CHAPTER 6

SQL Language Elements

About this chapter

Contents

This chapter presents detailed descriptions of the language elements and

conventions of SQL.

Topic Page
Statement elements 180
Expressions 183
Search conditions 194
SQL variables 203
SQL comments 212
NULL value 213
Alphabetical list of keywords 215

179

Statement elements

Statement elements

The following elements are found in the syntax of many SQL statements.

¢
¢

180

column-name An identifier that represents the name of a column.

condition An expression that evaluates to TRUE, FALSE, or
UNKNOWN. See "Search conditions" on page 194.

connection-name An identifier or a string representing the name of an
active connection.

owner An identifier that represents a user ID.

data-type A storage data type, as described in "SQL Data Types" on
page 219.

expression An expression, as described in "Expressions" on page
183.

filename A string containing a filename.

host-variable A C language variable, declared as a host variable
preceded by a colon.

identifier Any string of alphabetic characters, or digits. The collation
sequence of the database dictates which characters are considered
alphabetic or digit characters. The underscore character (_), at sign (@),
number sign (#), and dollar sign ($) are considered alphabetic characters.
The first character must be an alphabetic character.

Alternatively, any string of characters can be used as an identifier by
enclosing it in quotation marks ("double quotes").

A quotation mark inside the identifier is represented by two quotation
marks in a row. Identifiers are truncated to 128 characters. The
following are all valid identifiers.

Surname

"Surname"

SomeBigName

some big name

"Client Number"

"With a quotation "" mark"

Some words that adhere to the above rules are reserved because they
play an important role in the syntax of the SQL language. If you choose
to use one of them as an identifier, you must enclose it in double quotes.

Chapter 6 SQL Language Elements

& For a complete list of the reserved words, see "Alphabetical list of
keywords" on page 215.

indicator-variable A second host variable of type short int
immediately following a normal host variable. It must also be preceded
by a colon. Indicator variables are used to pass NULL values to and
from the database.

number Any sequence of digits followed by an optional decimal part
and preceded by an optional negative sign. Optionally, the number can
be followed by an E and then an exponent. For example,

42
-4.038
.001
3.4el0
le-10
role-name An identifier representing the role name of a foreign key.

search-condition A condition that evaluates to TRUE, FALSE, or
UNKNOWN. See "Search conditions" on page 194.

string Any sequence of characters enclosed in apostrophes ('single
quotes').

To represent an apostrophe inside the string, use two apostrophes in a
row. To represent a new line character, use a backslash followed by n
(\n). To represent a backslash character, use two backslashes in a row

Q.

Hexadecimal escape sequences can be used for any character, printable
or not. A hexadecimal escape sequence is a backslash followed by an x
followed by two hexadecimal digits (for example, \x6d represents the
letter m). The following are valid strings:

'This is a string.'
'"John''s database’
"\x00\x01\x02\x03"

For compatibility with Adaptive Server Enterprise, you can set the
QUOTED_IDENTIFIER database option to OFF, and then you can also
use double quotes to mark the beginning and end of strings. The option
is set to ON by default.

savepoint-name An identifier that represents the name of a savepoint.
statement-label An identifier that represents the label of a loop or

compound statement.

181

Statement elements

182

table-list A list of table names, which may include correlation names.
See "FROM clause" on page 476.

table-name An identifier that represents the name of a table.
userid An identifier that represents a user name.

variable An identifier that represents a variable name.

Chapter 6 SQL Language Elements

Expressions

Syntax expression:
case-expression
| constant
| [correlation-name .] column-name [java-ref]
| - expression
| expression operator expression
| (expression)
| function-name (expression, ...)
| if-expression
| [java-package-name.] java-class-name java-ref

| (subquery)
| variable-name [java-ref]

Parameters case-expression:

{ CASE search-condition
WHEN expression
THEN,...

[ELSE expression]
END

| CASE
WHEN search-condition
THEN expression,...
[ELSE expression]

END

}

constant:
integer | number | 'string' | special-constant | host-variable

special-constant:
CURRENT { DATE | TIME | TIMESTAMP }
| NULL
| SQLCODE
| SQLSTATE
| USER

if-expression:
IF condition
... THEN expression
... [ELSE expression]
... ENDIF

java-ref:
.field-name [java-ref]
| >> field-name [java-ref]
| .method-name ([expression,...]) [java-ref]
| >> method-name ([expression,...]) [java-ref]

operator:

{+1-1"17101 %}

183

Expressions

Usage
Authorization
Side effects

See also

Description

Compatibility

Anywhere.
Must be connected to the database.
None.

"Search conditions" on page 194
"SQL Data Types" on page 219
"SQL Functions" on page 267
"SQL variables" on page 203

Expressions are formed from several different kinds of elements, discussed
in the following sections.

& For information on functions, see "SQL Functions" on page 267. For
information on variables, see "SQL variables" on page 203.

¢ The IF condition is not supported in Adaptive Server Enterprise.

¢ Java expressions are not currently supported in Adaptive Server
Enterprise.

¢ For other differences, see the separate descriptions of each class of
expression, in the following sections.

Constants in expressions

Special constants

184

Constants are numbers or strings. String constants are enclosed in
apostrophes (‘single quotes'). An apostrophe is represented inside the string
by two apostrophes in a row.

There are several special constants:

¢ CURRENT DATE The current year, month and day represented in the
DATE data type.

¢ CURRENT TIME The current hour, minute, second and fraction of a
second represented in the TIME data type. Although the fraction of a
second is stored to 6 decimal places, the current time is limited by the
accuracy of the system clock.

¢ CURRENT TIMESTAMP Combines CURRENT DATE and
CURRENT TIME to form a TIMESTAMP value containing the year,
month, day, hour, minute, second and fraction of a second. Like
CURRENT TIME, the accuracy of the fraction of a second is limited by
the system clock.

¢ NULL The NULL value (see "NULL value" on page 213).

Chapter 6 SQL Language Elements

¢ SQLCODE Current SQLCODE value (see "Database Error Messages"
on page 581).

¢ SQLSTATE Current SQLSTATE value (see "Database Error
Messages" on page 581).

¢ CURRENT USER A string containing the user ID of the current
connection.

On UPDATE, columns with a default of CURRENT USER
automatically update to reflect the current connection.

¢ CURRENT PUBLISHER A string containing the publisher user ID of
the database for SQL Remote replications.

¢ LASTUSER For INSERT, this constant has the same effect as
CURRENT USER. On UPDATE, if a column with a default value of
LAST USER is not explicitly altered, it is changed to the name of the
current user. In this way, the LAST USER default indicates the user ID
of the user who last modified the row.

When combined with the CURRENT TIMESTAMP, a default value of
LAST USER can be used to record (in separate columns) both the user
and the date and time a row was last changed.

In Embedded SQL, a host variable can also be used in an expression
wherever a constant is allowed.

Column names in expressions

A column name is an identifier preceded by an optional correlation name. (A
correlation name is usually a table name. For more information on
correlation names, see "FROM clause" on page 476.) If a column name has
characters other than letters, digits and underscore, it must be surrounded by
quotation marks (""). For example, the following are valid column names:

employee.name
address
"date hired"

"salary"."date paid"

& See "Statement elements" on page 180 for a complete description of
identifiers.

Functions in expressions

See "SQL Functions" on page 267 for a description of SQL functions.
185

Expressions

Subqueries in expressions

SQL Operators

Arithmetic operators

String operators

186

A subquery is a SELECT statement enclosed in parentheses. The SELECT
statement must contain one and only one select list item. Usually, the
subquery is allowed to return only one row. See "Search conditions" on page
194 for other uses of subqueries. A subquery can be used anywhere that a
column name can be used. For example, a subquery can be used in the select
list of another SELECT statement.

This section describes arithmetic, string, and bitwise operators. For
information on comparison operators, see the section "Search conditions" on
page 194.

The normal precedence of operations applies. Expressions in parentheses are
evaluated first, then multiplication and division before addition and
subtraction. String concatenation happens after addition and subtraction.

expression + expression Addition. If either expression is the NULL
value, the result is the NULL value.

expression - expression Subtraction. If either expression is the NULL
value, the result is the NULL value.

- expression Negation. If the expression is the NULL value, the result is
the NULL value.

expression * expression Multiplication. If either expression is the
NULL value, the result is the NULL value.

expression / expression Division. If either expression is the NULL
value or if the second expression is 0, the result is the NULL value.

expression % expression Modulo finds the integer remainder after a
division involving two whole numbers. For example, 21 % 11 = 10 because
21 divided by 11 equals 1 with a remainder of 10.

expression || expression String concatenation (two vertical bars). If
either string is the NULL value, it is treated as the empty string for
concatenation.

Chapter 6 SQL Language Elements

Standards and
compatibility

Bitwise operators

Join operators

Compatibility

expression + expression Alternative string concatenation. When using
the + concatenation operator, you must ensure the operands are explicitly set
to character data types rather than relying on implicit data conversion.

¢ SQL/92 The || operator is the SQL/92 string concatenation operator.
¢ Sybase The + operator is supported by Adaptive Server Enterprise.

The following operators can be used on bit data types, in both Adaptive
Server Anywhere and Adaptive Server Enterprise.

Operator | Description
& and

| or

n exclusive or
~ not

The Transact-SQL outer join operators *= and =* are supported in Adaptive
Server Anywhere, in addition to the SQL/92 join syntax that uses a table
expression in the FROM clause.

¢ Modulo The % operator can be used in Adaptive Server Anywhere
only if the PERCENT AS COMMENT option is set to OFF. The
default value is ON.

¢ String concatenation When using the + concatenation operator in
Adaptive Server Anywhere, you should explicitly set the operands to
strings rather than relying on implicit data conversion. For example, the
following query returns the integer value 579

SELECT 123 + 456
whereas the following query returns the character string 123456
SELECT '123' + '456"

You can use the CAST or CONVERT function to explicitly convert data
types.

The || concatenation operator is not supported by Adaptive Server
Enterprise.

187

Expressions

Operator precedence

When you use more than one operator in an expression, it is recommended
that you make the order of operation explicit using parentheses rather than
relying on an identical operator precedence between Adaptive Server
Enterprise and Adaptive Server Anywhere.

IF expressions

The syntax of the IF expression is as follows:

IF condition
THEN expression1
[ELSE expression2]
ENDIF

This expression returns the following:
¢ If condition is TRUE, the IF expression returns expressionl.
¢ If condition is FALSE, the IF expression returns expression2.

¢ If condition is FALSE, and there is no expression2, the IF expression
returns NULL.

¢ If condition is NULL, the IF expression returns NULL.

&~ For more information about TRUE, FALSE and UNKNOWN
conditions, see "NULL value" on page 213, and "Search conditions" on page
194.

IF statement is different from IF expression
Do not confuse the syntax of the IF expression with that of the IF
statement.

& For information on the IF statement, see "IF statement" on page 489.

CASE expressions
The CASE expression provides conditional SQL expressions. Case
expressions can be used anywhere an expression can be used.

The syntax of the CASE expression is as follows:

CASE expression
WHEN expression
THEN expression, ...
[ELSE expression]

188

Chapter 6 SQL Language Elements

NULLIF function
for abbreviated
CASE expressions

END

If the expression following the CASE statement is equal to the expression
following the WHEN statement, then the expression following the THEN
statement is returned. Otherwise the expression following the ELSE
statement is returned, if it exists.

For example, the following code uses a case expression as the second clause
in a SELECT statement.

SELECT 1id,
(CASE name
WHEN 'Tee Shirt' then 'Shirt'
WHEN 'Sweatshirt' then 'Shirt'
WHEN 'Baseball Cap' then 'Hat'
ELSE 'Unknown'
END) as Type
FROM "DBA".Product

An alternative syntax is as follows:

CASE

WHEN search-condition
THEN expression, ...

[ELSE expression]
END

If the search-condition following the WHEN statement is satisfied, the
expression following the THEN statement is returned. Otherwise the
expression following the ELSE statement is returned, if it exists.

For example, the following statement uses a case expression as the third
clause of a SELECT statement to associate a string with a search-condition.

SELECT id, name,
(CASE
WHEN name='Tee Shirt' then 'Sale'
WHEN quantity >= 50 then 'Big Sale'
ELSE 'Regular price'
END) as Type
FROM "DBA".Product

The NULLIF function provides a way to write some CASE statements in
short form. The syntax for NULLIF is as follows:

NULLIF (expression-1, expression-2)

NULLIF compares the values of the two expressions. If the first expression
equals the second expression, NULLIF returns NULL. If the first expression
does not equal the second expression, NULLIF returns the first expression.

189

Expressions

Java expressions

Referencing fields
and methods

190

The following kinds of Java expressions can be used as SQL expressions:

¢ Javafields Any field of an installed Java class can be invoked
wherever an expression is required. The data type of the expression is
converted from the Java field data type according to the table in "Java
to-SQL-data type conversion" on page 256. Both instance fields and
class fields can be used as expressions.

¢ Java methods Any method of an installed Java class can be invoked
wherever an expression is required. The data type of the expression is
converted from the return type of the Java method according to the table
in "Java to-SQL-data type conversion" on page 256. Both instance fields
and class fields can be used as expressions.

¢ Javaobjects The NEW operator is an extension to the SQL language
that allows it to better assimilate Java syntax.

The NEW SQL operator performs the same operation as the new
keyword in Java code: invoke a constructor method of a Java class. The
data type of the NEW expression is a Java class, specifically the Java
class that is being constructed.

The following expression invokes the constructor method of the String
class, a member of the java.lang package.

NEW java.lang.String('This argument is optional')

This expression returns a reference to the newly-created String object,
which can be passed to a variable or column of type java.lang.String.

The method constructor that is being invoked determines the number
and type of arguments.

The class whose constructor method is invoked must first be installed to
the database.

&>~ For more information on class and instance fields and methods, see "A
Java seminar" on page 439 of the book Adaptive Server Anywhere User's
Guide.

When referencing a Java field or method from within Java code, you use the
dot (.) operator. For example, to invoke the getConnection method of
the DriverManager class you use the following:

conn = DriverManager.getConnection(temp.toString() ,
_props)

There are two ways of referencing Java fields or methods from within SQL
statements. You can use either the dot operator or the >> operator.

Chapter 6 SQL Language Elements

The dot operator has the advantage that it looks like Java code, but has the
disadvantage that in SQL the dot is also used to indicate the owner, table,
and column hierarchy, so this could be confusing to read.

Using the dot operator, a name method of an object named Employee is
invoked from SQL as follows:

select Employee.name ...
The same expression could refer to a name column of an Employee table.

The >> operator is unambiguous, but does not look like what Java
programmers may expect.

Compatibility of expressions

The following tables describe the compatibility of expressions and constants
between Adaptive Server Enterprise and Adaptive Server Anywhere. These
tables are a guide only, and a marking of Both may not mean that the
expression performs in an identical manner for all purposes under all
circumstances. For detailed descriptions, you should refer to the Adaptive
Server Enterprise documentation and the Adaptive Server Anywhere
documentation on the individual expression.

In the following table, expr represents an expression, and op represents an
operator.

Expression Supported by

constant Both
column name Both
variable name Both

function (expr) Both

- expr Both
expr op expr Both
(expr) Both
('subquery) Both
if-expression Adaptive Server Anywhere only

191

Expressions

Default
interpretation of
delimited strings

Constant Supported by

integer Both

number Both

'string’ Both

special-constant Both

host-variable Adaptive Server Anywhere

By default, Adaptive Server Enterprise and Adaptive Server Anywhere give
different meanings to delimited strings: that is, strings enclosed in
apostrophes (single quotes) and in quotation marks (double quotes).

Adaptive Server Anywhere employs the SQL/92 convention, that strings
enclosed in apostrophes are constant expressions, and strings enclosed in
quotation marks (double quotes) are delimited identifiers (names for database
objects). Adaptive Server Enterprise employs the convention that strings
enclosed in quotation marks are constants, while delimited identifiers are not
allowed by default and are treated as strings.

The quoted_identifier option

Setting the option

192

Both Adaptive Server Enterprise and Adaptive Server Anywhere provide a
quoted_identifier option that allows the interpretation of delimited strings to
be changed. By default, the quoted_identifier option is set to OFF in
Adaptive Server Enterprise, and to ON in Adaptive Server Anywhere.

You cannot use SQL reserved words as identifiers if the quoted_identifier
option is off.

& For a complete list of reserved words, see "Alphabetical list of
keywords" on page 215.

While the Transact-SQL SET statement is not supported for most Adaptive
Server Enterprise connection options, it is supported for the
quoted_identifier option.

The following statement in either Adaptive Server Anywhere or Adaptive
Server Enterprise changes the setting of the quoted_identifier option to ON:

SET quoted identifier ON

With the quoted_identifier option set to ON, Adaptive Server Enterprise
allows table, view, and column names to be delimited by quotes. Other
object names cannot be delimited in Adaptive Server Enterprise.

The following statement in Adaptive Server Anywhere or Adaptive Server
Enterprise changes the setting of the quoted_identifier option to OFF:

Chapter 6 SQL Language Elements

Compatible
interpretation of
delimited strings

Examples

SET quoted identifier OFF

You can choose to use either the SQL/92 or the default Transact-SQL
convention in both Adaptive Server Enterprise and Adaptive Server

Anywhere as long as the quoted_identifier option is set to the same value in
each DBMS.

If you choose to operate with the quoted_identifier option on (the default
Adaptive Server Anywhere setting), then the following statements involving
the SQL keyword user are valid for both DBMS's.

CREATE TABLE "user" (
coll char(5)

) i

INSERT "user" (coll)

VALUES ('abcde') ;

If you choose to operate with the quoted_identifier option off (the default
Adaptive Server Enterprise setting), then the following statements are valid
for both DBMSs.

SELECT *
FROM employee
WHERE emp lname = "Chin"

193

Search conditions

Search conditions

Function To specify a search condition for a WHERE clause, a HAVING clause, a
CHECK clause, a JOIN clause, or an IF expression.

Syntax search condition:
expression compare expression
| expression compare {[ANY | SOME]| ALL }(subquery)
| expression IS [NOT] NULL
| expression [NOT] BETWEEN expression AND expression
| expression [NOT] LIKE expression [ESCAPE expression]
| expression [NOT] IN ({expression | subquery | value-expri ,
value-expr2 [, value-expr3] ...})
| EXISTS (subquery)
| NOT condition
| condition AND condition
| condition OR condition
| (condition)
| (condition , estimate)
| condition IS [NOT] { TRUE | FALSE | UNKNOWN }

Parameters compatre:
= | >|<|>=|<=|<> =]
Usage Anywhere.
Authorization Must be connected to the database.
Side effects None.
See also "Expressions" on page 183
Description Conditions are used to choose a subset of the rows from a table, or in a

control statement such as an IF statement to determine control of flow.

SQL conditions do not follow boolean logic, where conditions are either true
or false. In SQL, every condition evaluates as one of TRUE, FALSE, or
UNKNOWN. This is called three-valued logic. The result of a comparison is
UNKNOWN if either value being compared is the NULL value. For tables
showing how logical operators combine in three-valued logic, see the section
"Three-valued logic" on page 201.

Rows satisfy a search condition if and only if the result of the condition is
TRUE. Rows for which the condition is UNKNOWN do not satisfy the
search condition. For more information about NULL, see "NULL value" on
page 213.

Subqueries form an important class of expression that is used in many search
conditions. For information about using subqueries in search conditions, see
"Subqueries in search conditions" on page 196.

194

Chapter 6 SQL Language Elements

The different types of search condition are discussed in the following
sections.

Comparison conditions

The syntax for comparison conditions is as follows:
... expression compare expression

where compare is a comparison operator. The following comparison
operators are available:

operator description

= Equal to

> Greater than

< Less than

>= Greater than or equal to
<= Less than or equal to

1= Not equal to

<> Not equal to

1> Not greater than

< Not less than

Comparisons are case insensitive
All string comparisons are case insensitive unless the database was
created as case sensitive.

Compatibility ¢ Trailing blanks Any trailing blanks in character data are ignored for
comparison purposes by Adaptive Server Enterprise. The behavior of
Adaptive Server Anywhere when comparing strings is controlled the —b
command-line switch that is set when creating the database.

¢ Case sensitivity By default, Adaptive Server Anywhere databases are
created as case insensitive, while Adaptive Server Enterprise databases
are created as case sensitive. Comparisons are carried out with the same
attention to case as the database they are operating on. You can control
the case sensitivity of Adaptive Server Anywhere databases when
creating the database.

195

Search conditions

Subqueries in search conditions

Subqueries that return exactly one column and either zero or one row can be
used in any SQL statement wherever a column name could be used,
including in the middle of an expression.

For example, expressions can be compared to subqueries in comparison
conditions (see "Comparison conditions" on page 195) as long as the
subquery does not return more than one row. If the subquery (which must
have one column) returns one row, then the value of that row is compared to
the expression. If a subquery returns no rows, its value is NULL.

Subqueries that return exactly one column and any number of rows can be
used in IN conditions, ANY conditions, and ALL conditions. Subqueries that
return any number of columns and rows can be used in EXISTS conditions.
These conditions are discussed in the following sections.

ALL or ANY conditions

Compatibility

The syntax for ANY conditions is
... expression compare ANY (subquery)

where compare is a comparison operator.

For example, an ANY condition with an equality operator:
... expression = ANY (subquery)

is TRUE if expression is equal to any of the values in the result of the
subquery, and FALSE is the expression is not NULL and does not equal any
of the columns of the subquery. The ANY condition is UNKNOWN if
expression is the NULL value, unless the result of the subquery has no rows,
in which case the condition is always FALSE.

The keyword SOME can be used instead of ANY.

¢ ANY and ALL subqueries are compatible between Adaptive Server
Enterprise and Adaptive Server Anywhere. Only Adaptive Server
Anywhere supports SOME as a synonym for ANY.

BETWEEN conditions

196

The syntax for BETWEEN conditions is as follows:
... expr [NOT] BETWEEN start-expr AND end-expr

Chapter 6 SQL Language Elements

Compatibility

LIKE conditions

The BETWEEN condition can evaluate as TRUE, FALSE, or UNKNOWN.
Without the NOT keyword, the condition evaluates as TRUE if expr is
between start-expr and end-expr. The NOT keyword reverses the meaning of
the condition but leaves UNKNOWN unchanged.

The BETWEEN conditions is equivalent to a combination of two
inequalities:

expr >= start-expr AND expr <= end-expr

¢ The BETWEEN condition is compatible between Adaptive Server
Anywhere and Adaptive Server Enterprise.

The syntax for LIKE conditions is as follows:
... expression [NOT] LIKE pattern [ESCAPE escape-expr]
The LIKE condition can evaluate as TRUE, FALSE, or UNKNOWN.

Without the NOT keyword, the condition evaluates as TRUE if expression
matches the pattern. If either expression or pattern is the NULL value, this
condition is UNKNOWN. The NOT keyword reverses the meaning of the
condition, but leaves UNKNOWN unchanged.

The pattern may contain any number of wild cards. The wild cards are:

Wild card Matches

_ (underscore) Any one character

% (percent) Any string of zero or more characters

M Any single character in the specified range or set

[Any single character not in the specified range or set

All other characters must match exactly.
For example, the search condition
. name LIKE 'a%b '

is TRUE for any row where name starts with the letter a and has the letter b
as its second last character.

If an escape-expr is specified, it must evaluate to a single character. The
character can precede a percent, an underscore, a left square bracket, or
another escape character in the pattern to prevent the special character from
having its special meaning. When escaped in this manner, a percent will
match a percent, and an underscore will match an underscore.

197

Search conditions

Searching for one
of a set of
characters

Searching for one
of a range of
characters

Combining
searches for
ranges and sets

Searching for one
character not in a
range

198

All patterns of length 126 characters or less are supported. Patterns of length
greater than 254 characters are not supported. Some patterns of length
between 127 and 254 characters are supported, depending on the contents of
the pattern.

A set of characters to look for is specified by listing the characters inside
square brackets. For example, the following condition finds the strings smith
and smyth:

. LIKE 'sm[iy]lth'

A range of characters to look for is specified by giving the ends of the range
inside square brackets, separated by a hyphen. For example, the following
condition finds the strings bough and rough, but not tough:

. LIKE '[a-r]ough'

The range of characters [a-z] is interpreted as "greater than or equal to a, and
less than or equal to z", where the greater than and less than operations are
carried out within the collation of the database. For information on ordering
of characters within a collation, see "Database Collations and International
Languages" on page 289 of the book Adaptive Server Anywhere User's
Guide.

The lower end of the range must precede the higher end of the range. For
example, a LIKE condition containing the expression [z-a] returns no rows,
because no character matches the [z-a] range.

Unless the database is created as case-sensitive, the range of characters is
case insensitive. For example, the following condition finds the strings
Bough, rough, and TOUGH:

. LIKE '[a-z]ough'

If the database is created as a case-sensitive database, the search condition is
case sensitive also.

You can combine ranges and sets within a square bracket. For example, the
following condition finds the strings bough, rough, and tough:

. LIKE '[a-rt]ough'

The bracket [a-mpgs-z] is interpreted as "exactly one character that is either
in the range a to m inclusive, or is p, or is g, or is in the range s to z
inclusive".

The caret character (") is used to specify a range of characters that is
excluded from a search. For example, the following condition finds the string
tough, but not the strings rough, or bough:

. LIKE '[”a-r]ough'

Chapter 6 SQL Language Elements

Special cases of
ranges and sets

Compatibility

IN conditions

Compatibility

The caret negates the entire rest of the contents of the brackets. For example,
the bracket [“a-mpgs-z] is interpreted as "exactly one character that is not in
the range a to m inclusive, is not p, is not g, and is not in the range s to z
inclusive".

Any single character in square brackets means that character. For example,
[a] matches just the character a. [/ matches just the caret character, /%]
matches just the percent character (the percent character does not act as a
wild card in this context), and /] matches just the underscore character.
Also, [[] matches just the character /.

Other special cases are as follows:
¢ The expression /a-] matches either of the characters « or -.
¢ The expression /] is never matched and always returns no rows.

¢ The expressions [or [abp-q are ill-formed expressions, and give syntax
errors.

¢ You cannot use wild cards inside square brackets. The expression [a%b]
finds one of a, %, or b.

¢ You cannot use the caret character to negate ranges except as the first
character in the bracket. The expression /a”b] finds one of a, , or b.

¢ The ESCAPE clause is supported by Adaptive Server Anywhere only.

The syntax for IN conditions is as follows:

...expression [NOT 1IN (subquery)
[expression [NOT] IN (expression)
[expression [NOT] IN (value-expr1 , value-expr2 [, value-
expr3]...)
Without the NOT keyword, the IN conditions is TRUE if expression equals
any of the listed values, UNKNOWN if expression is the NULL value, and

FALSE otherwise. The NOT keyword reverses the meaning of the condition,
but leaves UNKNOWN unchanged.

¢ IN conditions are compatible between Adaptive Server Enterprise and
Adaptive Server Anywhere.

EXISTS conditions

The syntax for EXISTS conditions is as follows:

199

Search conditions

... EXISTS(subquery)

The EXISTS condition is TRUE if the subquery result contains at least one
row, and FALSE if the subquery result does not contain any rows. The
EXISTS condition cannot be UNKNOWN.

Compatibility ¢ The EXISTS condition is compatible between Adaptive Server
Enterprise and Adaptive Server Anywhere.

IS NULL conditions

The syntax for IS NULL conditions is as follows:
expression IS [NOT] NULL

Without the NOT keyword, the IS NULL condition is TRUE if the
expression is the NULL value, and FALSE otherwise. The NOT keyword
reverses the meaning of the condition.

Compatibility ¢ The IS NULL condition is compatible between Adaptive Server
Enterprise and Adaptive Server Anywhere.

Conditions with logical operators

Search conditions can be combined using AND, OR and NOT.
Conditions are combined using AND as follows:
... condition1 AND condition2

The combined condition is TRUE if both conditions are TRUE, FALSE if
either condition is FALSE, and UNKNOWN otherwise.

Conditions are combined using OR as follows:
... condition1 OR condition2

The combined condition is TRUE if either condition is TRUE, FALSE if
both conditions are FALSE, and UNKNOWN otherwise.

Compatibility ¢ The AND and OR operators are compatible between Adaptive Server
Anywhere and Adaptive Server Enterprise.

NOT conditions

The syntax for NOT conditions is as follows:

200

Chapter 6 SQL Language Elements

... NOT condition1
The NOT condition is TRUE if conditionl is FALSE, FALSE if conditionl

is TRUE, and UNKNOWN if condition] is UNKNOWN.

Truth value conditions

The syntax for truth value conditions is as follows:
... IS [NOT] truth-value

Without the NOT keyword, the condition is TRUE if the condition evaluates
to the supplied truth-value, which must be one of TRUE, FALSE, or
UNKNOWN. Otherwise, the value is FALSE. The NOT keyword reverses
the meaning of the condition, but leaves UNKNOWN unchanged.

Compatibility ¢ Truth-valued conditions are supported by Adaptive Server Anywhere

only.

Three-valued logic

The following tables show how the AND, OR, NOT, and IS logical operators

of SQL work in three-valued logic.

AND operator AND TRUE FALSE UNKNOWN
TRUE TRUE FALSE UNKNOWN
FALSE FALSE FALSE FALSE
UNKNOWN UNKNOWN FALSE UNKNOWN

OR operator OR TRUE FALSE UNKNOWN
TRUE TRUE TRUE TRUE
FALSE TRUE FALSE UNKNOWN
UNKNOWN TRUE UNKNOWN UNKNOWN

NOT operator TRUE FALSE UNKNOWN
FALSE TRUE UNKNOWN

201

Search conditions

IS operator

IS | TRUE FALSE UNKNOWN
TRUE | TRUE FALSE FALSE
FALSE | FALSE TRUE FALSE
UNKNOWN | FALSE FALSE TRUE

User-supplied estimates

Examples

Compatibility

202

The Adaptive Server Anywhere query optimizer uses educated guesses to
help decide the best strategy for executing a query. For each table in a
potential execution plan, the optimizer must estimate the number of rows that
will be part of the results. If you know that a condition has a success rate that
differs from the optimizer rule, you can tell the database this information by

using an estimate in the search condition.

The estimate is a percentage. It can be a positive integer or can contain

fractional values.

¢ The following query provides an estimate that one percent of the

ship_date values will be later than 1994/06/30:

SELECT ship date
FROM sales order items

WHERE (ship date > '1994/06/30', 1)

ORDER BY ship date DESC

¢ The following query estimates that half a percent of the rows will satisfy

the condition:

SELECT *

FROM customer c, sales order o

WHERE (c.id = o.cust_id, 0.5)

Fractional values enable more accurate user estimates for joins, particularly

for large tables.

¢ Adaptive Server Enterprise does not support explicit estimates.

Chapter 6 SQL Language Elements

SQL variables

Local variables

Examples

Adaptive Server Anywhere supports three levels of variables:

¢ Local variables These are defined inside a compound statement in a
procedure or batch using the DECLARE statement. They exist only
inside the compound statement.

¢ Connection-level variables These are defined with a CREATE
VARIABLE statement. They belong to the current connection, and
disappear when you disconnect from the database or when you use the
DROP VARIABLE statement.

¢ Global variables These are system-supplied variables that have
system-supplied values.

Local and connection-level variables are declared by the user, and can be
used in procedures or in batches of SQL statements to hold information.
Global variables are system-supplied variables that provide system-supplied
values. All global variables have names beginning with two @ signs. For
example, the global variable @@version has a value that is the current
version number of the database server. Users cannot define global variables.

Local variables are declared using the DECLARE statement, which can be
used only within a compound statement (that is, bracketed by the BEGIN and
END keywords). The variable is initially set as NULL. The value of the
variable can be set using the SET statement, or can be assigned using a
SELECT statement with an INTO clause.

The syntax of the DECLARE statement is as follows:

DECLARE variable-name data-type

Local variables can be passed as arguments to procedures, as long as the
procedure is called from within the compound statement.

¢ The following batch illustrates the use of local variables.

BEGIN

DECLARE local_var INT ;

SET local var = 10 ;

MESSAGE 'local_var =1, local_var ;
END

Running this batch from Interactive SQL gives the message local_var =
10 on the server window.

203

SQL variables

Compatibility

204

¢ The variable local _var does not exist outside the compound statement in
which it is declared. The following batch is invalid, and gives a column
not found error.

—-— This batch is invalid.
BEGIN
DECLARE local var INT ;
SET local_var =10 ;

MESSAGE 'local var = ', local var ;
END;
MESSAGE 'local var = ', local var ;

¢ The following example illustrates the use of SELECT with an INTO
clause to set the value of a local variable:

BEGIN

DECLARE local var INT ;

SELECT 10 INTO local_var ;

MESSAGE 'local var = ', local var ;
END

Running this batch from Interactive SQL gives the message local_var =
10 on the server window.

¢ Names Adaptive Server Enterprise and Adaptive Server Anywhere
both support local variables. In Adaptive Server Enterprise, all variables
must be prefixed with an @ sign. In Adaptive Server Anywhere, the @
prefix is optional. To write compatible SQL, prefix all of your variables
with @.

¢ Scope The scope of local variables is different in Adaptive Server
Anywhere and Adaptive Server Enterprise. Adaptive Server Anywhere
supports the use of the DECLARE statement to declare local variables
within a batch. However, if the DECLARE is executed within a
compound statement, the scope is limited to the compound statement.

¢ Declaration Only one variable can be declared for each DECLARE
statement in Adaptive Server Anywhere. In Adaptive Server Enterprise,
more than one variable can be declared in a single statement.

& For more information on batches and local variable scope, see
"Variables in Transact-SQL procedures" on page 810 of the book Adaptive
Server Anywhere User's Guide.

Chapter 6 SQL Language Elements

Connection-level variables

Example

Compatibility

Global variables

Global variable and
special constants

Connection-level variables are declared with the CREATE VARIABLE
statement. The CREATE VARIABLE statement can be used anywhere
except inside compound statements. Connection-level variables can be
passed as parameters to procedures.

The syntax for the CREATE VARIABLE statement is as follows:

CREATE VARIABLE variable-name data-type

When a variable is created, it is initially set to NULL. The value of
connection-level variables can be set in the same way as local variables,
using the SET statement or using a SELECT statement with an INTO clause.

Connection-level variables exist until the connection is terminated, or until
the variable is explicitly dropped using the DROP VARIABLE statement.
The following statement drops the variable con_var:

DROP VARIABLE con var

¢ The following batch of SQL statements illustrates the use of connection-
level variables.

CREATE VARIABLE con_var INT;
SET con var = 10;
MESSAGE 'con var = ', con var;

Running this batch from Interactive SQL gives the message local_var =
10 on the server window.

¢ Adaptive Server Enterprise does not support connection-level variables.

Global variables have values set by the database server. For example, the
global variable @@version has a value that is the current version number of
the database server.

Global variables are distinguished from local and connection-level variables
by having two @ signs preceding their names. For example, @@error and
@@rowcount are global variables. Users cannot create global variables, and
cannot update the value of global variables directly.

Some global variables, such as @@jidentity, hold connection-specific
information, and so have connection-specific values. Other variables, such as
@@connections, have values that are common to all connections.

The special constants (CURRENT DATE, CURRENT TIME, USER,
SQLSTATE and so on) are similar to global variables.

205

SQL variables

List of global
variables

206

The following statement retrieves a value of the version global variable.

SELECT @@version

In procedures and triggers, global variables can be selected into a variable
list. The following procedure returns the server version number in the ver
parameter.

CREATE PROCEDURE VersionProc (OUT ver
NUMERIC (5, 2))
BEGIN
SELECT @@version
INTO ver;
END

In Embedded SQL, global variables can be selected into a host variable list.

The following table lists the global variables available in Adaptive Server
Anywhere

Chapter 6 SQL Language Elements

Compatibility

Variable name

Meaning

@@error

@@identity

@@isolation

@@procid
@@rowcount

@@servername

@@sqistatus

@@version

Commonly used to check the error status (succeeded or
failed) of the most recently executed statement. It contains 0
if the previous transaction succeeded; otherwise, it contains
the last error number generated by the system. A statement
such as if @@error != 0 return causes an exit if an error
occurs. Every SQL statement resets @(@error, so the status
check must immediately follow the statement whose success
is in question.

Last value inserted into an IDENTITY column by an
INSERT or SELECT INTO statement. @@identity is reset
each time a row is inserted into a table. If a statement inserts
multiple rows, @@identity reflects the IDENTITY value for
the last row inserted. If the affected table does not contain an
IDENTITY column, @@ identity is set to 0. The value of
@@identity is not affected by the failure of an INSERT or
SELECT INTO statement, or the rollback of the transaction
that contained it. @@identity retains the last value inserted
into an IDENTITY column, even if the statement that
inserted it fails to commit.

Current isolation level. @@jisolation takes the value of the
active level.

Stored procedure ID of the currently executing procedure.

Number of rows affected by the last statement. @@rowcount
is set to zero by any statement which does not affect rows,
such as an IF statement. Inserts, updates, and deletes set
@@rowcount to the number of rows affected.

With cursors, @@rowcount represents the cumulative
number of rows returned from the cursor result set to the
client, up to the last fetch request.

Name of the current database server.

Contains status information resulting from the last fetch
statement.

Version number of the current version of Adaptive Server
Anywhere.

The following list includes all Adaptive Server Enterprise global variables
supported in Adaptive Server Anywhere. Adaptive Server Enterprise global
variables not supported by Adaptive Server Anywhere are not included in the
list. In contrast to the above table, this list includes all global variables that
return a value, including those for which the value is fixed at NULL, 1, -1, or
0, and may not be meaningful.

207

SQL variables

Global variable

Returns

@@char_convert

@@client_csname

@@client_csid

@@connections

@@cpu_busy

@@error

@@identity

@@idle

@@io_busy

208

Returns 0

In Adaptive Server Enterprise, the client's character set
name. Set to NULL if client character set has never been
initialized; otherwise, it contains the name of the most
recently used character set. Returns NULL in Adaptive
Server Anywhere

In Adaptive Server Enterprise, the client's character set ID.
Set to -1 if client character set has never been initialized;
otherwise, it contains the most recently used client character
set ID from syscharsets. Returns -1 in Adaptive Server
Anywhere

The number of logins since the server was last started

In Adaptive Server Enterprise, the amount of time, in ticks,
that the CPU has spent doing Adaptive Server Enterprise
work since the last time Adaptive Server Enterprise was
started. In Adaptive Server Anywhere, returns 0

Commonly used to check the error status (succeeded or
failed) of the most recently executed statement. It contains 0
if the previous transaction succeeded; otherwise, it contains
the last error number generated by the system. A statement
such as

if Q@@error != 0 return

causes an exit if an error occurs. Every statement resets
@@error, including PRINT statements or IF tests, so the
status check must immediately follow the statement whose
success is in question

Last value inserted into an IDENTITY column by an
INSERT or SELECT INTO statement. @@identity is reset
each time a row is inserted into a table. If a statement inserts
multiple rows, @@identity reflects the IDENTITY value for
the last row inserted. If the affected table does not contain an
IDENTITY column, @@ identity is set to 0. The value of
@@identity is not affected by the failure of an INSERT or
SELECT INTO statement, or the rollback of the transaction
that contained it. @@jidentity retains the last value inserted
into an IDENTITY column, even if the statement that
inserted it fails to commit

In Adaptive Server Enterprise, the amount of time, in ticks,
that Adaptive Server Enterprise has been idle since it was
last started. In Adaptive Server Anywhere, returns 0

In Adaptive Server Enterprise, the amount of time, in ticks,
that Adaptive Server Enterprise has spent doing input and
output operations since it was last started. In Adaptive

Chapter 6 SQL Language Elements

Global variable

Returns

@@jisolation

@@]angid

@@]language

@@maxcharlen

@@max_

connections

@@ncharsize

@@nestlevel

@@pack_received

@@pack_sent

@@packet_errors

@@procid
@@rowcount

Server Anywhere, returns 0

Current isolation level of the connection. In Adaptive Server
Enterprise, @@isolation takes the value of the active level

In Adaptive Server Enterprise, defines the local language 1D
of the language currently in use. In Adaptive Server
Anywhere, returns 0

In Adaptive Server Enterprise, defines the name of the
language currently in use. In Adaptive Server Anywhere,
returns "English"

In Adaptive Server Enterprise, maximum length, in bytes, of
a character in Adaptive Server Enterprise's default character
set. In Adaptive Server Anywhere, returns 1

For the personal server, the maximum number of
simultaneous connections that can be made to the server,
which is 10

For the network server, the maximum number of active
clients (not database connections, as each client can support
multiple connections)

For Adaptive Server Enterprise, the maximum number of
connections to the server

In Adaptive Server Enterprise, average length, in bytes, of a
national character. In Adaptive Server Anywhere, returns 1

In Adaptive Server Enterprise, nesting level of current
execution (initially 0). Each time a stored procedure or
trigger calls another stored procedure or trigger, the nesting
level is incremented. In Adaptive Server Anywhere, returns
-1

In Adaptive Server Enterprise, number of input packets read
by Adaptive Server Enterprise since it was last started. In
Adaptive Server Anywhere, returns 0

In Adaptive Server Enterprise, number of output packets
written by Adaptive Server Enterprise since it was last
started. In Adaptive Server Anywhere, returns 0

In Adaptive Server Enterprise, number of errors that have
occurred while Adaptive Server Enterprise was sending and
receiving packets. In Adaptive Server Anywhere, returns 0

Stored procedure ID of the currently executing procedure

Number of rows affected by the last command.
@@rowcount is set to zero by any command which does not
return rows, such as an IF statement. With cursors,
@@rowcount represents the cumulative number of rows
returned from the cursor result set to the client, up to the last

209

SQL variables

210

Global variable

Returns

@@servername

@@spid

@@sqlstatus

@@textsize

@@thresh_hysteresis

@@timeticks

@@total_errors

@@total_read

fetch request

Name of the local Adaptive Server Enterprise or Adaptive
Server Anywhere server

In Adaptive Server Enterprise, server process ID number of
the current process. In Adaptive Server Anywhere, the
connection handle for the current connection. This is the
same value as that displayed by the sa_conn_info procedure

Contains status information resulting from the last fetch
statement. (@@sqlstatus may contain the following values

0 The fetch statement completed successfully
1 The fetch statement resulted in an error
2 There is no more data in the result set

Current value of the SET TEXTSIZE option, which specifies
the maximum length, in bytes, of text or image data to be
returned with a select statement. The default setting is
32765, which is the largest bytestring that can be returned
using READTEXT. The value can be set using the SET
statement

In Adaptive Server Enterprise, change in free space required
to activate a threshold. In Adaptive Server Anywhere,
returns 0

In Adaptive Server Enterprise, number of microseconds per
tick. The amount of time per tick is machine-dependent. In
Adaptive Server Anywhere, returns 0

In Adaptive Server Enterprise, number of errors that have
occurred while Adaptive Server Enterprise was reading or
writing. In Adaptive Server Anywhere, returns 0.

In Adaptive Server Enterprise, number of disk reads by
Adaptive Server Enterprise since it was last started. In
Adaptive Server Anywhere, returns 0

Chapter 6 SQL Language Elements

Global variable

Returns

@@total_write

@@tranchained

@@trancount

@@transtate

@@version

In Adaptive Server Enterprise, number of disk writes by
Adaptive Server Enterprise since it was last started. In
Adaptive Server Anywhere, returns 0

Current transaction mode of the Transact-SQL program.
@@tranchained returns 0 for unchained or 1 for chained

Nesting level of transactions. Each BEGIN
TRANSACTION in a batch increments the transaction count

In Adaptive Server Enterprise, current state of a transaction
after a statement executes. In Adaptive Server Anywhere,
returns —1

Information on the current version of Adaptive Server
Enterprise or Adaptive Server Anywhere

211

SQL comments

SQL comments

Examples

212

Comments are used to attach explanatory text to SQL statements or
statement blocks. The database server does not execute comments.

Several comment indicators are available in Adaptive Server Anywhere.

¢ --(Double hyphen) The database server ignores any remaining
characters on the line. This is the SQL/92 comment indicator.

¢ /I (Double slash) The double slash has the same meaning as the
double hyphen.

¢ [*..*l(Slash-asterisk) Any characters between the two comment
markers are ignored. The two comment markers may be on the same or
different lines. Comments indicated in this style can be nested. This
style of commenting is also called C-style comments.

¢ % (Percent sign) The percent sign has the same meaning as the
double hyphen, if the PERCENT AS COMMENT option is set to ON.
It is recommended that % not be used as a comment indicator.

Transact-SQL compatibility
The double-hyphen and the slash-asterisk comment styles are compatible
with Adaptive Server Enterprise.

¢ The following example illustrates the use of double-dash comments:

CREATE FUNCTION fullname (firstname CHAR(30),
lastname CHAR (30)

RETURNS CHAR (61)

-— fullname concatenates the firstname and lastname

-— arguments with a single space between.

BEGIN
DECLARE name CHAR(61);
SET name = firstname || ' ' || lastname;
RETURN (name);

END

¢ The following example illustrates the use of C-style comments:
/ *

Lists the names and employee IDs of employees
who work in the sales department.

*/

CREATE VIEW SalesEmployee AS

SELECT emp id, emp lname, emp fname

FROM "dba".employee

WHERE dept_id = 200

Chapter 6 SQL Language Elements

NULL value

Function
Syntax
Usage
Permissions
Side effects

See also

Description

To specify a value that is unknown or not applicable.
NULL

Anywhere.

Must be connected to the database.

None.

"Expressions" on page 183
"Search conditions" on page 194

The NULL value is a special value which is different from any valid value
for any data type. However, the NULL value is a legal value in any data
type. The NULL value is used to represent missing or inapplicable
information. Note that these are two separate and distinct cases where NULL
is used:

Situation | Description
missing | The field does have a value, but that value is unknown.
inapplicable | The field does not apply for this particular row.

SQL allows columns to be created with the NOT NULL restriction. This
means that those particular columns cannot contain the NULL value.

The NULL value introduces the concept of three valued logic to SQL. The
NULL value compared using any comparison operator with any value
(including the NULL value) is "UNKNOWN." The only search condition
that returns "TRUE" is the IS NULL predicate. In SQL, rows are selected
only if the search condition in the WHERE clause evaluates to TRUE; rows
that evaluate to UNKNOWN or FALSE are not selected.

The IS [NOT] truth-value clause, where truth-value is one of TRUE,
FALSE or UNKNOWN can be used to select rows where the NULL value is
involved. See "Search conditions" on page 194 for a description of this
clause.

In the following examples, the column Salary contains the NULL value.

213

NULL value

Example

214

Condition Truth value Selected?
Salary = NULL UNKNOWN NO

Salary < NULL UNKNOWN NO

NOT (Salary = NULL) UNKNOWN NO

NOT (Salary <> NULL) | UNKNOWN NO

Salary = 1000 UNKNOWN NO

Salary IS NULL TRUE YES
Salary IS NOT NULL FALSE NO

Salary = 1000 IS TRUE YES
UNKNOWN

The same rules apply when comparing columns from two different tables.
Therefore, joining two tables together will not select rows where any of the
columns compared contain the NULL value.

The NULL value also has an interesting property when used in numeric
expressions. The result of any numeric expression involving the NULL value
is the NULL value. This means that if the NULL value is added to a number,
the result is the NULL value—not a number. If you want the NULL value to
be treated as 0, you must use the ISNULL(expression, 0) function (see
"SQL Functions" on page 267).

Many common errors in formulating SQL queries are caused by the behavior
of NULL. You will have to be careful to avoid these problem areas. See
"Search conditions" on page 194 for a description of the effect of three-
valued logic when combining search conditions.

¢ The following INSERT statement inserts a NULL into the
date_returned column of the Borrowed_book table.

INSERT

INTO Borrowed book

(date borrowed, date returned, book)
VALUES (CURRENT DATE, NULL, '1234'")

Chapter 6 SQL Language Elements

Alphabetical list of keywords

To use a keyword (also called a reserved word) as an identifier, you must
enclose it in double quotes when referencing it in a SQL statement. Many,
but not all, of the words that appear in SQL statements are keywords. For
example, you must use the following syntax to retrieve the contents of a table
named SELECT.

SELECT *
FROM "SELECT"

Because SQL is not case sensitive, each of the following words may appear
in upper case, lower case, or any combination of the two. All strings that

differ only in capitalization from one of the following words, are reserved

words.

If you are using Embedded SQL, you can use the database library function
sql_needs_quotes to determine whether a string requires quotation marks. A
string requires quotes if it is a reserved word or if it contains a character not
ordinarily allowed in an identifier.

List of reserved words

add all alter and
any as asc backup
begin between bigint binary
bit bottom break by

call cascade case cast
char char_convert character check
checkpoint close comment commit
connect constraint continue convert
create Cross current cursor
date dbspace deallocate dec
decimal declare default delete
desc disable distinct do
double drop dynamic else
elseif enable encrypted end
endif escape exception exec
execute existing exists externlogin
fetch first float for

215

Alphabetical list of keywords

216

List of reserved words

foreign
goto
holdlock
index
insert
integer
is

left

long
mode

no

null

on

or

outer
primary
procedure
real
remote
restore
right
schedule
set

some
stop
syntax_error
time

top

tsequal

forward
grant
identified
inner
install
integrated
isolation
like

match
modify
noholdlock
numeric
open

order
passthrough
print
publication
reference
remove
restrict
rollback
scroll
setuser
sqlcode
subtrans
table
timestamp
tran

union

from
group

if

inout
instead
into

join

lock
membership
natural
not

of

option
others
precision
privileges
raiserror
references
rename
return
save
select
share
sqlstate
subtransaction
temporary
tinyint
trigger

unique

full
having

in
insensitive
int

iq

key

login
message
new
notify

off
options
out
prepare
proc
readtext
release
resource
revoke
savepoint
session
smallint
start
synchronize
then

to
truncate

unknown

Chapter 6 SQL Language Elements

List of reserved words

unsigned update
validate values
variable varying
where while
writetext

user
varbinary
view

with

using
varchar
when

work

217

Alphabetical list of keywords

218

