINARY,
PACKED DECIMAL, or SQLDATETIME structure. They are used as

follows:

EXEC SQL BEGIN DECLARE SECTION;
DECL_VARCHAR(10) v_varchar;
DECL FIXCHAR(10) v_fixchar;
DECL BINARY(4000) v binary;

DECL DECIMAL(10, 2) v_packed decimal;

DECL DATETIME v datetime;
EXEC SQL END DECLARE SECTION;

The preprocessor recognizes these macros within a declaration section and
will treat the variable as the appropriate type.

The following table lists the C variable types that are allowed for host
variables, and their corresponding Embedded SQL interface data types.

C Data Type

Embedded SQL Interface
Type

Description

short 1i;

short int i:
unsigned short
int i;

DT SMALLINT

16 bit, signed integer

long 1;

long int 1;
unsigned long int
1;

DT _INT

32 bit, signed integer

float £

DT FLOAT

4 byte floating point

double d;

DT _DOUBLE

8 byte floating point

DECL DECIMAL(p,s)

DT _DECIMAL(p,s)

Packed decimal

char a; /*n=1%/
DECLiFIXCHAR(n)
a; DECL FIXCHAR
alnl;

DT _FIXCHAR(n)

Fixed length character
string blank padded

21

Using host variables

Pointers to char

Scope of host
variables

C Data Type Embedded SQL Interface | Description
Type

char aln]; DT _STRING(n) NULL-terminated

/*n>=1*/ blank-padded string

char *a; DT STRING(32767) NULL-terminated
string

DECL VARCHAR (n) DT _VARCHAR(n) Varying length

ai character string with 2
byte length field. Not
blank padded.

DECL_BINARY(n) a; | DT BINARY(n) Varying length binary
data with 2 byte length

field

DECL DATETIME a;

DT _TIMESTAMP_STRUCT | SQLDATETIME

structure

A host variable declared as a pointer to char (char *a) is considered by the
database interface to be 32,767 bytes long. Any host variable of type pointer
to char used to retrieve information from the database must point to a buffer
large enough to hold any value that could possibly come back from the
database.

This is potentially quite dangerous, because somebody could change the
definition of the column in the database to be larger than it was when the
program was written. This could cause random memory corruption problems.
If you are using a 16-bit compiler, requiring 32,767 bytes could make the
program stack overflow. It is better to use a declared array, even as a
parameter to a function where it is passed as a pointer to char. This lets the
PREPARE statements know the size of the array.

A standard host variable declaration section can appear anywhere that C
variables can normally be declared. This includes the parameter declaration
section of a C function. The C variables have their normal scope (available
within the block in which they are defined). However, since the SQL
preprocessor does not scan C code, it does not respect C blocks.

As far as the SQL preprocessor is concerned, host variables are global; two
host variables cannot have the same name. The only exception to this rule is
that two host variables can have the same name if they have identical types
(including any necessary lengths).

Host variable usage

22

Host variables can be used in the following circumstances:

Chapter 2 The Embedded SQL Interface

Examples

Indicator variables

SELECT, INSERT, UPDATE and DELETE statements in any place
where a number or string constant is allowed.

The INTO clause of SELECT and FETCH statements.

Host variables can also be used in place of a statement name, a cursor
name, or an option name in commands specific to Embedded SQL.

For CONNECT, DISCONNECT, and SET CONNECT, a host variable
can be used in place of a user ID, password, connection name, or
database environment name.

For SET OPTION and GET OPTION, a host variable can be used in
place of a user ID, option name or option value.

Host variables cannot be used in place of a table name or a column name
in any statement.

The following is a valid program:

INCLUDE SQLCA;
long SQLCODE;
subl () {
char SQLSTATE[6];
exec sgl CREATE TABLE ...
}

The following is an invalid program:

INCLUDE SQLCA;
subl () {
char SQLSTATE[6];
exec sgl CREATE TABLE...
}
sub2 () {
exec sgl DROP TABLE...
// No SQLSTATE in scope of this statement
}

The case of SQLSTATE and SQLCODE is important, and the
ISO/ANSI standard requires that their definitions be exactly as follows:

long SQLCODE;
char SQLSTATE([6];

Indicator variables are C variables that hold supplementary information when
you are fetching or putting data. There are several distinct uses for indicator
variables:

NULL values To enable applications to handle NULL values.

23

Using host variables

¢ String truncation To enable applications to handle cases when fetched
values must be truncated to fit into host variables.

¢ Conversion errors To hold error information.

An indicator variable is a host variable of type short int that is placed
immediately following a regular host variable in a SQL statement. For
example, in the following INSERT statement, :ind_phone is an indicator
variable:

EXEC SQL INSERT INTO Employee
VALUES (:employee number, :employee name,
:employee initials, :employee phone:ind phone);

Using indicator variables to handle NULL

Using indicator
variables when
inserting NULL

24

In SQL data, NULL represents either an unknown attribute or inapplicable
information. The SQL concept of NULL is not to be confused with the C
language constant by the same name (NULL). The C constant is used to
represent a non-initialized or invalid pointer.

When NULL is used in the Adaptive Server Anywhere documentation, it
refers to the SQL database meaning given above. The C language constant is
referred to as the null pointer (lower case).

NULL is not the same as any value of the column's defined type. Thus, in
order to pass NULL values to the database or receive NULL results back,
something extra is required beyond regular host variables. Indicator
variables are used for this purpose.

An INSERT statement could include an indicator variable as follows:

EXEC SQL BEGIN DECLARE SECTION;
short int employee number;

char employee name[50];

char employee initials([6];

char employee phone[15];

short int ind phone;

EXEC SQL END DECLARE SECTION;

/*
program fills in empnum, empname,
initials and homephone

*/

if(/* phone number is unknown */) {
ind phone = -1;

} else {

ind phone = 0;
}
EXEC SQL INSERT INTO Employee
VALUES (:employee number, :employee name,

Chapter 2 The Embedded SQL Interface

Using indicator
variables when
fetching NULL

:employee initials, :employee phone:ind phone);

If the indicator variable has a value of -1, a NULL is written. If it has a value
of 0, the actual value of employee_phone is written.

Indicator variables are also used when receiving data from the database.
They are used to indicate that a NULL value was fetched (indicator is
negative). If a NULL value is fetched from the database and an indicator
variable is not supplied, an error is generated (SQLE_NO_INDICATOR).
Errors are explained in the next section.

Using indicator variables for truncated values

Indicator variables indicate whether any fetched values were truncated to fit
into a host variable. This enables applications to handle truncation
appropriately.

If a value is truncated on fetching, the indicator variable is set to a positive
value, containing the actual length of the database value before truncation. If
the length of the value is greater than 32,767, then the indicator variable
contains 32,767.

Using indicator values for conversion errors

By default, the CONVERSION ERROR database option is set to ON, and
any data type conversion failure leads to an error, with no row returned.

You can use indicator variables to tell which column produced a data type
conversion failure. If you set the database option CONVERSION ERROR
to OFF, any data type conversion failure gives a warning, rather than an
error. If the column that suffered the conversion error has an indicator
variable, that variable is set to a value of -2.

If you set the CONVERSION ERROR option to OFF when inserting data
into the database, a value of NULL is inserted when a conversion failure
occurs.

Summary of indicator variable values

The following table provides a summary of indicator variable usage.

25

Using host variables

26

Indicator | Supplying Value to Receiving value from database

Value database

>0 Host variable value Retrieved value was truncated — actual
length in indicator variable

0 Host variable value Fetch successful, or
CONVERSION _ERROR set to ON.

-1 NULL value NULL result

-2 NULL value Conversion error (When
CONVERSION_ERROR is set to OFF
only). SQLCODE will indicate a conversion
error.

<2 NULL value NULL result

&~ For more information on retrieving long values, see "GET DATA
statement" on page 479 of the book Adaptive Server Anywhere Reference

Manual.

Chapter 2 The Embedded SQL Interface

The SQL Communication Area

SQLCA provides
error codes

The SQL Communication Area (SQLCA) is an area of memory that is
used on every database request for communicating statistics and errors from
the application to the database server and back to the application. The
SQLCA is used as a handle for the application-to-database communication
link. It is passed in to all database library functions that need to communicate
with the database server. It is implicitly passed on all Embedded SQL
statements.

A global SQLCA variable is defined in the interface library. The
preprocessor generates an external reference for the global SQLCA variable
and an external reference for a pointer to it. The external reference is named
sqlea and is of type SQLCA. The pointer is named sqlcaptr. The actual
global variable is declared in the imports library.

The SQLCA is defined by the sqlca.h header file, included in the %
subdirectory of your installation directory.

You reference the SQLCA to test for a particular error code. The sqlcode
and sqlstate fields contain error codes when a database request has an error
(see below). Some C macros are defined for referencing the sqlcode field,
the sqlstate field, and some other fields.

Fields in the SQLCA

The fields in the SQLCA have the following meanings:

¢ sglcaid An 8-byte character field that contains the string SQLCA as
an identification of the SQLCA structure. This field helps in debugging
when you are looking at memory contents.

¢ sqlcabc A long integer that contains the length of the SQLCA
structure (136 bytes).

¢ sqglcode A long integer that specifies the error code when the database
detects an error on a request. Definitions for the error codes can be
found in the header file sglerr.h. The error code is 0 (zero) for a
successful operation, positive for a warning and negative for an error.

&~ For a full listing of error codes, see "Database Error Messages" on
page 581 of the book Adaptive Server Anywhere Reference Manual.

¢ sqlerrml The length of the information in the sqlerrme field.

¢ sglerrmc May contain one or more character strings to be inserted into
an error message. Some error messages contain a placeholder string
(%1) which is replaced with the text in this field.

27

The SQL Communication Area

sqlerror array

28

* & o o

For example, if a Table Not Found error is generated, sqlerrmc contains
the table name, which is inserted into the error message at the
appropriate place.

& For a full listing of error messages, see "Database Error Messages"
on page 581 of the book Adaptive Server Anywhere Reference Manual.

sqlerrp Reserved.
sqglerrd A utility array of long integers.
sqlwarn Reserved.

sqlstate The SQLSTATE status value. The ANSI SQL standard
(SQL-92) defines a new type of return value from a SQL statement in
addition to the SQLCODE value in previous standards. The SQLSTATE
value is always a five-character null-terminated string, divided into a
two character class (the first two characters) and a three-character
subclass. Each character can be a digit from 0 through 9 or an upper case
alphabetic character A through Z.

Any class or subclass that begins with 0 through 4 or A through H is
defined by the SQL standard; other classes and subclasses are
implementation defined. The SQLSTATE value '00000' means that there
has been no error or warning.

& Other SQLSTATE values are described in "Database Error
Messages" on page 581 of the book Adaptive Server Anywhere
Reference Manual.

The sqlerror field array has the following elements.

¢

sqlerrd[1] (SQLIOCOUNT) The actual number of input/output
operations that were required to complete a command.

The database does not start this number at zero for each command. Your
program can set this variable to zero before executing a sequence of
commands. After the last command, this number is the total number of
input/output operations for the entire command sequence.

sqlerrd[2] (SQLCOUNT) The value of this field depends on which
statement is being executed.

¢ INSERT, UPDATE and DELETE statements The number of rows
that were affected by the statement.

Chapter 2 The Embedded SQL Interface

On a cursor OPEN, this field is filled in with either the actual
number of rows in the cursor (a value greater than or equal to 0) or
an estimate thereof (a negative number whose absolute value is the
estimate). It is the actual number of rows if the database server can
compute it without counting the rows. The database can also be
configured to always return the actual number of rows using the
ROW_COUNT option.

¢ FETCH cursor statement The SQLCOUNT field is filled if a
SQLE NOTFOUND warning is returned. It contains the number of
rows by which a FETCH RELATIVE or FETCH ABSOLUTE
statement goes outside the range of possible cursor positions. (A
cursor can be on a row, before the first row or after the last row.)

The value is 0 if the row was not found but the position is valid, for
example, executing FETCH RELATIVE 1 when positioned on the
last row of a cursor. The value is positive if the attempted fetch was
beyond the end of the cursor, and negative if the attempted fetch
was before the beginning of the cursor.

¢ GET DATA statement The SQLCOUNT field holds the actual
length of the value.

¢ DESCRIBE statement Inthe WITH VARIABLE RESULT clause
used to describe procedures that may have more than one result set,
SQLCOUNT is set to one of the following values:

¢ 0 The result set may change: the procedure call should be
described again following each OPEN statement.

¢ 1 The result set is fixed. No redescribing is required.

In the case of a syntax error, SQLE_SYNTAX ERROR, this field
contains the approximate character position within the command
string where the error was detected.

¢ sqlerrd[3] (SQLIOESTIMATE) The estimated number of input/output
operations that are to complete the command. This field is given a value
on an OPEN or EXPLAIN command.

SQLCA management for multi-threaded or reentrant code

You can use Embedded SQL statements in multi-threaded or reentrant code.
However, if you use a single connection, you are restricted to one active
request per connection. In a multi-threaded application, you should not use
the same connection to the database on each thread unless you use a
semaphore to control access.

29

The SQL Communication Area

There are no restrictions on using separate connections on each thread that
wishes to use the database. The SQLCA is used by the runtime library to
distinguish between the different thread contexts. Thus, each thread wishing
to use the database must have it's own SQLCA. Any given database
connection will only be accessible from one SQLCA.

Using multiple SQLCAs

% To manage multiple SQLCAs in your application:

1

You must use the command line switch on the SQL preprocessor that
generates reentrant code (—r). The reentrant code is a little larger and a
little slower because statically initialized global variables cannot be
used. However, these effects are minimal.

Each SQLCA used in your program must be initialized with a call to
db_init and cleaned up at the end with a call to db_fini.

Caution
Failure to call db_fini for each db_init on NetWare can cause the
database server to fail, and the NetWare file server to fail.

The Embedded SQL statement SET SQLCA ("SET SQLCA statement"
on page 557 of the book Adaptive Server Anywhere Reference Manual)
is used to tell the SQL preprocessor to use a different SQLCA for
database requests. Usually, a statement such as: EXEC SQL SET
SQLCA 'task data->sqlca’; is used at the top of your program or in a
header file to set the SQLCA reference to point at task specific data.
This statement does not generate any code and thus has no performance
impact. It changes the state within the preprocessor so that any reference
to the SQLCA will use the given string.

& For information about creating SQLCAs, see "SET SQLCA statement"
on page 557 of the book Adaptive Server Anywhere Reference Manual.

When to use multiple SQLCAs

You can use the multiple SQLCA support in any of the supported Embedded
SQL environments, but it is only required in reentrant code.

30

The following list details the environments where multiple SQLCAs must be
used:

Chapter 2 The Embedded SQL Interface

¢ Multi-threaded applications If more than one thread uses the same
SQLCA, a context switch can cause more than one thread to be using the
SQLCA at the same time. Each thread must have its own SQLCA. This
can also happen when you have a DLL that uses Embedded SQL and is
called by more than one thread in your application.

¢ Dynamic link libraries and shared libraries A DLL has only one
data segment. While the database server is processing a request from one
application, it may yield to another application that makes a request to
the database server. If your DLL uses the global SQLCA, both
applications are using it at the same time. Each Windows application
must have its own SQLCA.

¢ A DLL with one data segment A DLL can be created with only one
data segment or one data segment for each application. If your DLL has
only one data segment, you cannot use the global SQLCA for the same
reason, that a DLL cannot use the global SQLCA. Each application must
have its own SQLCA.

Connection management with multiple SQLCAs

You do not need to use multiple SQLCAs to connect to more than one
database or have more than one connection to a single database.

Each SQLCA can have one unnamed connection. Each SQLCA has an active
or current connection (see "SET CONNECTION statement" on page 551 of
the book Adaptive Server Anywhere Reference Manual). All operations on a
given database connection must use the same SQLCA that was used when
the connection was established.

Record locking

Operations on different connections are subject to the normal record
locking mechanisms and may cause each other to block and possibly to
deadlock. For information on locking, see the chapter "Using Transactions
and Locks" on page 367 of the book Adaptive Server Anywhere User's
Guide.

31

Fetching data

Fetching data

Fetching data in Embedded SQL is done using the SELECT statement. There
are two cases:

¢ The SELECT statement returns at most one row.

¢ The SELECT statement may return multiple rows.

Embedded SELECT

Example

32

A single row query retrieves at most one row from the database. A single-
row query SELECT statement has an INTO clause following the select list
and before the FROM clause. The INTO clause contains a list of host
variables to receive the value for each select list item. There must be the
same number of host variables as there are select list items. The host
variables may be accompanied by indicator variables to indicate NULL
results.

When the SELECT statement is executed, the database server retrieves the
results and places them in the host variables. If the query results contain
more than one row, the database server returns an error.

If the query results in no rows being selected, a Row Not Found warning is
returned. Errors and warnings are returned in the SQLCA structure, as
described in "The SQL Communication Area" on page 27.

For example, the following code fragment returns 1 if a row from the
employee table is successfully fetched, O if the row doesn't exist and -1 if an
erTor OCCurs.

EXEC SQL BEGIN DECLARE SECTION;

long emp id;

char name [417];

char sex;

char birthdate[15];

short int ind birthdate;
EXEC SQL END DECLARE SECTION;

int find employee(long employee)
{
emp id = employee;
EXEC SQL SELECT emp fname | |
' ' || emp lname, sex, birth date
INTO :name, :sex,
birthdate:ind birthdate
FROM "dba".employee
WHERE emp id = :emp id;
if (SQLCODE == SQLE NOTFOUND) ({

Chapter 2 The Embedded SQL Interface

return(0); /* employee not found */
} else if(SQLCODE < 0) {

return(-1); /* error */
} else {

return(1); /* found */

}

Cursors in Embedded SQL

A cursor is used to retrieve rows from a query that has multiple rows in its
result set. A cursor is a handle or an identifier for the SQL query and a
position within the result set.

& For an introduction to cursors, see "Working with cursors" on page 211
of the book Adaptive Server Anywhere User's Guide.

To manage a cursor in Embedded SQL:

1 Declare a cursor for a particular SELECT statement, using the
DECLARE statement.

2 Open the cursor using the OPEN statement.

3 Retrieve results one row at a time from the cursor using the FETCH
statement.

4 Fetch rows until the Row Not Found warning is returned.

Errors and warnings are returned in the SQLCA structure, described in
"The SQL Communication Area" on page 27.

5 Close the cursor, using the CLOSE statement.

By default, cursors are automatically closed at the end of a transaction (on
COMMIT or ROLLBACK). Cursors that are opened with a WITH HOLD
clause are kept open for subsequent transactions until they are explicitly
closed.

The following is a simple example of cursor usage:

void print employees(void)
{
int status;
EXEC SQL BEGIN DECLARE SECTION;
char name[50];
char sex;
char birthdate[15];
short int ind birthdate;
EXEC SQL END DECLARE SECTION;
EXEC SQL DECLARE Cl1 CURSOR FOR

33

Fetching data

SELECTemp fname || ' ' || emp lname,
sex, birth date
FROM "dba".employee;
EXEC SQL OPEN C1;
for(;;) {
EXEC SQL FETCH C1 INTO :name, :sex,
:birthdate:ind birthdate;
if (SQLCODE == SQLE NOTFOUND) {
break;
} else if(SQLCODE < 0) {
break;
}
if(ind birthdate < 0) {
strcpy (birthdate, "UNKNOWN");
}
printf ("Name: %s Sex: %$c Birthdate:
%s.n",name, sex, birthdate);
}
EXEC SQL CLOSE C1;
}

& For complete examples using cursors, see "Static cursor example" on
page 74, and "Dynamic cursor example" on page 75.

Cursor positioning A cursor is positioned in one of three places:
¢ Onarow
¢ Before the first row

¢ After the last row

34

Chapter 2 The Embedded SQL Interface

Cursor positioning
problems

Absolute row Absolute row

from start from end

0 Before first row -n-1
1 -n

2 -n+1

3 -n+2
n-2 -3
n—1 -2
n —1
n+1 After last row 0

When a cursor is opened, it is positioned before the first row. The cursor
position can be moved, using the FETCH command (see "FETCH statement"
on page 468 of the book Adaptive Server Anywhere Reference Manual). It
can be positioned to an absolute position either from the start or from the end
of the query results. It can also be moved relative to the current cursor
position.

There are special positioned versions of the UPDATE and DELETE
statements that can be used to update or delete the row at the current position
of the cursor. If the cursor is positioned before the first row or after the last
row, a No Current Row of Cursor error is returned.

The PUT statement can be used to insert a row into a cursor.

Inserts and some updates to DYNAMIC SCROLL cursors can cause
problems with cursor positioning. The database server does not put inserted
rows at a predictable position within a cursor unless there is an ORDER BY
clause on the SELECT statement. In some cases, the inserted row does not
appear at all until the cursor is closed and opened again.

With Adaptive Server Anywhere, this occurs if a temporary table had to be
created to open the cursor (see "Temporary tables used in query processing"
on page 640 of the book Adaptive Server Anywhere User's Guide for a
description).

35

Fetching data

The UPDATE statement may cause a row to move in the cursor. This
happens if the cursor has an ORDER BY clause that uses an existing index (a
temporary table is not created).

36

Chapter 2 The Embedded SQL Interface

Static and dynamic SQL

There are two ways to embed SQL statements into a C program:
¢ Static statements

¢ Dynamic statements

Until now, we have been discussing static SQL. This section compares static
and dynamic SQL.

Static SQL statements

All standard SQL data manipulation and data definition statements can be
embedded in a C program by prefixing them with EXEC SQL and suffixing
the command with a semicolon (;). These statements are referred to as static
statements.

Static statements can contain references to host variables, as described in the
section."Using host variables" on page 20. All examples to this point have
used static Embedded SQL statements.

Host variables can only be used in place of string or numeric constants. They
cannot be used to substitute column names or table names; dynamic
statements are required to do those operations.

Dynamic SQL statements

In the C language, strings are stored in arrays of characters. Dynamic
statements are constructed in C language strings. These statements can then
be executed using the PREPARE and EXECUTE statements. These SQL
statements cannot reference host variables in the same manner as static
statements since the C language variables are not accessible by name when
the C program is executing.

To pass information between the statements and the C language variables, a
data structure called the SQL Descriptor Area (SQLDA) is used. This
structure is set up for you by the SQL preprocessor if you specify a list of
host variables on the EXECUTE command in the USING clause. These
variables correspond by position to place holders in the appropriate positions
of the prepared command string.

& For information on the SQLDA, see "The SQL descriptor area
(SQLDA)" on page 45.

37

Static and dynamic SQL

Example

38

A place holder is put in the statement to indicate where host variables are to
be accessed. A place holder is either a question mark (?) or a host variable
reference as in static statements (a host variable name preceded by a colon).
In the latter case, the host variable name used in the actual text of the
statement serves only as a place holder indicating a reference to the SQL
descriptor area.

A host variable used to pass information to the database is called a bind
variable.

For example:

EXEC SQL BEGIN DECLARE SECTION;
char comm[200];
char address[30];
char city[20];
short int cityind;
long empnum;
EXEC SQL END DECLARE SECTION;

sprintf (comm, "update %s set address = :?,

city = 2"
" where employee number = :?",

tablename);
EXEC SQL PREPARE S1 FROM :comm;
EXEC SQL EXECUTE S1 USING :address, :city:cityind,
:empnum;

This method requires the programmer to know how many host variables
there are in the statement. Usually, this is not the case. So, you can set up
your own SQLDA structure and specify this SQLDA in the USING clause
on the EXECUTE command.

The DESCRIBE BIND VARIABLES statement returns the host variable
names of the bind variables that are found in a prepared statement. This
makes it easier for a C program to manage the host variables. The general
method is as follows:

EXEC SQL BEGIN DECLARE SECTION;
char comm[200];
EXEC SQL END DECLARE SECTION;

sprintf (comm, "update %s set address = :address,

city = :city"
" where employee number = :empnum",

tablename);
EXEC SQL PREPARE S1 FROM :comm;
/* Assume that there are no more than 10 host variables.
See next example if you can't put
a limit on it */
sqlda = alloc sqglda(10);

Chapter 2 The Embedded SQL Interface

SQLDA contents

Indicator variables
and NULL

EXEC SQL DESCRIBE BIND VARIABLES FOR S1 USING DESCRIPTOR
sglda;

/* sqglda->sgld will tell you how many host variables
there were. */

/* Fill in SQLDA VARIABLE fields with values based on
name fields in sqglda */

EXEC SQL EXECUTE S1 USING DESCRIPTOR sqglda;
free sqglda(sglda);

The SQLDA consists of an array of variable descriptors. Each descriptor
describes the attributes of the corresponding C program variable, or the
location that the database stores data into or retrieves data from:

¢ data type

¢ length if type is a string type

¢ precision and scale if type is a numeric type
¢ memory address

¢ indicator variable

& For a complete description of the SQLDA structure, see "The SQL
descriptor area (SQLDA)" on page 45

The indicator variable is used to pass a NULL value to the database or
retrieve a NULL value from the database. The indicator variable is also used
by the database server to indicate truncation conditions encountered during a
database operation. The indicator variable is set to a positive value when not
enough space was provided to receive a database value.

& For more information, see "Indicator variables" on page 23.

Dynamic SELECT statement

A SELECT statement that returns only a single row can be prepared
dynamically, followed by an EXECUTE with an INTO clause to retrieve the
one-row result. SELECT statements that return multiple rows, however, are
managed using dynamic cursors.

With dynamic cursors, results are put into a host variable list or a SQLDA
that is specified on the FETCH statement (FETCH INTO HOSTLIST and
FETCH USING DESCRIPTOR SQLDA). Since the number of select list
items is usually unknown to the C programmer, the SQLDA route is the most
common. The DESCRIBE SELECT LIST statement sets up a SQLDA with
the types of the select list items. Space is then allocated for the values using
the fill_sqlda() function, and the information is retrieved by the FETCH
USING DESCRIPTOR statement.

39

Static and dynamic SQL

The typical scenario is as follows:

EXEC SQL BEGIN DECLARE SECTION;
char comm[200];

EXEC SQL END DECLARE SECTION;
int actual size;
SQLDA * sqglda;

sprintf (comm, "select * from %s", table name);

EXEC SQL PREPARE S1 FROM :comm;

/* Initial guess of 10 columns in result. If it is
wrong, it is corrected right after the first
DESCRIBE by reallocating sglda and doing DESCRIBE
again. */

sqlda = alloc sqglda(10);

EXEC SQL DESCRIBE SELECT LIST FOR S1 USING DESCRIPTOR

sglda;

if(sglda->sqgld > sglda->sqgln) {
actual size = sqlda->sqgld;
free sqglda(sglda);
sqglda = alloc_sqglda(actual size);

EXEC SQL DESCRIBE SELECT LIST FOR S1
USING DESCRIPTOR sglda;

}

fill sglda(sglda);

EXEC SQL DECLARE Cl CURSOR FOR S1;

EXEC SQL OPEN C1;

EXEC SQL WHENEVER NOTFOUND {break};

for(;;) {

EXEC SQL FETCH Cl USING DESCRIPTOR sqglda;
if (SQLCODE == SQLE NOTFOUND) break;
/* do something with data */

}

EXEC SQL CLOSE C1;

EXEC SQL DROP STATEMENT S1;

Drop statements after use
You should ensure that statements are dropped after use, to avoid
consuming unnecessary resources.

& For a complete example using cursors for a dynamic select statement ,
see "Dynamic cursor example" on page 75. For details of the functions
mentioned above, see "Library functions" on page 55.

40

Chapter 2 The Embedded SQL Interface

Fetching more than one row at a time

Example

The FETCH statement can be modified to fetch more than one row at a time,
which may improve performance. This is called a wide fetch.

& Adaptive Server Anywhere also supports wide puts and inserts. For
information on these, see "PUT statement" on page 524 of the book Adaptive
Server Anywhere Reference Manual and "EXECUTE statement" on page 460
of the book Adaptive Server Anywhere Reference Manual.

To use wide fetches in Embedded SQL, include the fetch statement in your
code as follows:

EXEC SQL FETCH . . . ARRAY nnn

where ARRAY nnn is the last item of the FETCH statement. The fetch count
nnn can be a host variable. The number of variables in the SQLDA must be
the product of nnn and the number of columns per row. The first row is
placed in SQLDA variables 0 to (columns per row)-1, and so on.

The server returns in SQLCOUNT the number of records that were fetched,
which is always greater than zero unless there is an error. A SQLCOUNT of
zero with no error condition indicates that one valid row has been fetched.

The following example code illustrates the use of wide fetches. The example
code is not compilable as it stands.

EXEC SQL BEGIN DECLARE SECTION;
static unsigned FetchWidth;
EXEC SQL END DECLARE SECTION;

static SQLDA * DoWideFetches(a sgl statement number
statoO,

unsigned
*num of rows,

unsigned

*cols per row)
/***

**************/

// Allocate a SQLDA to be used for fetching from the
statement identified

// by "stat0". "width" rows is retrieved on each FETCH
request.

// The number of columns retrieved per row is assigned
to "cols per row".

{

int num cols;
unsigned i, j, offset;
SQLDA * sqglda;

EXEC SQL BEGIN DECLARE SECTION;
a sqgl statement number stat;
EXEC SQL END DECLARE SECTION;

41

Static and dynamic SQL

42

stat = statO;

sqlda = alloc sqglda(100);

if(sglda == NULL) return(NULL);
EXEC SQL DESCRIBE :stat INTO sqglda;
*cols per row = num cols = sglda->sqld;

if((num cols * *num of rows) > sglda->sqgln)

free sqlda(sglda);

sgqlda = alloc_sqglda(num cols * width);

if(sglda == NULL) return(NULL);
EXEC SQL DESCRIBE :stat INTO sqglda;
}
sgqlda->sqld = num cols * *num of rows;
offset = num cols;
for(i = 1; 1 < width; ++i) {

for(j = 0; j < num _cols; ++j, ++offset)
sglda->sqglvar[offset].sgltype = sglda-

>sqglvar[j].sqgltype;

sglda->sglvar[offset].sgllen = sglda-

>sqglvar([j].sgllen;

{

{

memcpy (&sglda->sqglvar[offset].sglname,

&sglda->sglvar[j].sglname,

sizeof (sglda->sglvar[0].sglname)

}
}
fill sqglda(sglda);
return(sqglda);

}

long DoQuery(char * qgry)

/************************/

{

long rows;
unsigned cols per row;
SQLDA * sqglda;

EXEC SQL BEGIN DECLARE SECTION;

a sql statement number stat;

static unsigned num of rows;
EXEC SQL END DECLARE SECTION;

rows = 0L;
FetchWidth = 20;

EXEC SQL WHENEVER SQLERROR GOTO err;

stmt = qgry;
EXEC SQL PREPARE :stat FROM :stmt;

EXEC SQL DECLARE QCURSOR CURSOR FOR :stat FOR

ONLY;

READ

Chapter 2 The Embedded SQL Interface

Notes on using
wide fetches

EXEC SQL OPEN QCURSOR;
sqlda = DoWideFetches(stat, &num of rows,
&cols per row);
if(sglda == NULL) {
printf("Maximum allowable fetch width
exceeded\n");
return(SQLE NO MEMORY);
}

for(;;) {
EXEC SQL FETCH QCURSOR INTO DESCRIPTOR sqglda
ARRAY :FetchWidth;
if (SQLCODE != SQLE NOERROR) break;
if(SQLCOUNT == 0) {
rows += 1;
} else {
rows += SQLCOUNT;
}
}

EXEC SQL CLOSE QCURSOR;
EXEC SQL DROP STATEMENT :stat;
free sqlda(sglda);

err:
if (SQLCODE != SQLE NOERROR) {
printf ("Error detected\n");
}

return (SQLCODE) ;
}

In Windows 3.x, the limit on the size of a SQLDA is 1450 columns, and
the number of rows times the number of columns per row must be no
more than 1450. Further, the SQLDA itself (not including data items)
must fit in a single 64K segment, and alloc_sqlda will return NULL on
an attempt to allocate a SQLDA that is too large.

In the function DoWideFetches, the SQLDA memory is allocated using
the alloc_sqlda function. This allows space for indicator variables,
rather than using the alloc_sqlda_noind function.

If fewer than the requested number of rows are fetched (at the end of the
cursor, for example), the SQLDA items corresponding to the rows that
were not fetched are returned as NULL by setting the indicator value. If
no indicator variables are present, an error is generated
(SQLE_NO_INDICATOR: no indicator variable for NULL result).

43

Static and dynamic SQL

44

If a row being fetched has been updated, generating a

SQLE ROW_UPDATED_ WARNING warning, the fetch stops on the
row that caused the warning. The values for all rows processed to that
point (including the row that caused the warning) are returned.
SQLCOUNT contains the number of rows that were fetched, including
the row that caused the warning. All remaining SQLDA items are
marked as NULL.

If a row being fetched has been deleted or is locked, generating an
SQLE _NO_CURRENT_ROW or SQLE_LOCKED error, SQLCOUNT
contains the number of rows that were read prior to the error. This does
not include the row that caused the error. The SQLDA does not contain
values for the rows, since SQLDA values are not returned on errors. The
SQLCOUNT value can be used to reposition the cursor, if necessary, to
read the rows.

Chapter 2 The Embedded SQL Interface

The SQL descriptor area (SQLDA)

The SQLDA (SQL Descriptor Area) is an interface structure that is used for
dynamic SQL statements. The structure passes information regarding host
variables and SELECT statement results to and from the database. The
SQLDA is defined in the header file sqlda.h.

& There are functions in the database interface library or DLL that you
can use to manage SQLDAs. For descriptions, see "SQLDA management
functions" on page 60.

When host variables are used with static SQL statements, the preprocessor
constructs a SQLDA for those host variables. It is this SQLDA that is
actually passed to and from the database server.

SQLDA fields and their meanings
The SQLDA fields have the following meanings:

Field Description

sqldaid An 8-byte character field that contains the string SQLDA as an
identification of the SQLDA structure. This field helps in
debugging, when you are looking at memory contents.

sqldabe A long integer containing the length of the SQLDA structure.
sqln The number of variable descriptors in the sqlvar array.
sqld The number of variable descriptors which are valid (contain

information describing a host variable). This field is set by the
DESCRIBE statement, and sometimes by the programmer when
supplying data to the database server.

sqlvar An array of descriptors of type struct sqlvar, each describing a
host variable.

Host variable descriptions in the SQLDA

Each sqlvar structure in the SQLDA describes a host variable. The fields of
the sqlvar structure have the following meanings:

¢ sqltype The type of the variable that is described by this descriptor
(see "Embedded SQL data types" on page 17).

The low order bit indicates whether NULL values are allowed. Valid
types and constant definitions can be found in the sql/def-h header file.

45

The SQL descriptor area (SQLDA)

46

This field is filled by the DESCRIBE statement. You can set this field to
any type, when supplying data to the database server or retrieving data
from the database server. Any necessary type conversion is done
automatically.

sqgllen The length of the variable. What the length actually means
depends upon the type information and how the SQLDA is being used.

For DECIMAL types, this field is divided into two 1-byte fields. The
high byte is the precision and the low byte is the scale. The precision is
the total number of digits. The scale is the number of digits that appear
after the decimal point.

& For more information on the length field, see "Length field values"
on page 47.

sqldata A four-byte pointer to the memory occupied by this variable.
This memory must correspond to the sqltype and sqllen fields.

& For storage formats, see "Embedded SQL data types" on page 17.

For UPDATE and INSERT commands, this variable will not be
involved in the operation if the sqldata pointer is a null pointer. For a
FETCH, no data is returned if the sqldata pointer is a null pointer.

If the DESCRIBE statement uses LONG NAMES, this field holds the
long name of the result set column. If, in addition, the DESCRIBE
statement is a DESCRIBE USER TYPES statement, then this field holds
the long name of the user-defined data type, instead of the column. If the
type is a base type, the field is empty.

sqglind A pointer to the indicator value. An indicator value is a short
int. A negative indicator value indicates a NULL value. A positive
indicator value indicates that this variable has been truncated by a
FETCH statement, and the indicator value contains the length of the data
before truncation.

&> For more information, see "Indicator variables" on page 23.

If the sqlind pointer is the null pointer, no indicator variable pertains to
this host variable.

The sqlind field is also used by the DESCRIBE statement to indicate
parameter types. If the type is a user-defined data type, this field is set to
DT HAS USERTYPE INFO. In such a case, you may wish to carry
out a DESCRIBE USER TYPES to obtain information on the user-
defined data types.

sglname A VARCHAR structure that contains a length and character
buffer. It is filled by a DESCRIBE statement and is not otherwise used.
This field has a different meaning for the two formats of the DESCRIBE
statement:

Chapter 2 The Embedded SQL Interface

¢ SELECTLIST The name buffer is filled with the column heading
of the corresponding item in the select list.

¢ BIND VARIABLES The name buffer is filled with the name of the
host variable that was used as a bind variable, or "?" if an unnamed
parameter marker is used.

On a DESCRIBE SELECT LIST command, any indicator variables
present are filled with a flag indicating whether the select list item is
updatable or not. More information on this flag can be found in the
sqldef.h header file.

If the DESCRIBE statement is a DESCRIBE USER TYPES statement,
then this field holds the long name of the user-defined data type, instead
of the column. If the type is a base type, the field is empty.

Length field values

DESCRIBE

The sqllen field length of the sqlvar structure in a SQLDA is used in three
different kinds of interactions with the database server. The following tables
detail each of these interactions. These tables list the interface constant types
(the DT _ types) found in the sqg/def -/ header file. These constants would be
placed in the SQLDA sqltype field. The types are described in "Embedded
SQL data types" on page 17.

In static SQL, a SQLDA is still used but it is generated and completely filled
in by the SQL preprocessor. In this static case, the tables give the
correspondence between the static C language host variable types and the
interface constants.

The following table indicates the values of the sqllen and sqltype structure
members returned by the DESCRIBE command for the various database
types (both SELECT LIST and BIND VARIABLE DESCRIBE statements).
In the case of a user-defined database data type, the base type is described.

Your program can use the types and lengths returned from a DESCRIBE, or
you may use another type. The database server will perform type conversions
between any two types. The memory pointed to by the sqldata field must
correspond to the sqltype and sqllen fields.

Database field type Embedded SQL type Length returned on
returned describe

CHAR(n) DT _FIXCHAR n

VARCHAR(n) DT _VARCHAR n

BINARY(n) DT BINARY n

SMALLINT DT SMALLINT 2

47

The SQL descriptor area (SQLDA)

Supplying a value

Database field type Embedded SQL type Length returned on
returned describe

INT DT INT 4

TINYINT DT TINYINT 1

DECIMAL(p,s) DT DECIMAL high byte of length field
in SQLDA set to p, and
low byte set to s

REAL DT FLOAT 4

FLOAT DT FLOAT 4

DOUBLE DT DOUBLE 8

DATE DT DATE length of longest
formatted string

TIME DT TIME length of longest
formatted string

TIMESTAMP DT TIMESTAMP length of longest
formatted string

LONG VARCHAR DT _VARCHAR 32767

LONG BINARY DT BINARY 32767

The following table indicates how you specify lengths of values when you

supply data to the database server in the SQLDA.

Only the data types shown in the table are allowed in this case. The
DT DATE, DT TIME and DT_TIMESTAMP types are treated the same as
DT _STRING when supplying information to the database; the value must be

48

a NULL-terminated character string in an appropriate date format.

Embedded SQL Data Type

What the program must do to set the
length when supplying data to the
database

DT STRING
DT _VARCHAR(n)

DT FIXCHAR(n)

DT BINARY(n)
DT _SMALLINT
DT _INT

DT _DECIMAL(p,s)

length determined by terminating \0

length taken from field in VARCHAR
structure

length field in SQLDA determines length of
string

length taken from field in BINARY structure
No action required
No action required

high byte of length field in SQLDA set to p,

Chapter 2 The Embedded SQL Interface

Retrieving a value

Embedded SQL Data Type What the program must do to set the
length when supplying data to the

database

and low byte set to s

DT FLOAT No action required
DT DOUBLE No action required
DT DATE length determined by terminating \0
DT _TIME length determined by terminating \0

DT TIMESTAMP

DT TIMESTAMP_ STRUCT

DT _VARIABLE

No action required

length determined by terminating \O

length determined by terminating \0

The following table indicates the values of the length field when you retrieve
data from the database using a SQLDA. The sqllen field is never modified

when you retrieve data.

Only the interface data types shown in the table are allowed in this case. The
DT DATE, DT TIME and DT _TIMESTAMP data types are treated the
same as DT STRING when you retrieve information from the database. The
value is formatted as a character string in the current date format.

Embedded SQL

What the program

How the database

Data Type must set length field to | returns length
when receiving information after
fetching a value
DT STRING length of buffer \0 at end of string

DT VARCHAR(n)

DT FIXCHAR(n)

DT BINARY(n)

DT _SMALLINT

DT _INT
DT _DECIMAL(p,s)

DT FLOAT

maximum length of
VARCHAR structure
(nt2)

length of buffer

maximum length of
BINARY structure (n+2)

No action required
No action required

high byte set to p and low
byte set to s

No action required

len field of VARCHAR
structure set to actual
length

padded with blanks to
length of buffer

len field of BINARY
structure set to actual
length

No action required
No action required

No action required

No action required

49

The SQL descriptor area (SQLDA)

50

Embedded SQL

What the program

How the database

Data Type must set length field to | returns length
when receiving information after
fetching a value
DT DOUBLE No action required No action required
DT DATE length of buffer \0 at end of string
DT TIME length of buffer \0 at end of string
DT TIMESTAMP length of buffer \0 at end of string

DT _TIMESTAMP_
STRUCT

No action required

No action required

Chapter 2 The Embedded SQL Interface

Using stored procedures in Embedded SQL

This section describes the use of SQL procedures in Embedded SQL.

Simple procedures

Database procedures can be both created and called from Embedded SQL. A
CREATE PROCEDURE statement can be embedded just like any other
DDL statement. A CALL statement can also be embedded, or it can be
prepared and executed. Here is a simple example of both creating and
executing a stored procedure in Embedded SQL:

EXEC SQL CREATE PROCEDURE pettycash(IN amount
DECIMAL(10,2))
BEGIN

UPDATE account
SET balance = balance - amount
WHERE name = 'bank';

UPDATE account
SET balance = balance + amount
WHERE name = 'pettycash expense';

END;
EXEC SQL CALL pettycash(10.72);

If you wish to pass host variable values to a stored procedure, or retrieve the
output variables, you prepare and execute a CALL statement. The example
illustrates the use of host variables. Both the USING and INTO clauses are
used on the EXECUTE statement.

EXEC SQL BEGIN DECLARE SECTION;
doublehv expense;
doublehv balance;

EXEC SQL END DECLARE SECTION;

EXEC SQL CREATE PROCEDURE pettycash (
IN expense DECIMAL (10,2),
OUT endbalance DECIMAL(10,2))
BEGIN
UPDATE account
SET balance = balance - expense
WHERE name = 'bank';

UPDATE account

SET balance = balance + expense
WHERE name = 'pettycash expense';

51

Using stored procedures in Embedded SQL

SET endbalance = (SELECT balance FROM account
WHERE name = 'bank');
END;
EXEC SQL PREPARE S1 FROM 'CALL pettycash(2, 2?2)';

EXEC SQL EXECUTE S1 USING :hv_expense INTO :hv balance;

Procedures with result sets

52

Database procedures can also contain SELECT statements. The procedure is
declared using a RESULT clause to specify the number, name, and types of
the columns in the result set. Result set columns are different from output
parameters. For procedures with result sets, the CALL statement can be used
in place of a SELECT statement in the cursor declaration:

EXEC SQL BEGIN DECLARE SECTION;
char hv name[100];
EXEC SQL END DECLARE SECTION;

EXEC SQL CREATE PROCEDURE female employees ()
RESULT (name char (50))

BEGIN
SELECT emp fname || emp lname FROM employee
WHERE sex = 'f';

END;

EXEC SQL PREPARE S1 FROM 'CALL female employees()"';

EXEC SQL DECLARE Cl1 CURSOR FOR S1;
EXEC SQL OPEN C1;

for(;;) {
EXEC SQL FETCH Cl1 INTO :hv _name;
if (SQLCODE != SQLE NOERROR) break;

printf("%s\\n", hv name);

}
EXEC SQL CLOSE C1;

In this example, the procedure has been invoked with an OPEN statement
rather than an EXECUTE statement. The OPEN statement causes the
procedure to execute until it reaches a SELECT statement. At this point, C1
is a cursor for the SELECT statement within the database procedure. You
can use all forms of the FETCH command (backward and forward scrolling)
until you are finished with it. The CLOSE statement terminates execution of
the procedure.

Chapter 2 The Embedded SQL Interface

Dynamic cursors
for CALL
statements

DESCRIBE ALL

If there had been another statement following the SELECT in the procedure,
it would not have been executed. In order to execute statements following a
SELECT, use the RESUME cursor-name command. The RESUME
command will either return the warning

SQLE PROCEDURE COMPLETE, or it will return SQLE NOERROR
indicating that there is another cursor. The example illustrates a two-select
procedure:

EXEC SQL CREATE PROCEDURE people ()
RESULT (name char (50))
BEGIN

SELECT emp fname || emp lname
FROM employee;

SELECT fname || lname
FROM customer;
END;

EXEC SQL PREPARE S1 FROM 'CALL female employees()';
EXEC SQL DECLARE Cl1 CURSOR FOR S1;

EXEC SQL OPEN C1;
while(SQLCODE == SQLE NOERROR) {

for(;;) {
EXEC SQL FETCH Cl1 INTO :hv _name;
if (SQLCODE != SQLE NOERROR) break;

printf("%s\\n", hv name);
}
EXEC SQL RESUME C1;

}
EXEC SQL CLOSE C1;

These examples have used static cursors. Full dynamic cursors can also be
used for the CALL statement

& For a description of dynamic cursors, see "Dynamic SELECT
statement" on page 39.

The DESCRIBE statement works fully for procedure calls. A DESCRIBE
OUTPUT produces a SQLDA that has a description for each of the result set
columns.

If the procedure does not have a result set, the SQLDA has a description for
each INOUT or OUT parameter for the procedure. A DESCRIBE INPUT
statement will produce a SQLDA having a description for each IN or INOUT
parameter for the procedure.

DESCRIBE ALL describes IN, INOUT, OUT and RESULT set parameters.
DESCRIBE ALL uses the indicator variables in the SQLDA to provide
additional information.

53

Using stored procedures in Embedded SQL

Multiple result sets

54

The DT _PROCEDURE IN and DT PROCEDURE _OUT bits are set in the
indicator variable when a CALL statement is described.

DT PROCEDURE IN indicates an IN or INOUT parameter and

DT PROCEDURE_OUT indicates an INOUT or OUT parameter. Procedure
RESULT columns have both bits clear.

After a describe OUTPUT, these bits can be used to distinguish between
statements that have result sets (need to use OPEN, FETCH, RESUME,
CLOSE) and statements that do not (need to use EXECUTE).

&> For a complete description, see "DESCRIBE statement” on page 446 of
the book Adaptive Server Anywhere Reference Manual.

If you have a procedure that returns multiple result sets, you must redescribe
after each RESUME statement if the result sets change shapes.

You need to describe the cursor, not the statement number, to describe the
current position of the cursor.

Chapter 2 The Embedded SQL Interface

Library functions

DLL entry points

Example

The SQL preprocessor generates calls to functions in the interface library or
DLL. In addition to the calls generated by the SQL preprocessor, several
routines are provided for the user to make database operations easier to
perform. Prototypes for these functions are included by the EXEC SQL
INCLUDE SQLCA command.

This section contains a detailed description of these various functions by
category.

The DLL entry points are the same except that the prototypes have a
modifier appropriate for DLLs:

¢ Windows 3.x: FAR PASCAL
¢ Windows NT: _ stdcall

All of the pointers that are passed as parameters to the Windows DLL entry
points or returned by these functions are far pointers.

For example, the first prototype listed below is db_init. For Windows, it
would be:

unsigned short FAR PASCAL db_init(struct sqlca far *sqlca);

Passing null pointers

Care should be taken passing the null pointer as a parameter in Windows
if your program is compiled in the small or medium memory models. You
should use the _sql_ptrchk () macro defined in sqlca.h for any pointer
parameter which is a variable that might contain the null pointer. This
macro converts a null near pointer into a null far pointer.

Interface initialization functions

db_init function
Prototype

Description

This section lists the functions that initialize and release the interface.

unsigned short db_init(struct sglca *sqlca);

This function initializes the database interface library. This function must be
called before any other library call is made, and before any Embedded SQL
command is executed. The resources the interface library requires for your
program are allocated and initialized on this call.

55

Library functions

Use db_fini to free the resources at the end of your program. If there are any
errors during processing, they are returned in the SQLCA and 0 is returned.
If there are no errors, a non-zero value is returned and you can begin using
Embedded SQL commands and functions.

In most cases, this function should be called only once (passing the address
of the global sqlca variable defined in the sg/ca.h header file). If you are
writing a DLL or an application that has multiple threads using Embedded
SQL, call db_init once for each SQLCA that is being used (see "SQLCA
management for multi-threaded or reentrant code" on page 29).

Caution
Failure to call db_fini for each db_init on NetWare can cause the
database server to fail, and the NetWare file server to fail.

db_fini function
Prototype unsigned short db_fini(struct sglca *sqlca);

This function frees resources used by the database interface or DLL. You
must not make any other library calls or execute any Embedded SQL
commands after db_fini is called. If there are any errors during processing,
they are returned in the SQLCA and 0 is returned. If there are no errors, a
non-zero value is returned.

You need to call db_fini once for each SQLCA being used.

Caution
Failure to call db_fini for each db_init on NetWare can cause the
database server to fail, and the NetWare file server to fail.

Connection and server management functions

The following functions provide a means to start and stop the database server
or, start or stop a database on an existing database server; and connect to or
disconnect from a database.

All of these functions take a NULL-terminated string as the second
argument. This string is a list of parameter settings of the form
KEYWORD=value, delimited by semicolons. The number sign (#) is an
alternative to the equals sign, and should be used when the equals sign is a
syntax error, such as in environment variables on some platforms..

56

Chapter 2 The Embedded SQL Interface

& For an available list of connection parameters, see "Connection
parameters" on page 40 of the book Adaptive Server Anywhere Reference
Manual.

Each function uses a subset of the available connection parameters, but every
function will allow any parameter to be set. A sample connection parameter
string is:

"UID=dba;PWD=sqgl; DBF=c: \asa6\asademo.db"

When included in Embedded SQL, the backslash character (\) must be
escaped with a second backslash character in order to work:

"UID=dba;PWD=sql; DBF=c: \\asa6\\asademo.db"

db_string_connect function

Prototype

Description

unsigned db_string_connect(struct sglca * sqlca, char * parms);

Provides extra functionality beyond the Embedded SQL CONNECT
command. This function carries out the following steps:

¢

Start the database server if there is not one running with the name
EngineName (calls db_start_engine). The AutoStop parameter
determines if the server automatically stops when the last used database
is shut down.

If the database named by DatabaseName or DatabaseFile is not
currently running, send a request to the server to start a database using
the DatabaseFile, DatabaseName, and DatabaseSwitches parameters.
The AutoStop parameter determines if the database automatically shuts
down when the last connection to the database is disconnected.

Send a connection request to the database server based on the Userid,
Password, and ConnectionName parameters.

The return value is true (non-zero) if a connection was successfully
established and false (zero) otherwise. Error information for starting the
server, starting the database, or connecting is returned in the SQLCA.

db_string_disconnect function

Prototype

Description

unsigned db_string_disconnect(struct sqlca * sqlca, char * parms);

This function disconnects the connection identified by the ConnectionName
parameter. All other parameters are ignored.

57

Library functions

If no ConnectionName parameter is specified in the string, the unnamed
connection is disconnected. This is equivalent to the Embedded SQL
DISCONNECT command. The boolean return value is true if a connection
was successfully ended. Error information is returned in the SQLCA.

This function shuts down the database if it was started with the
AutoStop=yes parameter and there are no other connections to the database.
It also stops the server if it was started with the AutoStop=yes parameter and
there are no other databases running.

db_start_engine function

Prototype

Description

unsigned db_start_engine(struct sqlca * sqlca,
char * parms);

Start the database server if it is not running. The steps carried out by this
function are those listed in "Starting a personal server" on page 55 of the
book Adaptive Server Anywhere User's Guide.

The return value is true if a database server was either found or successfully
started. Error information is returned in the SQLCA.

The following call to db_start_engine starts the database server and names
it asademo, but does not load the database, despite the DBF connection
parameter:

db start engine(&sglca, "DBF=c:\\asa6\\asademo.db;
Start=DBENG6") ;

If you wish to start a database as well as the server, include the database file
in the START connection parameter:

db start engine(&sqlca, "ENG=eng name; START=DBENG6
c:\\asa6\\asademo.db");

This call starts the server, names it eng_name, and starts the asademo
database on that server.

db_start_database function

Prototype

Description

58

unsigned db_start_database(struct sqglca * sqlca, char * parms);

Start a database on an existing server if the database is not already running.
The steps carried out to start a database are described in "Starting a personal
server" on page 55 of the book Adaptive Server Anywhere User's Guide

The return value is true if the database was already running or successfully
started. Error information is returned in the SQLCA.

If a user ID and password are supplied in the parameters, they are ignored.

Chapter 2 The Embedded SQL Interface

& The permission required to start and stop a database is set on the
database command line. For information, see "The database server" on page
12 of the book Adaptive Server Anywhere Reference Manual.

db_stop_database function

Prototype

Description

unsigned int db_stop_database(struct sqlca * sqlca,
char * parms);

Stop the database identified by DatabaseName on the server identified by
EngineName. If EngineName is not specified, the default server is used.

By default, this function does not stop a database that has existing
connections. If Unconditional is yes, the database is stopped regardless of
existing connections.

A return value of TRUE indicates that there were no errors.

& The permission required to start and stop a database is set on the
database command line. For information, see "The database server" on page
12 of the book Adaptive Server Anywhere Reference Manual.

db_stop_engine function

Prototype

Description

unsigned int db_stop_engine(struct sqlca * sqlca,
char * parms);

Terminates execution of the database server. The steps carried out by this
function are:

¢ Look for a local database server that has a name that matches the
EngineName parameter. If no EngineName is specified, look for the
default local database server.

¢ Ifno matching server is found, this function fails.

¢ Send a request to the server to tell it to checkpoint and shut down all
databases.

¢ Unload the database server.

By default, this function will not stop a database server that has existing
connections. If Unconditional is yes, the database server is stopped
regardless of existing connections.

A C program can use this function instead of spawning DBSTOP. A return
value of TRUE indicates that there were no errors.

59

Library functions

db_find_engine function

Prototype

Description

unsigned short db_find_engine(struct sqglca *sqlca, char *name);

Returns an unsigned short value, which indicates status information about the
database server whose name is name. If no server can be found with the
specified name, the return value is 0. A non-zero value indicates that the
server is currently running.

Each bit in the return value conveys some information. Constants that
represent the bits for the various pieces of information are defined in the
sqldef.-h header file. If a null pointer is specified for name, information is
returned about the default database environment.

SQLDA management functions

The following functions are used to manage SQL Descriptor Areas
(SQLDA:S).

& For a detailed description of the SQLDA, see "The SQL descriptor area
(SQLDA)" on page 45.

alloc_sglda_noind function

Prototype

Description

alloc_sglda function
Prototype

Description

fill_sqlda function

Prototype

60

struct sglda *alloc_sqlda_noind(unsigned numvar);

Allocates a SQLDA with descriptors for numvar variables. The sqln field of
the SQLDA is initialized to numvar. Space is not allocated for indicator
variables; the indicator pointers are set to the null pointer. A null pointer is
returned if memory cannot be allocated.

struct sglda *alloc_sglda(unsigned numvar);

Allocates a SQLDA with descriptors for numvar variables. The sqln field of
the SQLDA is initialized to numvar. Space is allocated for the indicator
variables, the indicator pointers are set to point to this space, and the
indicator value is initialized to zero. A null pointer is returned if memory
cannot be allocated.

struct sqlda *fill_sqlda(struct sqlda *sqlda);

Chapter 2 The Embedded SQL Interface

Description Allocates space for each variable described in each descriptor of sql/da, and
assigns the address of this memory to the sqldata field of the corresponding
descriptor. Enough space is allocated for the database type and length
indicated in the descriptor. Returns sglda if successful and returns the null
pointer if there is not enough memory available.

sqlda_string_length function
Prototype unsigned long sqlda_string_length(struct sqlda *sqlda, int varno);

Description Returns the length of the C string (type DT _STRING) that would be required
to hold the variable sqlda->sqlvar[varno] (no matter what its type is).

sqlda_storage function
Prototype unsigned long sqlda_storage(struct sqlda *sqglda, int varno);

Description Returns the amount of storage required to store any value for the variable
described in sqlda->sqlvar[varno].

fill_s_sqglda function
Prototype struct sglda *fill_s_sqlda(struct sqlda *sqlda, unsigned int maxien);

Description Much the same as fill_sqlda, except that it changes all the data types in sglda
to type DT_STRING.. Enough space is allocated to hold the string
representation of the type originally specified by the SQLDA, up to a
maximum of max/en bytes. The length fields in the SQLDA (sqllen) are
modified appropriately. Returns sg/da if successful and returns the null
pointer if there is not enough memory available.

free_filled_sqlda function
Prototype void free_filled_sqlda(struct sqlda *sqlda);

Description Free the memory allocated to each sqldata pointer. Any null pointer is not
freed. The indicator variable space, as allocated in fill_sqlda, is also freed.

free_sqlda_noind function
Prototype void free_sqlda_noind(struct sqlda *sqglda);

Description Free space that was allocated to this sq/da. You should first call
free filled_sqlda to free the memory referenced by each sqldata pointer.
The indicator variable pointers are ignored.

61

Library functions

free_sqlda function
Prototype

Description

void free_sqlda(struct sqlda *sqlda);

Free the space allocated to this sg/da. You should first call free_filled_sqlda
to free the memory referenced by each sqldata pointer. The indicator
variable space, as allocated in fill_sqlda, is also freed.

Backup functions

Authorization

db_backup function
Prototype

Authorization

Description

62

The db_backup function provides support for online backup. The Adaptive

Server Anywhere backup utility makes use of this function. You should only
need to write a program to use this function if your backup requirements are

not satisfied by the Adaptive Server Anywhere backup utility.

& You can also access the backup utility directly using the Database
Tools DBBackup function. For more information on this function, see
"DBBackup function" on page 89.

Every database contains one or more files. Normally, a database contains two
files: the main database file and the transaction log.

Each file is divided into fixed size pages, and the size of these pages is
specified when the database is created.

Backup works by opening a file, and then making a copy of each page in the
file. Backup performs a checkpoint on startup, and the database files are
backed up as of this checkpoint. Any changes that are made while the backup
is running are recorded in the transaction log, and are backed up with the
transaction log. This is why the transaction log is always backed up last.

You must be connected to a user ID with DBA authority or REMOTE DBA
authority (SQL Remote) to use the backup functions.

void db_backup(struct sqlca * sqlca, int op, int file_num, unsigned long
page_num, struct sqlda * sqlda);

Must be connected to a user ID with DBA authority or REMOTE DBA
authority (SQL Remote).

The action performed depends on the value of the op parameter:

Chapter 2 The Embedded SQL Interface

¢

DB_BACKUP_START Must be called before a backup can start. Only
one backup can be running at one time against any given database
server. Database checkpoints are disabled until the backup is complete
(db_backup is called with an op value of DB_ BACKUP_END). If the
backup cannot start, the SQLCODE is

SQLE BACKUP NOT STARTED. Otherwise, the SQLCOUNT field
of the sqlca is set to the size of each database page. (Backups are
processed one page at a time.)

The file_ num, page num and sqlda parameters are ignored.

DB_BACKUP_OPEN_FILE Open the database file specified by
file_num, which allows pages of the specified file to be backed up using
DB BACKUP_READ PAGE. Valid file numbers are 0 through

DB BACKUP_MAX FILE for the main database files,

DB BACKUP_TRANS LOG FILE for the transaction log file, and
DB BACKUP_WRITE FILE for the database write file if it exists. If
the specified file does not exist, the SQLCODE is SQLE NOTFOUND.
Otherwise, SQLCOUNT contains the number of pages in the file,
SQLIOESTIMATE contains a 32-bit value (POSIX time_t) which
identifies the time that the database file was created, and the operating
system file name is in the sglerrmc field of the SQLCA.

The page num and sglda parameters are ignored.

DB_BACKUP_READ_PAGE Read one page of the database file
specified by file num. The page num should be a value from 0 to one
less than the number of pages returned in SQLCOUNT by a successful
call to db_backup with the DB BACKUP OPEN_FILE operation.
Otherwise, SQLCODE is set to SQLE NOTFOUND. The sg/da
descriptor should be set up with one variable of type DT _BINARY
pointing to a buffer. The buffer should be large enough to hold binary
data of the size returned in the SQLCOUNT field on the call to
db_backup with the DB_ BACKUP_START operation.

DT BINARY data contains a two-byte length followed by the actual
binary data, so the buffer must be two bytes longer than the page size.

Application must save buffer

This call makes a copy of the specified database page into the buffer,
but it is up to the application to save the buffer on some backup
media.

DB_BACKUP_READ_RENAME_LOG This action is the same as
DB BACKUP _READ PAGE, except that after the last page of the
transaction log has been returned, the database server renames the
transaction log and starts a new one.

63

Library functions

64

If the database server is unable to rename the log at the current time
(there are incomplete transactions), you will get the

SQLE BACKUP_CANNOT RENAME LOG YET error. In this case,
don't use the page returned, but instead reissue the request until you
receive SQLE_NOERROR and then write the page. Continue reading
the pages until you receive the SQLE NOTFOUND condition.

The SQLE_ BACKUP_CANNOT RENAME LOG_YET error may be
returned multiple times and on multiple pages. In your retry loop, you
should add a delay so as not to slow the server down with too many
requests.

When you receive the SQLE NOTFOUND condition, the transaction
log has been backed up successfully and the file has been renamed. The
name for the old transaction file is returned in the sglerrmc field of the
SQLCA.

You should check the sqlda->sqlvar|[0].sqlind value after a db_backup
call. If this value is greater than zero, the last log page has been written
and the log file has been renamed. The new name is still in
sqlea.sqlerrme, but the SQLCODE value is SQLE_NOERROR.

You should not call db_backup again after this. If you do, you get a
second copy of your backed up log file and you receive
SQLE_NOTFOUND.

DB_BACKUP_CLOSE_FILE Must be called when processing of one
file is complete to close the database file specified by file num.

The page num and sglda parameters are ignored.

DB_BACKUP_END Must be called at the end of the backup. No other
backup can start until this backup has ended. Checkpoints are enabled
again.

The file_num, page _num and sqlda parameters are ignored.

The dbbackup program uses the following algorithm. Note that this is not C
code, and does not include error checking.

do backup(... DB BACKUP START ...)
allocate page buffer based on page size in SQLCODE
sqlda = alloc sqglda(1)
sgqlda->sqgld = 1;
sgqlda->sqglvar([0].sgltype DT BINARY
sglda->sqglvar[0].sgldata allocated buffer
for file num = 0 to DB BACKUP MAX FILE
db backup(... DB BACKUP OPEN FILE, file num ...)
if SQLCODE == SQLE NO ERROR
/* The file exists */
num pages = SQLCOUNT
file time = SQLE IO ESTIMATE

Chapter 2 The Embedded SQL Interface

open backup file with name from sglca.sglerrmc
for page num = 0 to num pages - 1
db backup(... DB BACKUP READ PAGE,
file num, page num, sqglda)
write page buffer out to backup file
next page num
close backup file
db backup(... DB BACKUP CLOSE FILE, file num ...)
end if
next file num
backup up file DB BACKUP WRITE FILE as above
backup up file DB BACKUP TRANS LOG FILE as above
free page buffer
db backup(... DB BACKUP END ...)

db_delete_file function

Prototype

Authorization

Description

void db_delete_file(struct sqlca * sqlca,
char * filename);

Must be connected to a user ID with DBA authority or REMOTE DBA
authority (SQL Remote).

The db_delete_file function requests the database server to delete filename.
This can be used after backing up and renaming the transaction log (see

DB BACKUP READ RENAME LOG above) to delete the old transaction
log. You must be connected to a user ID with DBA authority.

Canceling a request

The following functions provide the ability to check whether a request is
being processed, and to cancel a request.

db_cancel_request function

Prototype

Description

int db_cancel_request(struct sqlca *sqlca);

Cancels the currently active database server request. This function will check
to make sure a database server request is active before sending the cancel
request. The return value indicates whether a cancel request was sent; in
other words, whether or not a database request was active.

A non-zero return value means that the request was not canceled. There are a
few critical timing cases where the cancel request and the response from the
database or server "cross". In these cases, the cancel simply has no effect.

65

Library functions

The db_cancel_request function can be called asynchronously. This
function and db_is_working are the only functions in the database interface
library that can be called asynchronously using an SQLCA that might be in
use by another request.

If you cancel a request that is carrying out a cursor operation, the position of
the cursor is indeterminate. You must locate the cursor by its absolute
position, or close it, following the cancel.

db_is_working function

Prototype

Description

Other functions

unsigned db_is_working(struct sqlca *sqlca);

Returns 1 if your application has a database request in progress that uses the
given sqlca, and 0 if there is no request in progress that uses the given sqlca.

This function can be called asynchronously. This function and
db_cancel_request are the only functions in the database interface library
that can be called asynchronously using an SQLCA that might be in use by
another request.

The following functions are miscellaneous functions.

sql_needs_quotes function

Prototype

Description

66

unsigned int sql_needs_quotes(struct sqlca *sqlca, char *str);

Returns a Boolean value that indicates whether the string requires double
quotes around it when it is used as a SQL identifier. This function formulates
a request to the database server to determine if quotes are needed. Relevant
information is stored in the sqlcode field.

There are three cases of return value/code combinations:

¢ return = FALSE, sqglcode =0 In this case, the string definitely does
not need quotes

¢ return =TRUE In this case, sqlcode is always SQLE_ WARNING, and
the string definitely does need quotes

¢ return = FALSE If sqlcode is something other than
SQLE_WARNING, the test is inconclusive

Chapter 2 The Embedded SQL Interface

sqlerror_message function

Prototype

Description

char *sqlerror_message(struct sqlca *sqlca, char * buffer, int max);

Return a pointer to a string that contains an error message. The error message
contains text for the error code in the SQLCA. If no error was indicated, a
null pointer is returned. The error message is placed in the buffer supplied,
truncated to length max if necessary.

Request management functions

The default behavior of the interface DLL is for applications to wait for
completion of each database request before carrying out other functions. This
behavior can be changed using request management functions. For example,
when using Interactive SQL, the operating system is still active while
Interactive SQL is waiting for a response from the database, and Interactive
SQL carries out some tasks in that time.

You can achieve application activity while a database request is in progress
by providing a callback function. In this callback function you must not do
another database request (except db_cancel_request). You can use the
db_is_working function in your message handlers to determine if you have a
database request in progress.

This callback function in your application is called repeatedly while the
database server is busy processing a request. You can then process Windows
messages by calling GetMessage or PeekMessage. (These function calls
allow Windows to be active.) The dblib6w.dll continually calls this function
until the response from the database server is received.

Response in Windows message

The response from the server comes to your application via a Windows
message. You must either dispatch this message (the interface DLL will
receive the message), or call the db_process_message function with each
message that you receive while in this callback function. The function
returns TRUE if the message was the response; otherwise you can process
the message normally by dispatching it.

The following two functions are used to register your application callback
functions:

db_register_a_callback function

Prototype

void db_register_a_callback(struct sqlca *sqlca,
a_db_callback_index index,
FARPROC callback);

67

Library functions

Description

68

This function is used to register callback functions. To remove a callback,
pass a null pointer as the callback function. You should call
MakeProcInstance with your function address and pass that to the
db_register_a_callback function.

If you do not register any callback functions, the default action is to do
nothing. Your application blocks, waiting for the database response, and
Windows changes the cursor to an hourglass.

The following values are allowed for the index parameter:

¢ DB_CALLBACK_START The prototype is as follows:

void FAR PASCAL db start request(struct sqglca
*sqglca);

This function is called just before a database request is sent to the server.

¢ DB_CALLBACK_FINISH The prototype is as follows:

void FAR PASCAL db finish request(struct sqglca
*sglca);

This function is called after the response to a database request has been
received by the interface DLL.

¢ DB_CALLBACK_WAIT The prototype is as follows:

void FAR PASCAL db wait request(struct sglca *sglca
)

This function is called repeatedly by the interface DLL while the
database server or client library is busy processing your database
request.

The following is a sample DB CALLBACK WAIT callback function:

void FAR PASCAL db wait request(struct sglca *sqglca)

{ MSG msg
if (GetMessage(&msg, NULL, 0, 0)) {
(!db process a message(sqglca, &msg)) {

if(!TranslateAccelerator(hWnd, hAccel, &msg)

TranslateMessage(&msg)
DispatchMessage (&msg)
}
}
}
}

¢ DB_CALLBACK_MESSAGE This is used to enable the application to
handle messages received from the server during the processing of a
request.

Chapter 2 The Embedded SQL Interface

The callback prototype is as follows:

void FAR PASCAL message callback(SQLCA* sqglca,
unsigned short msg type,
an_sqgl code code,
unsigned length,
char* msg)

The msg_type parameter states how important the message is, and you
may wish to handle different message types in different ways. The
available message types are MESSAGE_TYPE INFO,
MESSAGE _TYPE WARNING, MESSAGE TYPE_ACTION and
MESSAGE TYPE STATUS. These constants are defined in sqldef. h.
The code field is an identifier. The length field tells you how long the
message is. The message is not null-terminated, since it might be right in
the data stream that we got from the server.

For example, the Interactive SQL callback displays STATUS and INFO
message in the message window, while messages of type ACTION and
WARNING go to a dialog box. If an application does not register this
callback, there is a default callback, which causes all messages to be
written to the server logfile (if debugging is on and a logfile is
specified). In addition, messages of type
MESSAGE TYPE WARNING and MESSAGE TYPE ACTION are
more prominently displayed, in an operating system-dependent manner.

db_process_a_message function

Prototype

Description

int db_process_a_message(struct sglca *sqlca, MSG *msg);

This function is called from within your db_wait_request callback function
to determine if the message that you received from Windows was in fact the
response to the active database request. The return value is TRUE if msg is
the response. Return from the callback function and the Embedded SQL
library DLL will process the response by returning to the call that generated
the original request.

69

Embedded SQL commands

Embedded SQL commands

70

EXEC SQL
ALL Embedded SQL statements must be preceded with EXEC SQL and
end with a semicolon.

There are two groups of Embedded SQL commands:

Standard SQL commands are used by simply placing them in a C program
enclosed with EXEC SQL and a semi-colon. CONNECT, DELETE,
SELECT, SET and UPDATE have additional formats only available in
Embedded SQL. The additional formats fall into the second category of
Embedded SQL specific commands.

& All commands are described in detail in "SQL Statements" on page 339
of the book Adaptive Server Anywhere Reference Manual.

Several SQL commands are specific to Embedded SQL and can only be used
in a C program.

&> These Embedded SQL commands are also described in "SQL Language
Elements" on page 179 of the book Adaptive Server Anywhere Reference
Manual.

The Embedded SQL commands include the following:

¢ ALLOCATE DESCRIPTOR Allocate memory for a descriptor
CLOSE close a cursor

CONNECT connect to the database

DEALLOCATE DESCRIPTOR Reclaim memory for a descriptor

* & & o

Declaration Section declare host variables for database
communication

DECLARE declare a cursor

DELETE (positioned) delete the row at the current position in a cursor
DESCRIBE describe the host variables for a particular SQL statement
DISCONNECT disconnect from database server

DROP STATEMENT free resources used by a prepared statement
EXECUTE execute a particular SQL statement

EXPLAIN explain the optimization strategy for a particular cursor

* & & ¢ O o o o

FETCH fetch a row from a cursor

Chapter 2 The Embedded SQL Interface

* & & ¢ o o o o o

GET OPTION get the setting for a particular database option
INCLUDE include a file for SQL preprocessing

OPEN open a cursor

PREPARE prepare a particular SQL statement

PUT insert a row into a cursor

SET CONNECTION change active connection

SET OPTION change a database option value

SET SQLCA use an SQLCA other than the default global one

UPDATE (positioned) update the row at the current location of a
cursor

WHENEVER specify actions to occur on errors in SQL statements

7

Database examples

Database examples

File locations

Two Embedded SQL examples are included with the Adaptive Server
Anywhere installation. The static cursor Embedded SQL example, cur.sqc,
demonstrates the use of static SQL statements. The dynamic cursor
Embedded SQL example, dcur.sgc, demonstrates the use of dynamic SQL
statements. In addition to these examples, you may find other programs and
source files as part of the installation of Adaptive Server Anywhere which
demonstrate features available for particular platforms.

Source code for the examples is installed as part of the Adaptive Server
Anywhere installation. They are placed in the cxmp subdirectory of your
Adaptive Server Anywhere installation directory.

Building the examples

72

Along with the sample program is a batch file, makeall. bat, that can be used
to compile the sample program for the various environments and compilers
supported by Adaptive Server Anywhere. For UNIX, use the shell script
makeall.

The format of the command is as follows:
makeall {Example} {Platform} {Compiler}

The first parameter is the name of the example program that you want to
compile. It is one of:

¢ cur static cursor example

¢ dcur dynamic cursor example

The second parameter is the platform in which the program is run. The
platform can be one of the following:

¢ WINDOWS compile for 16-bit Windows.

¢ WIN32 compile for 32-bit Windows 3.x using the Watcom 32-bit
support.

¢ WINNT compile for Windows NT.
¢ NETWARE compile for Netware NLM.

The third parameter is the compiler to use to compile the program. The
compiler can be one of:

¢ WC use Watcom C/C++
¢ MC use Microsoft C

Chapter 2 The Embedded SQL Interface

¢ BC useBorland C
¢ CS useIBM C Sett++ or Visual Age

Running the example programs

Windows and
Windows NT
examples

Each example program presents a console-type user interface where it
prompts you for a command. The various commands manipulate a database
cursor and print the query results on the screen. Simply type the letter of the
command you wish to perform. Some systems may require you to press
ENTER after the letter.

The commands are similar to the following, depending on which program
you run:

p print current page

u move up a page

d move down a page

b move to the bottom of the page

move to the top of the page

insert a row (dcur only)

=]

new table (dcur only)

quit

* & 6 6 O o o o o
o -+

=

help (this list of commands)

The Windows versions of the example programs are real Windows programs.
However, to keep the user interface code relatively simple, some
simplifications have been made. In particular, these applications do not
repaint their Windows on WM_PAINT messages except to reprint the
prompt.

To run these programs, execute them using the curwin executable name:

73

Database examples

Static cursor example

74

This example demonstrates the use of cursors. The particular cursor used
here retrieves certain information from the employee table in the sample
database. The cursor is declared statically, meaning that the actual SQL
statement to retrieve the information is "hard coded" into the source program.
This is a good starting point for learning how cursors work. The next
example ("Dynamic cursor example" on page 75) takes this first example and
converts it to use dynamic SQL statements.

&> For information on where the source code can be found and how to
build this example program , see "Database examples" on page 72.

The C program with the Embedded SQL is shown below. The program looks
much like a standard C program except there are Embedded SQL instructions
that begin with EXEC SQL.

To reduce the amount of code that is duplicated by the cur and dcur
example programs (and the odbc example), the mainlines and the data
printing functions have been placed into a separate file. This is mainch.c for
character mode systems, and mainwin.c for windowing environments.

The example programs each supply the following three routines, which are
called from the mainlines.

¢ WSQLEX_Init Connects to the database and opens the cursor

¢ WSQLEX_Process_Command Processes commands from the user,
manipulating the cursor as necessary.

¢ WSQLEX_Finish Closes the cursor and disconnect from the database.
The function of the mainline is to:
1 Call the WSQLEX Init routine

2 Loop, getting commands from the user and calling
WSQL_Process_Command until the user quits

3 Call the WSQLEX Finish routine

Connecting to the database is accomplished with the Embedded SQL
CONNECT command supplying the appropriate user ID and password.

The open_cursor routine both declares a cursor for the specific SQL
command and also opens the cursor.

Chapter 2 The Embedded SQL Interface

Printing a page of information is accomplished by the print routine. It loops
pagesize times fetching a single row from the cursor and printing it out. Note
that the fetch routine checks for warning conditions (such as End of Cursor)
and prints appropriate messages when they arise. Also, the cursor is
repositioned by this program to the row before the one that is displayed at the
top of the current page of data.

The move, top and bottom routines use the appropriate form of the FETCH
statement to position the cursor. Note that this form of the FETCH statement
doesn't actually get the data — it only positions the cursor. Also, a general
relative positioning routine, move, has been implemented to move in either
direction depending on the sign of the parameter.

When the user quits, the cursor is closed and the database connection is also
released. The cursor is closed by a ROLLBACK WORK statement, and the
connection is release by a DISCONNECT.

Dynamic cursor example

This example demonstrates the use of cursors for a dynamic SQL SELECT
statement. It is a slight modification of the previous example. If you have not
yet looked at "Static cursor example" on page 74 it would be helpful to do so
before looking at this example.

& For information on where the source code can be found and how to
build this example program "Database examples" on page 72.

The dcur program allows the user to select a table to look at with the n
command. The program then presents as much information from that table as
will fit on the screen. The SELECT statement is built up in a program array
using the C library function rintf.

When this program is run, it prompts for a connection string of the form:
uid=dba;pwd=sql;dbf=c:\asa6\asademo.db

The C program with the Embedded SQL is shown below. The program looks
much like the previous example with the exception of the connect,
open_cursor and print functions.

The connect function uses the Embedded SQL interface function
db_string_connect to connect to the database. This function provides the
extra functionality to support the connection string that is used to connect to
the database.

The open_cursor routine first builds the SELECT statement:

SELECT * FROM tablename

75

Database examples

where tablename is a parameter passed to the routine. It then prepares a
dynamic SQL statement using this string.

The Embedded SQL DESCRIBE command is used to fill in the SQLDA
structure the results of the SELECT statement.

Size of the SQLDA

An initial guess is taken for the size of the SQLDA (3). If this is not big
enough, the actual size of the select list returned by the database server is
used to allocate a SQLDA of the right size.

The SQLDA structure is then filled with buffers to hold strings that
represent the results of the query. The fill_s_sqlda routine converts all
data types in the SQLDA to DT_STRING, and allocates buffers of the
appropriate size.

A cursor is then declared and opened for this statement. The rest of the
routines for moving and closing the cursor remain the same.

The fetch routine is slightly different: it puts the results into the SQLDA
structure instead of into a list of host variables. The print routine has
changed significantly to print results from the SQLDA structure up to the
width of the screen. The print routine also uses the name fields of the
SQLDA to print headings for each column.

Windows NT Service examples

76

The example programs cur.sqc and dcur.sqc, when compiled for Windows
NT, run optionally as services.

The two files containing the example code for NT services are the source file
ntsve.c and the header file ntsve.h. The code allows a linked executable to be
run either as a regular executable or as an NT service.

To run one of the compiled examples as an NT service:
1 Start Sybase Central, and open the Services folder.
Select a service type of Sample Application, and click OK.

2
3 Enter a service name in the appropriate field.
4

Select the sample program (curwnt.exe or dcurwnt.exe) from the cxmp
subdirectory of the installation directory.

W

Click OK to install the service.

6 Click Start on the main window to start the service.

Chapter 2 The Embedded SQL Interface

When run as a service, the programs display the normal user interface if
possible. They also write the output to the Application Event Log. Ifit is
not possible to start the user interface, the programs print one page of data to
the Application Event Log and stop.

These examples have been tested with the Watcom C/C++ 10.5 compiler and
the Microsoft Visual C++ 2.0 compiler.

77

Database examples

78

