CHAPTER 9

SQL Statements

About this chapter This chapter presents detailed descriptions of the SQL statements that are
available to users of Adaptive Server Anywhere.

This chapter contains an alphabetical listing of SQL statements, including
some that can only be used from Embedded SQL or Interactive SQL.

Contents The chapter includes an alphabetical list of SQL statements.

339

Using the SQL statement reference

Using the SQL statement reference

Syntax conventions

340

This section describes some conventions used in documenting the SQL
statements.

The following conventions are used in the SQL syntax descriptions:

¢

Keywords All SQL keywords are shown in UPPER CASE. However,
SQL keywords are case insensitive, so you can enter keywords in any
case you wish; SELECT is the same as Select, which is the same as
select.

Placeholders Items that must be replaced with appropriate identifiers
or expressions are shown in italics.

Continuation Lines beginning with an ellipsis (...) are a continuation
from the previous line.

Repeating items Lists of repeating items are shown with an element
of the list followed by an ellipsis (three dots). One or more list elements
are allowed. If more than one is specified, they must be separated by
commas.

Optional portions Optional portions of a statement are enclosed by
square brackets. For example, ...

RELEASE SAVEPOINT [savepoint-name]

... indicates that the savepoint-name is optional. The square brackets
should not be typed.

Options When none or only one of a list of items must be chosen, the
items are separated by vertical bars and the list enclosed in square
brackets.

For example, ...
[ASC | DESC]

... indicates that you can choose one of ASC, DESC, or neither. The
square brackets should not be typed.

Alternatives When precisely one of the options must be chosen, the
alternatives are enclosed in curly braces. For example ...

[QUOTES { ON | OFF }]

... indicates that if the QUOTES option is chosen, one of ON or OFF
must be provided. The braces should not be typed.

Chapter 9 SQL Statements

¢

One or more options If you choose more than one, separate your
choices with commas. For example

{ CONNECT, DBA, RESOURCE }

Statement applicability indicators

Some statement titles are followed by an indicator in square brackets that
indicate where the statement can be used. These indicators are as follows:

¢

¢
¢
¢

[ESQL] The statement is for use in Embedded SQL.
[ISQL] The statement can be used only in Interactive SQL.
[SP] The statement is for use in stored procedures, triggers, or batches.

[TSQL] The statement is implemented for compatibility with Adaptive
Server Enterprise. In some cases, the statement cannot be used in stored
procedures that are not in Transact-SQL format. In other cases, there an
alternative statement closer to the SQL/92 standard is recommended
unless Transact-SQL compatibility is an issue.

If two sets of brackets are used, the statement can be used in both
environments. For example, [ESQL][SP] means a statement can be used
either in Embedded SQL or in stored procedures.

341

ALLOCATE DESCRIPTOR statement [ESQL]

ALLOCATE DESCRIPTOR statement [ESQL]

Function To allocate space for a SQL descriptor area (SQLDA).
Syntax ALLOCATE DESCRIPTOR descriptor-name
... [WITH MAX { integer | hostvar}]
Permissions None.
Side effects None.
See also "DEALLOCATE DESCRIPTOR statement" on page 433

"The SQL descriptor area (SQLDA)" on page 45 of the book Adaptive Server
Anywhere Programming Interfaces Guide

Description Allocates space for a descriptor area (SQLDA). You must declare the
following in your C code prior to using this statement:

struct sglda * descriptor name

The WITH MAX clause allows you to specify the number of variables
within the descriptor area. The default size is one.

You must still call fill_sqlda to allocate space for the actual data items
before doing a fetch or any statement that accesses the data within a
descriptor area.

Standards and ¢ SQL/92 Entry-level feature.

compatibilit
P y ¢ Sybase Supported by Open Client/Open Server.

Example The following sample program includes an example of ALLOCATE
DESCRIPTOR statement usage.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
EXEC SQL INCLUDE SQLCA;
#include <sqgldef.h>

EXEC SQL BEGIN DECLARE SECTION;

int X;

short type;

int numcols;

char string[100];

a sql statement number stmt = 0;
EXEC SQL END DECLARE SECTION;

int main(int argc, char * argvl])

{

342

Chapter 9 SQL Statements

struct sglda * sgldal;

if (!db _init(&sqglca)) {
return 1;
}
db string connect(&sqglca,
"UID=dba;PWD=sqgl; DBF=d: \\asa6\\sample.db") ;

EXEC SQL ALLOCATE DESCRIPTOR sgldal WITH MAX 25;

EXEC SQL PREPARE :stmt FROM 'select * from employee';
EXEC SQL DECLARE curs CURSOR FOR :stmt;
EXEC SQL OPEN curs;

EXEC SQL DESCRIBE :stmt into sqgldal;
EXEC SQL GET DESCRIPTOR sgldal :numcols=COUNT;
// how many columns?
if (numcols > 25) {
// reallocate if necessary
EXEC SQL DEALLOCATE DESCRIPTOR sqgldal;
EXEC SQL ALLOCATE DESCRIPTOR sqgldal
WITH MAX :numcols;
}

type = DT STRING; // change the type to string
EXEC SQL SET DESCRIPTOR sqgldal VALUE 2 TYPE = :type;
fill sqglda(sgldal); // now we allocate space for

the variables

EXEC SQL FETCH ABSOLUTE 1 curs USING DESCRIPTOR
sgldal;

EXEC SQL GET DESCRIPTOR sgldal VALUE 2 :string =
DATA;

printf ("name = %s", string);

EXEC SQL DEALLOCATE DESCRIPTOR sqgldal;

EXEC SQL CLOSE curs;

EXEC SQL DROP STATEMENT :stmt;

db string disconnect(&sqglca, "");
db fini(&sqglca);

return 0;

343

ALTER DATABASE statement

ALTER DATABASE statement

Function To upgrade a database created with previous versions of the software.

Syntax ALTER DATABASE UPGRADE
... [JAVA{ON | OFF}]
... [JCONNECT{ON | OFF}]

Permissions Must have DBA authority.
Not supported on Windows CE.
Side effects Automatic commit

See also "CREATE DATABASE statement" on page 385
"The Upgrade utility" on page 116

Description You can use the ALTER DATABASE statement as an alternative to the
Upgrade utility to upgrade a database.

The JAVA clause adds the entries for the Sybase runtime Java classes to the
system tables (JAVA ON) or does not (JAVA OFF). By default, the classes
are added during the upgrade.

If you wish to use the Sybase jConnect JDBC driver to access system catalog
information, you need to install jConnect support. If you wish to exclude the
jConnect system objects, specify JCONNECT OFF. You can still use JDBC,
as long as you do not access system information. The default is to include
jConnect support.

Do not use with Version 6 databases

You cannot use ALTER DATABASE against a Version 6 database to add
Java or jConnect features. In order to add these features to a Version 6
database, you must run a script using Interactive SQL.

& For information on adding Java support, see "Java-enabling a Version 6
database" on page 472 of the book Adaptive Server Anywhere User's Guide.
For information on adding jConnect support, see "Installing jConnect system
objects into a database" on page 524 of the book Adaptive Server Anywhere
User's Guide.

Standards and ¢ SQL/92 Vendor extension

compatibilit
P y ¢ Sybase Not supported by Adaptive Server Enterprise.

Example ¢ Upgrade a Version 5 database to enable Java operations:

ALTER DATABASE UPGRADE
JAVA ON

344

Chapter 9 SQL Statements

ALTER DBSPACE statement

Function

Syntax

Permissions
Side effects
See also

Description

To modify the characteristics of the main database file or an extra dbspace.
To preallocate space for a database or for the transaction log.

ALTER DBSPACE { dbspace-name | TRANSLOG }

-ADD number
| RENAME filename

Must have DBA authority. Must be the only connection to the database.
Automatic commit.
"CREATE DBSPACE statement" on page 389

Each database is held in one or more files. A dbspace is an internal name
that is associated with each database file. ALTER DBSPACE modifies the
main database file (also called the root file) or an extra dbspace. The dbspace
names for a database are held in the SYSFILE system table. The default
dbspace name for the root file of a database is SYSTEM.

An ALTER DBSPACE with the ADD clause is used to preallocate disk
space to a dbspace. It extends the size of a dbspace by the number of pages
given by number. The page size of a database is defined when the database is
created.

The ALTER DBSPACE statement with the ADD clause allows database
files to be extended in large amounts before the space is required, rather than
the normal 32 pages at a time when the space is needed. This can improve
performance for loading large amounts of data and also serves to keep the
dbspace files more contiguous within the file system.

The ALTER DBSPACE statement with the special dbspace name
TRANSLOG preallocates disk space for the transaction log. Preallocation
improves performance if the transaction log is expected to grow quickly.
You may want to use this feature if, for example, you are handling many
binary large objects (blobs), such as bitmaps.

The preallocation is carried out by altering the special dbspace name
TRANSLOG, as follows:

ALTER DBSPACE TRANSLOG ADD number
This extends the size of the transaction log by the number of pages specified.

If you move a database file other than the root file to a different filename,
directory, or device, use the ALTER DBSPACE statement with RENAME to
ensure that Adaptive Server Anywhere can find the file when the database is
started.

345

ALTER DBSPACE statement

Standards and
compatibility

Examples

346

When a multi-file database is started, the start line or ODBC data source
description tells Adaptive Server Anywhere where to find the root database
file. The root database file (which has the default dbspace name SYSTEM)
holds the system tables. Adaptive Server Anywhere looks in these system
tables to find the location of the other dbspaces, and Adaptive Server
Anywhere then opens each of the other dbspaces.

Using ALTER DBSPACE with RENAME on a root file has no effect.
¢ SQL/92 Vendor extension

¢ Sybase Not supported by Adaptive Server Enterprise.

¢ Increase the size of the SYSTEM dbspace by 200 pages.

ALTER DBSPACE system
ADD 200

¢ Rename the file for dbspace SYSTEM_2 to dbspace2.

ALTER DBSPACE System72
RENAME 'e:\db\dbspace2.db'

Chapter 9 SQL Statements

ALTER PROCEDURE statement

Function To replace a procedure with a modified version. You must include the entire
new procedure in the ALTER PROCEDURE statement, and reassign user
permissions on the procedure.

Also, to enable and disable a procedure for replication with Sybase
Replication Server.

Syntax 1 ALTER PROCEDURE [owner.]Jprocedure-name ([parameter, ...])
[RESULT (result-column , ...)]
[ON EXCEPTION RESUME]
compound-statement

Syntax 2 ALTER PROCEDURE [owner.]Jprocedure-name
... REPLICATE { ON | OFF }

Parameters parameter:
parameter_mode parameter-name data-type
[DEFAULT expression] | SQLCODE | SQLSTATE

parameter_mode:
IN | OUT | INOUT

result-column:
column-name data-type

Permissions Must be the owner of the procedure or be DBA.

Side effects Automatic commit.

See also "CREATE PROCEDURE statement" on page 403

Description Syntax 1 The ALTER PROCEDURE statement is identical in syntax to

the CREATE PROCEDURE statement except for the first word. The
ALTER PROCEDURE statement replaces the entire contents of the
CREATE PROCEDURE statement with the contents of the ALTER
PROCEDURE statement. Existing permissions on the procedure are
maintained, and do not have to be reassigned. If a DROP PROCEDURE and
CREATE PROCEDURE were carried out, execute permissions would have
to be reassigned.

Syntax 2 If a procedure is to be replicated to other sites, you must set
REPLICATE ON for the procedure.

Syntax 2 of the ALTER PROCEDURE statement has the same effect as the
sp_setreplicate or sp_setrepproc 'table' Adaptive Server Enterprise system
procedures.

You cannot combine Syntax 2 with Syntax 1.

347

ALTER PROCEDURE statement

Standards and ¢ SQL/92 Vendor extension
compatibility . .
¢ Sybase Not supported by Adaptive Server Enterprise.

348

Chapter 9 SQL Statements

ALTER SERVER statement

Function

Syntax

Parameters

Permissions

Side effects

See also

Description

To modify the attributes of a remote server.

ALTER SERVER server-name
[CLASS 'server-class']
[USING 'connection-info']
[CAPABILITY 'cap-name' { ON | OFF }]

server-class:
{ ASAJDBC
| ASEJDBC
| ASAODBC
| ASEODBC
| DB20ODBC
| MSSODBC
| ORAODBC
| ODBC }

connection-info:
{ machine-name:port-number | data-source-name }

cap-name:
Must have RESOURCE authority.
Supported on Windows 95 and Windows NT only.

Automatic commit.

"CREATE SERVER statement" on page 413

"Server Classes for Remote Data Access" on page 761 of the book Adaptive
Server Anywhere User's Guide

"Troubleshooting remote data access" on page 759 of the book Adaptive
Server Anywhere User's Guide

The ALTER SERVER statement modifies the attributes of a server. These
changes do not take effect until the next connection to the remote server.

CLASS clause The CLASS clause is specified to change the server's
class.

USING clause The USING clause is specified to change the server's
connection information.

349

ALTER SERVER statement

CAPABILITY clause The CAPABILITY clause turns a server capability
ON or OFF. Server capabilities are stored in the system table syscapability.
The names of these capabilities are stored in the system table
syscapabilityname. The syscapability table contains no entries for a remote
server until the first connection is made to that server. At the first connection,
Adaptive Server Anywhere interrogates the server about its capabilities and
then populates the syscapability table. For subsequent connections, the
server's capabilities are obtained from this table.

In general, you do not need to alter a server's capabilities. It may be
necessary to alter capabilities of a generic server of class ODBC.

Standards and ¢ SQL/92 Entry-level feature.
compatibility .
¢ Sybase Supported by Open Client/Open Server.
Examples ¢ Change the server class of the Adaptive Server named ase _prod so its
connection to Adaptive Server Anywhere is ODBC-based. Its Data
Source Name is ase_prod.

ALTER SERVER ase prod
CLASS 'aseodbc'
USING 'ase prod'

¢ Change the capability of server infodc:

ALTER SERVER infodc
CAPABILITY 'insert select' OFF

350

Chapter 9 SQL Statements

ALTER TABLE statement

Function

Syntax 1

Syntax 2

Parameters

To modify a table definition.
Also, to enable a table to take part in a Replication Server replication.

ALTER TABLE [owner.Jtable-name

ADD column-definition [column-constraint ...]

| ADD table-constraint

| MODIFY column-definition

| MODIFY column-name DEFAULT default-value
| MODIFY column-name [NOT] NULL

| MODIFY column-name CHECK NULL

| MODIFY column-name CHECK (condition)

| { DELETE | DROP } column-name

| { DELETE | DROP } CHECK

| { DELETE | DROP } UNIQUE (column-name, ...)
| { DELETE | DROP } PRIMARY KEY

| { DELETE | DROP } FOREIGN KEY role-name
| RENAME new-table-name

| RENAME column-name TO new-column-name

ALTER TABLE [owner.Jtable-name
... REPLICATE { ON | OFF }

column-definition:
column-name data-type [NOT NULL] [DEFAULT default-value]

column-constraint:
UNIQUE
| PRIMARY KEY
| REFERENCES table-name [(column-name)][actions]
| CHECK (condition)
| COMPUTE (expression)

default-value:
string
| global variable
| number
| AUTOINCREMENT
| CURRENT DATE
| CURRENT TIME
| CURRENT TIMESTAMP
| NULL
| USER

table-constraint.
UNIQUE (column-name, ...)
| PRIMARY KEY (column-name, ...)
| CHECK (condition)
| foreign-key-constraint

351

ALTER TABLE statement

Permissions

Side effects

See also

Description

352

foreign-key-constraint:
[NOT NULL] FOREIGN KEY [role-name] [(column-name, ...)]
... REFERENCES table-name [(column-name, ...)]
... [actions] [CHECK ON COMMIT]

actions:
[ON UPDATE action] [ON DELETE action]

action:
CASCADE
| SET NULL
| SET DEFAULT
| RESTRICT

Must be one of the following;:

¢ The owner of the table

¢ A user with DBA authority.

¢ A user granted ALTER permission on the table.
ALTER TABLE requires exclusive access to the table.

Global temporary tables cannot be altered unless all users that have
referenced the temporary table have disconnected.

Automatic commit.

The MODIFY and DELETE (DROP) options close all cursors for the current
connection.

"CREATE TABLE statement" on page 415
"DROP statement" on page 451
"SQL Data Types" on page 219

Syntax 2 When a table has REPLICATE ON, all changes to the table are
sent to Replication Server for replication. The replication definitions in
Replication Server are used to decide which table changes are sent to other
sites. The remainder of this section describes syntax 1.

Syntax1 The ALTER TABLE statement changes table attributes (column
definitions, constraints) in a table that was previously created. Note that the
syntax allows a list of alter clauses; however, only one table-constraint or
column-constraint can be added, modified or deleted in one ALTER TABLE
statement.

You cannot use ALTER TABLE on a local temporary table.

ALTER TABLE is prevented whenever the statement affects a table that is
currently being used by another connection. ALTER TABLE can be time-
consuming, and the server will not process requests referencing the table
while the statement is being processed.

Chapter 9 SQL Statements

Before version 5.0, all table and column constraints were held in a single
table constraint. Consequently, for these databases individual constraints on
columns cannot be deleted using the MODIFY column-name CHECK NULL
clause or replaced using the MODIFY column-name CHECK (condition)
clause. To use these statements, the entire table constraint should be deleted
and the constraints added back using the MODIFY column-name CHECK (
condition) clause. At this point you can use MODIFY CHECK.

ADD column-definition Add a new column to the table. The table must
be empty to specify NOT NULL.

NULL values

Adaptive Server Anywhere optimizes the creation of columns which are
allowed to contain NULL. The first column allowed to contain NULL
allocates room for eight such columns, and initializes all eight to be
NULL. (This requires no extra storage.) Thus, the next seven columns
added require no changes to the rows of the table.

Adding a ninth column then allocates room for another eight such
columns and modifies each row of the table to allocate the extra space.
Consequently, seven out of eight column additions run quickly.

ADD table-constraint Add a constraint to the table. See "CREATE
TABLE statement" on page 415 for a full explanation of table constraints.

If PRIMARY KEY is specified, the table must not already have a primary
key that was created by the CREATE TABLE statement or another ALTER
TABLE statement.

MODIFY column-definition Change the length or data type of an existing
column in a table. If NOT NULL is specified, a NOT NULL constraint is
added to the named column. Otherwise, the NOT NULL constraint for the
column will not be changed. If necessary, the data in the modified column
will be converted to the new data type. If a conversion error occurs, the
operation will fail and the table will be left unchanged.

You cannot modify a column to make it a computed column. Computed
columns can only be added or dropped.

353

ALTER TABLE statement

Deleting an index, constraint, or key

If the column is contained in a uniqueness constraint, a foreign key, or a
primary key, then the constraint or key must be deleted before the column
can be modified. If a primary key is deleted, all foreign keys referencing
the table will also be deleted.

You cannot MODIFY a table or column constraint. To change a
constraint, you must DELETE the old constraint and ADD the new
constraint.

MODIFY column-name DEFAULT default-value Change the default
value of an existing column in a table. To remove a default value for a
column, specify DEFAULT NULL.

MODIFY column-name [NOT] NULL Change the NOT NULL
constraint on the column to allow or disallow NULL values in the column.

MODIFY column-name CHECK NULL Delete the check constraint for
the column. This statement cannot be used on databases created before
version 5.0.

MODIFY column-name CHECK (condition) Replace the existing
CHECK condition for the column with the one specified. This statement
cannot be used on databases created before version 5.0.

DELETE column-name Delete the column from the table. If the column
is contained in any index, uniqueness constraint, foreign key, or primary key
then the index, constraint or key must be deleted before the column can be
deleted. This does not delete CHECK constraints that refer to the column.

DELETE CHECK Delete all check constraints for the table. This includes
both table check constraints and column check constraints.

DELETE UNIQUE (column-name,...) Delete a uniqueness constraint for
this table. Any foreign keys referencing this uniqueness constraint (rather
than the primary key) will also be deleted.

DELETE PRIMARY KEY Delete the primary key constraint for this table.
All foreign keys referencing the primary key for this table will also be
deleted.

DELETE FOREIGN KEY role-name Delete the foreign key constraint for
this table with the given role name.

354

Chapter 9 SQL Statements

Standards and
compatibility

Examples

RENAME new-table-name Change the name of the table to the new-
table-name. Note that any applications using the old table name will need to
be modified. Also, any foreign keys which were automatically assigned the
same name as the old table name will not change names.

RENAME column-name TO new-column-name Change the name of
the column to the new-column-name. Note that any applications using the old
column name will need to be modified.

¢ SQL/92 Intermediate level feature.

¢ Sybase Supported by Adaptive Server Enterprise.

¢ Add anew column to the employees table showing which office they
work in.

ALTER TABLE employee
ADD office CHAR (20) DEFAULT 'Boston'

¢ Drop the office column from the employees table.

ALTER TABLE employee
DELETE office

¢ The address column in the customer table can currently hold up to 35
characters. Allow it to hold up to 50 characters.

ALTER TABLE customer
MODIFY address CHAR (50)

¢ Add a column to the customer table assigning each customer a sales
contact.

ALTER TABLE customer

ADD sales contact INTEGER
REFERENCES employee (emp id)
ON UPDATE CASCADE

ON DELETE SET NULL

This foreign key is constructed with a cascading updates and is set null
on deletes. If an employee has their employee ID changed, the column is
updated to reflect this change. If an employee leaves the company and
has their employee ID deleted, the column is set to NULL.

355

ALTER TRIGGER statement

ALTER TRIGGER statement

Function

Syntax

Parameters

Permissions

Side effects

See also

Description

Standards and
compatibility

356

To replace a trigger definition with a modified version.

You must include the entire new trigger definition in the ALTER TRIGGER
statement.

ALTER TRIGGER trigger-name trigger-time trigger-event [, trigger-event,..]
... | ORDER integer] ON table-name
... [REFERENCING [OLD AS old-name]
[NEW AS new-name]
[REMOTE AS remote-name]]
...[FOR EACH { ROW | STATEMENT }]
... [WHEN (search-condition)]
... [IF UPDATE (column-name) THEN
..[{ AND | OR } UPDATE (column-name)] ...]
... compound-statement
... [ELSEIF UPDATE (column-name) THEN
..[{ AND | OR } UPDATE (column-name)] ...
... compound-statement
... ENDIF]]

trigger-time:
BEFORE | AFTER | RESOLVE

trigger-event:
DELETE | INSERT | UPDATE | UPDATE OF column-list

Must be the owner of the table on which the trigger is defined, or be DBA, or
have ALTER permissions on the table.

Automatic commit.

"CREATE TRIGGER statement" on page 424
"DROP statement" on page 451

The ALTER TRIGGER statement is identical in syntax to the CREATE
TRIGGER statement except for the first word. The ALTER TRIGGER
statement replaces the entire contents of the CREATE TRIGGER statement
with the contents of the ALTER TRIGGER statement.

¢ SQL/92 Vendor extension

¢ Sybase Not supported by Adaptive Server Enterprise.

Chapter 9 SQL Statements

ALTER VIEW statement

Function

Syntax

Permissions
Side effects

See also

Description

Standards and
compatibility

To replace a view definition with a modified version. You must include the
entire new view definition in the ALTER VIEW statement, and reassign
permissions on the view

ALTER VIEW
... [owner.lview-name [(column-name, ...)]
... AS select-without-order-by
... [WITH CHECK OPTION]

Must be owner of the view or have DBA authority.
Automatic commit.

"CREATE VIEW statement" on page 430
"DROP statement" on page 451

The ALTER VIEW statement is identical in syntax to the CREATE VIEW
statement except for the first word. The ALTER VIEW statement replaces
the entire contents of the CREATE VIEW statement with the contents of the
ALTER VIEW statement. Existing permissions on the view are maintained,
and do not have to be reassigned. If a DROP VIEW and CREATE VIEW
were carried out, permissions on the view would have to be reassigned.

¢ SQL/92 Vendor extension

¢ Sybase Not supported by Adaptive Server Enterprise.

357

ALTER WRITEFILE statement

ALTER WRITEFILE statement

Function

Syntax

Permissions

Side effects

See also

Description

Standards and
compatibility

Example

358

To modify the configuration of a write file.

ALTER WRITEFILE write-file-name
... REFERENCES db-file-name

Must have DBA authority.
Not supported on Windows CE.

Automatic commit.

"CREATE WRITEFILE statement" on page 432

"The Write File utility" on page 121

"Working with write files" on page 618 of the book Adaptive Server
Anywhere User's Guide

The ALTER WRITEFILE statement changes the read-only database file to
which the file refers. If you move the database file from one directory to
another, you can use this statement to point the write file to the new location.

The path name of the database file is relative to the database server.
¢ SQL/92 Vendor extension

¢ Sybase Not supported by Adaptive Server Enterprise.
¢ The following statement changes the existing write file c:\readwrite.wrt
to point to the database file 4:\readonly.db.

ALTER WRITEFILE 'c:\\readwrite.wrt'
REFERENCES 'h:\\readonly.db'

Chapter 9 SQL Statements

BACKUP statement

Function

Syntax 1 (image
backup)

Syntax 2 (archive
backup)

Parameters

Permissions
Side effects
See also

Description

To back up a database and transaction log.

BACKUP DATABASE
DIRECTORY backup_directory
[DBFILE ONLY]
[TRANSACTION LOG ONLY]
[TRANSACTION LOG RENAME]
[TRANSACTION LOG TRUNCATE]

BACKUP DATABASE TO archive_root
[CRC { ON|OFF }]
[ATTENDED { ON | OFF }]
[WITH COMMENT comment string]

archive_root: string

nnnn: integer

comment-string: string

Must have DBA authority.

None.

"RESTORE statement" on page 532

Image backup (syntax 1) creates copies of each of the database files, in the
same way that the dbbackup utility does. In the case of the SQL statement,
however, the backup is made on the server, while the Backup utility makes
the backup from a client machine.

Optionally, only the database file(s) or transaction log can be saved. The log
may also be renamed or truncated after the backup has completed.

To restore from an image backup, copy the saved files back to their original
locations and reapply transaction logs as described in "Backing up your
database" on page 565 of the book Adaptive Server Anywhere User's Guide.

You can use archive backup to create a single file that hold all the required
backup information. The destination can be either a file name or a tape drive.

Each BACKUP operation, whether image or archive, updates a history file
called backup.syb. This file is stored in the same directory as the database
server executable.

backup_directory The target location on disk for those files, relative to
the server's current directory at startup. If the directory does not already
exist, it is created.

359

BACKUP statement

Archive backup (syntax 2) creates an archive of the database on disk or tape
containing all the database files. Archive backups are only supported on NT
and Unix platforms.

To restore a database from an archive backup, use the RESTORE statement.

archive_root The file name or tape drive for the archive file. The archive
format saves all the backup data inside a single file.

To back up to tape, you must specify the device name of the tape drive. For
example, on NT the first tape drive is:
\\.\tapeO

The '\' is an escape character in SQL strings, so each backslash must be
doubled.

Example ¢ Back up the current database and the transaction log to a file, truncating
and renaming the existing transaction log.

BACKUP DATABASE
DIRECTORY 'd:\\temp\\backup'
TRANSACTION LOG RENAME

The option to rename the transaction log is useful especially in
replication environments, where the old transaction log is still required.

360

Chapter 9 SQL Statements

BEGIN... END statement

Function Groups SQL statements together.

Syntax [statement-label :]
... BEGIN[[NOT] ATOMIC]
[local-declaration ; ...]
statement-list
[EXCEPTION [exception-case ...]1]
... END [statement-label]

Parameters local-declaration:
variable-declaration
| cursor-declaration
| exception-declaration
| temporary-table-declaration

variable-declaration:
DECLARE variable-name data-type

exception-declaration:
DECLARE exception-name EXCEPTION
FOR SQLSTATE [VALUE] string

exception-case:
WHEN exception-name [,...] THEN statement-list
| WHEN OTHERS THEN statement-list

Permissions None.
Side effects None.
See also "DECLARE CURSOR statement" on page 436

"DECLARE LOCAL TEMPORARY TABLE statement" on page 441

"LEAVE statement" on page 502

"SIGNAL statement" on page 560

"RESIGNAL statement" on page 531

"Using Procedures, Triggers, and Batches" on page 221 of the book Adaptive
Server Anywhere User's Guide

Description The body of a procedure or trigger is a compound statement. Compound
statements can also be used in control statements within a procedure or
trigger.

361

BEGIN... END statement

Standards and
compatibility

Example

362

A compound statement allows one or more SQL statements to be grouped
together and treated as a unit. A compound statement starts with the keyword
BEGIN and ends with the keyword END. Immediately following the
BEGIN, a compound statement can have local declarations that only exist
within the compound statement. A compound statement can have a local
declaration for a variable, a cursor, a temporary table, or an exception. Local
declarations can be referenced by any statement in that compound statement,
or in any compound statement nested within it. Local declarations are not
visible to other procedures that are called from within a compound statement.

If the ending statement-label is specified, it must match the beginning
statement-label. The LEAVE statement can be used to resume execution at
the first statement after the compound statement. The compound statement
that is the body of a procedure or trigger has an implicit label that is the same
as the name of the procedure or trigger.

& For a complete description of compound statements and exception
handling, see "Using Procedures, Triggers, and Batches" on page 221 of the
book Adaptive Server Anywhere User's Guide.

¢ SQL/92 Persistent Stored Module feature.

¢ Sybase Supported by Adaptive Server Enterprise. This does not mean
that all statements inside a compound statement are supported.

The BEGIN and END keywords are not required in Transact-SQL.

BEGIN and END are used in Transact-SQL to group a set of statements
into a single compound statement, so that control statements such as IF

... ELSE , which only affect the performance of a single SQL statement,
can affect the performance of the whole group. The ATOMIC keyword
is not supported by Adaptive Server Enterprise.

In Transact-SQL. DECLARE statements need not immediately follow a
BEGIN keyword, and the cursor or variable that is declared exists for
the duration of the compound statement. You should declare variables at
the beginning of the compound statement for compatibility.

¢ The body of a procedure or trigger is a compound statement.

CREATE PROCEDURE TopCustomer (OUT TopCompany
CHAR (35), OUT TopValue INT)
BEGIN
DECLARE err notfound EXCEPTION FOR
SQLSTATE '02000" ;
DECLARE curThisCust CURSOR FOR
SELECT company name, CAST (
sum(sales order items.quantity *
product.unit price) AS INTEGER) VALUE
FROM customer
LEFT OUTER JOIN sales order

Chapter 9 SQL Statements

LEFT OUTER JOIN sales order items
LEFT OUTER JOIN product
GROUP BY company name ;
DECLARE ThisValue INT ;
DECLARE ThisCompany CHAR (35) ;
SET TopValue = 0 ;
OPEN curThisCust ;

CustomerLoop:
LOOP
FETCH NEXT curThisCust
INTO ThisCompany, ThisValue ;
IF SQLSTATE = err notfound THEN
LEAVE CustomerLoop ;
END IF ;
IF ThisValue > TopValue THEN
SET TopValue = ThisValue ;
SET TopCompany = ThisCompany ;
END IF ;
END LOOP CustomerLoop ;

CLOSE curThisCust ;
END

363

BEGIN TRANSACTION statement

BEGIN TRANSACTION statement

Function
Syntax
Permissions
Side effects

See also

Description

Chained and
unchained modes

364

To begin a user-defined transaction.

BEGIN TRAN[SACTION] [fransaction-name]
None.

None.

"COMMIT TRANSACTION statement" on page 379
"SAVEPOINT statement" on page 541

The optional parameter transaction-name is the name assigned to this
transaction. It must be a valid identifier. Use transaction names only on the
outermost pair of nested BEGIN/COMMIT or BEGIN/ROLLBACK
statements.

When executed inside a transaction, the BEGIN TRANSACTION statement
increases the nesting level of transactions by one. The nesting level is
decreased by a COMMIT statement. When transactions are nested, only the
outermost COMMIT makes the changes to the database permanent.

Both Adaptive Server Enterprise and Adaptive Server Anywhere have two
transaction modes:

The default Adaptive Server Enterprise transaction mode, called unchained
mode, commits each statement individually, unless an explicit BEGIN
TRANSACTION statement is executed to start a transaction. In contrast, the
ISO SQL/92 compatible chained mode only commits a transaction when an
explicit COMMIT is executed or when a statement that carries out an
autocommit (such as data definition statements) is executed.

You can control the mode by setting the CHAINED database option. The
default setting for ODBC and Embedded SQL connection in Adaptive Server
Anywhere is ON, in which case Adaptive Server Anywhere runs in chained
mode. The default for TDS connections is OFF.

In unchained mode, a transaction is implicitly started before any data
retrieval or modification statement. These statements include: DELETE,
INSERT, OPEN, FETCH, SELECT, and UPDATE. You must still explicitly
end the transaction with a COMMIT or ROLLBACK statement.

You cannot alter the CHAINED option within a transaction.

Caution
When calling a stored procedure, you should ensure that it operates
correctly under the required transaction mode.

Chapter 9 SQL Statements

Standards and
compatibility

Example

@@trancount in
Adaptive Server
Enterprise and
Adaptive Server
Anywhere

& For more information about the CHAINED option and the chained
mode, see "CHAINED option" on page 146.

The current nesting level is held in the global variable @@trancount. The
@@trancount variable has a value of zero before the first BEGIN
TRANSACTION statement is executed, and only a COMMIT executed
when @@trancount is equal to one makes changes to the database
permanent.

A ROLLBACK statement without a transaction or savepoint name always
rolls back statements to the outermost BEGIN TRANSACTION (explicit or
implicit) statement, and cancels the entire transaction.

¢ SQL/92 Vendor extension
¢ Sybase Supported by Adaptive Server Enterprise.
¢ The following batch reports successive values of @@trancount as 0, 1,
2, 1, 0. The values are printed on the server window.
PRINT @Q@trancount
BEGIN TRANSACTION
PRINT @@trancount
BEGIN TRANSACTION
PRINT @@trancount
COMMIT
PRINT @Q@trancount
COMMIT

PRINT @@trancount

You should not rely on the value of@@trancount for more than keeping
track of the number of explicit BEGIN TRANSACTION statements that
have been issued.

When Adaptive Server Enterprise starts a transaction implicitly, the
@@trancount variable is set to 1. Adaptive Server Anywhere does not set the
@@trancount value to 1 when a transaction is started implicitly.
Consequently, the Adaptive Server Anywhere @@trancount variable has a
value of zero before any BEGIN TRANSACTION statement (even though
there is a current transaction), while in Adaptive Server Enterprise (in
chained mode) it has a value of 1.

365

BEGIN TRANSACTION statement

366

For transactions starting with a BEGIN TRANSACTION statement,
@@trancount has a value of 1 in both Adaptive Server Anywhere and
Adaptive Server Enterprise after the first BEGIN TRANSACTION
statement. If a transaction is implicitly started with a different statement, and
a BEGIN TRANSACTION statement is then executed, @@trancount has a
value of 1 in Adaptive Server Anywhere, and a value of 2 in Adaptive Server
Enterprise after the BEGIN TRANSACTION statement.

Chapter 9 SQL Statements

CALL statement

Function

Syntax

Permissions

Side effects

See also

Description

Standards and
compatibility

Examples

To invoke a procedure.
[variable =1 CALL procedure-name ([expression ,...])

[variable = 1 CALL procedure-name ([parameter-name = expression ,...])

Must be the owner of the procedure, have EXECUTE permission for the
procedure, or have DBA authority.

None.

"CREATE PROCEDURE statement" on page 403

"GRANT statement" on page 484

"EXECUTE statement" on page 462

"Using Procedures, Triggers, and Batches" on page 221 of the book Adaptive
Server Anywhere User's Guide

The CALL statement invokes a procedure that has been previously created
with a CREATE PROCEDURE statement. When the procedure completes,
any INOUT or OUT parameter values will be copied back.

The argument list can be specified by position or by using keyword format.
By position, the arguments will match up with the corresponding parameter
in the parameter list for the procedure. By keyword, the arguments are
matched up with the named parameters.

All arguments are optional: procedure arguments can be assigned default
values in the CREATE PROCEDURE statement, and missing parameters are
assigned the default value or, if no default is set, NULL.

Inside a procedure, a CALL statement can be used in a DECLARE statement
when the procedure returns result sets (see "Returning results from
procedures" on page 246 of the book Adaptive Server Anywhere User's
Guide).

Procedures can return a value (as a status indicator, say) using the RETURN
statement. You can save this return value in a variable using the equality sign
as an assignment operator:

CREATE VARIABLE returnval INT ;
returnval = CALL proc_integer (argl = vall, ...)

¢ SQL/92 Persistent Stored Module feature.

¢ Sybase Not supported by Adaptive Server Enterprise. For an
alternative that is supported, see "EXECUTE statement" on page 462.

¢ Call the sp_customer _list procedure. This procedure has no parameters,
and returns a result set.

367

CALL statement

CALL sp_customer list()

¢ The following Interactive SQL example creates a procedure to return the
number of orders placed by the customer whose ID is supplied, creates a
variable to hold the result, calls the procedure, and displays the result.

-— Set the statement delimiter to create the
procedure

SET OPTION COMMAND_DELIMITER = ';;"!

—— Create the procedure

CREATE PROCEDURE OrderCount (IN customer ID INT, OUT
Orders INT)

BEGIN

SELECT COUNT("DBA".salesiorder.id)

INTO Orders

FROM "DBA".customer

KEY LEFT OUTER JOIN "DBA".sales order

WHERE "DBA".customer.id = customer ID ;

END ;;

-- Reset the statement delimiter to semicolon.
SET OPTION COMMAND_DELIMITER = ';"'

-- Create a variable to hold the result
CREATE VARIABLE Orders INT ;

-— Call the procedure, FOR customer 101

CALL OrderCount (101, Orders) ;

-— Display the result
SELECT Orders FROM DUMMY ;

368

Chapter 9 SQL Statements

CASE statement

Function Select execution path based on multiple cases.

Syntax CASE value-expression
... WHEN [constant | NULL] THEN statement-list ...
... [WHEN [constant | NULL] THEN statement-list] ...
... ELSE statement-list

... END CASE
Permissions None.
Side effects None.
See also "BEGIN... END statement" on page 361

"Using Procedures, Triggers, and Batches" on page 221 of the book Adaptive
Server Anywhere User's Guide

Description The CASE statement is a control statement that allows you to choose a list of
SQL statements to execute based on the value of an expression. If a WHEN
clause exists for the value of value-expression, the statement-list in the
WHEN clause is executed. If no appropriate WHEN clause exists, and an
ELSE clause exists, the statement-list in the ELSE clause is executed.
Execution resumes at the first statement after the END CASE.

Standards and ¢ SQL/92 Persistent Stored Module feature.

compatibility . .
¢ Sybase Not supported by Adaptive Server Enterprise.

Example The following procedure using a case statement classifies the products listed
in the product table of the sample database into one of shirt, hat, shorts, or
unknown.

The following procedure uses a case statement to classify the results of a
query.

CREATE PROCEDURE ProductType (IN product id INT, OUT
type CHAR(10))
BEGIN
DECLARE prod name CHAR(20) ;
SELECT name INTO prod name FROM "DBA"."product"
WHERE id = product id;
CASE prod name
WHEN 'Tee Shirt' THEN
SET type = 'Shirt'
WHEN 'Sweatshirt' THEN
SET type = 'Shirt'
WHEN 'Baseball Cap' THEN
SET type = 'Hat'
WHEN 'Visor' THEN
SET type = 'Hat'

369

CASE statement

370

WHEN 'Shorts' THEN

SET type = 'Shorts'
ELSE

SET type = 'UNKNOWN'
END CASE ;
END

Chapter 9 SQL Statements

CHECKPOINT statement

Function
Syntax

Permissions

Side effects

Description

Standards and
compatibility

To checkpoint the database.

CHECKPOINT

DBA authority is required to checkpoint the network database server.
No permissions are required to checkpoint the personal database server.
None.

The CHECKPOINT statement checkpoints the database. Checkpoints are
also performed automatically by the database server. It is not normally
required for an application to ever issue the CHECKPOINT statement.

& For a full description of checkpoints, see "Backup and Data Recovery"
on page 553 of the book Adaptive Server Anywhere User's Guide.

¢ SQL/92 Vendor extension
¢ Sybase Supported by Adaptive Server Enterprise.

371

CLEAR statement [ISQL]

CLEAR statement [ISQL]

Function
Syntax
Permissions
Side effects
Description

Standards and
compatibility

372

To clear the Interactive SQL Data window.

CLEAR

None.

Closes the cursor associated with the data being cleared.

The CLEAR statement is used to clear the Interactive SQL Data window.
¢ SQL/92 Vendor extension

¢ Sybase Not applicable

Chapter 9 SQL Statements

CLOSE statement [ESQL] [SP]

Function To close a cursor.
Syntax CLOSE cursor-name
Parameters cursor-name: identifier

cursor-name: { identifier | host-variable }
Permissions The cursor must have been previously opened.
Side effects None.
See also "OPEN statement" on page 511

"DECLARE CURSOR statement" on page 436
"PREPARE statement" on page 519

Description This statement closes the named cursor.
Standards and ¢ SQL/92 Entry-level feature.
compatibility

¢ Sybase Supported by Adaptive Server Enterprise.

Examples The following examples close cursors in Embedded SQL.
EXEC SQL CLOSE employee cursor;
EXEC SQL CLOSE :cursor var;
The following procedure uses a cursor.

CREATE PROCEDURE TopCustomer (OUT TopCompany CHAR(35),
OUT TopValue INT)
BEGIN
DECLARE err notfound EXCEPTION
FOR SQLSTATE '02000' ;
DECLARE curThisCust CURSOR FOR
SELECT company name, CAST (
sum(sales order items.quantity *
product.unit price) AS INTEGER) VALUE
FROM customer
LEFT OUTER JOIN sales order
LEFT OUTER JOIN sales order items
LEFT OUTER JOIN product
GROUP BY company name ;

DECLARE ThisValue INT ;
DECLARE ThisCompany CHAR (35) ;
SET TopValue = 0 ;
OPEN curThisCust ;
CustomerLoop:
LOOP

FETCH NEXT curThisCust

373

CLOSE statement [ESQL] [SP]

INTO ThisCompany, ThisValue ;
IF SQLSTATE = err notfound THEN
LEAVE CustomerLoop ;
END IF ;
IF ThisValue > TopValue THEN
SET TopValue = ThisValue ;
SET TopCompany = ThisCompany ;
END IF ;
END LOOP CustomerLoop ;
CLOSE curThisCust ;
END

374

Chapter 9 SQL Statements

COMMENT statement

Function

Syntax

Parameters

Permissions

Side effects

Description

Standards and
compatibility

Examples

To store a comment in the system tables for a database object.

COMMENT ON

COLUMN [owner.]table-name.column-name
| FOREIGN KEY [owner.]table-name.role-name
| INDEX [owner.lindex-name

| LOGIN integrated_login_id

| PUBLICATION [owner.]publication-name

| PROCEDURE [owner.]Jprocedure-name

| SUBSCRIPTION [owner.]subscription-name
| TABLE [owner.]table-name

| USER userid

| TRIGGER [owner.]trigger-name

| VIEW [owner.]view-name

IS comment

comment:
{ string | NULL }

Must either be the owner of the database object being commented, or have
DBA authority.

Automatic commit.

Several system tables have a column named Remarks that allows you to
associate a comment with a database item (SYSUSERPERM, SYSTABLE,
SYSCOLUMN, SYSINDEX, SYSLOGIN, SYSFOREIGNKEY,
SYSPROCEDURE, SYSTRIGGER). The COMMENT ON statement allows
you to set the Remarks column in these system tables. A comment can be
removed by setting it to NULL.

For a comment on an index or trigger, the owner of the comment is the
owner of the table on which the index or trigger is defined.

¢ SQL/92 Vendor extension.

¢ Sybase Not supported by Adaptive Server Enterprise.

The following examples show how to add and remove a comment.

¢ Add a comment to the employee table.

COMMENT
ON TABLE employee
IS "Employee information"

¢ Remove the comment from the employee table.
COMMENT

375

COMMENT statement

ON TABLE employee
IS NULL

376

Chapter 9 SQL Statements

COMMIT statement

Function
Syntax
Permissions
Side effects

See also

Description

To make any changes to the database permanent.
COMMIT [WORK]

Must be connected to the database.

Closes all cursors except those opened WITH HOLD.

"ROLLBACK statement" on page 538
"PREPARE TO COMMIT statement" on page 522
"CONNECT statement" on page 381

"SET CONNECTION statement" on page 551
"DISCONNECT statement" on page 450

The COMMIT statement ends a logical unit of work (transaction) and makes
all changes made during this transaction permanent in the database. A
transaction is defined as the database work done between successful
COMMIT and ROLLBACK statements on a single database connection.

& The COMMIT statement is also used as the second phase of a two-
phase commit operation. For more information, see "Typical inconsistencies"
on page 378 of the book Adaptive Server Anywhere User's Guide, and
"PREPARE TO COMMIT statement" on page 522.

The changes committed are those made by the data manipulation statements:
INSERT, UPDATE, and DELETE, as well as the Interactive SQL load
statement INPUT.

Data definition statements all do an automatic commit. They are:
ALTER

COMMENT

CREATE

DROP

GRANT

REVOKE

SET OPTION

* & & & o o o

377

COMMIT statement

Standards and
compatibility

Examples

378

The COMMIT statement fails if the database server detects any invalid
foreign keys. This makes it impossible to end a transaction with any invalid
foreign keys. Usually, foreign key integrity is checked on each data
manipulation operation. However, if either the database option
WAIT_FOR_COMMIT is set ON or a particular foreign key was defined
with a CHECK ON COMMIT clause, the database server will not check
integrity until the COMMIT statement is executed. For a two-phase commit
operation, these errors will be reported on the first phase (PREPARE TO
COMMIT), not on the second phase (COMMIT).

¢ SQL/92 Entry-level feature.
¢ Sybase Supported by Adaptive Server Enterprise.

¢ The following statement commits the current transaction:

COMMIT

Chapter 9 SQL Statements

COMMIT TRANSACTION statement [T-SQL]

Function

Syntax
Authorization
Side effects
See also

Description

Standards and
compatibility

Example

To terminate a user-defined transaction or make changes to the database
permanent.

COMMIT TRAN[SACTION] [transaction-name]

None.

None.
"BEGIN TRANSACTION statement" on page 364

The optional parameter transaction-name is the name assigned to this
transaction. It must be a valid identifier. You should use transaction names
only on the outermost pair of nested BEGIN/COMMIT or
BEGIN/ROLLBACK statements.

When executed inside a transaction, the COMMIT TRANSACTION
statement decreases the nesting level of transactions by one. When
transactions are nested, only the outermost COMMIT makes the changes to
the database permanent.

For a discussion of transaction nesting in Adaptive Server Enterprise and
Adaptive Server Anywhere, see "BEGIN TRANSACTION statement" on
page 364.

Savepoints and the ROLLBACK statement are discussed in "SQL Language
Elements" on page 179.

¢ SQL/92 Transact-SQL extension.
¢ Sybase Supported by Adaptive Server Enterprise.

¢ The following Transact-SQL batch reports successive values of
@@trancountas 0, 1,2, 1, 0.

PRINT @@trancount
BEGIN TRANSACTION
PRINT @@trancount
BEGIN TRANSACTION
PRINT @@trancount
COMMIT TRANSACTION
PRINT @@trancount
COMMIT TRANSACTION
PRINT @@trancount

go

379

CONFIGURE statement [ISQL]

CONFIGURE statement [ISQL]

Function
Syntax
Permissions
Side effects
See also

Description

Standards and
compatibility

380

To activate the Interactive SQL configuration window.
CONFIGURE

None.

None.

"SET OPTION statement" on page 553

The CONFIGURE statement activates the Interactive SQL configuration
window. This window displays the current settings of all Interactive SQL
options. It does not display or allow you to modify database options.

If you press ENTER and you have selected Save Options to Database the
options will be written to the SYSOPTION table in the database and the
database server will perform an automatic COMMIT. If you do not select
Save Options to Database, the options are set temporarily and remain in
effect for the current database connection only.

¢ SQL/92 Vendor extension.
¢ Sybase Not supported by Adaptive Server Enterprise.

Chapter 9 SQL Statements

CONNECT statement [ESQL] [ISQL]

Function To establish a connection to a database.

Syntax 1 CONNECT
... [TO engine-name]
... [DATABASE database-name]
... [AS connection-name]
... [USER]userid [IDENTIFIED BY password]

Syntax 2 CONNECT USING connect-string

Parameters engine-name: {identifier | string | host-variable }
database-name: { identifier | string | host-variable }
connection-name: { identifier | string | host-variable }
userid: { identifier| string | host-variable }
password: { identifier| string | host-variable }

connect-string: { connection string | host variable }

Permissions None.
Side effects None.
See also "GRANT statement" on page 484

"DISCONNECT statement" on page 450
"SET CONNECTION statement" on page 551

Description The CONNECT statement establishes a connection to the database identified
by database-name running on the server identified by engine-name.

Embedded SQL behavior In Embedded SQL, if no engine-name is
specified, the default local database server will be assumed (the first database
server started). If no database-name is specified, the first database on the
given server will be assumed.

Interactive SQL behavior If no database or server is specified in the
CONNECT statement, Interactive SQL remains connected to the current
database, rather than to the default server and database. If a database name is
specified without a server name, Interactive SQL will try to connect to the
specified database on the current server. If a server name is specified without
a database name, Interactive SQL will connect to the default database on the
specified server. For example, in the following batch, the two tables are
created in the same database.

CREATE TABLE tl(cl int);
CONNECT DBA IDENTIFIED BY SQL;
CREATE TABLE t2 (cl int);

381

CONNECT statement [ESQL] [ISQL]

Standards and
compatibility

Examples

382

No other database statements are allowed until a successful CONNECT
statement has been executed.

(In Embedded SQL, WHENEVER, SET SQLCA and some DECLARE
statements do not generate code and thus may appear before the CONNECT
statement in the source file.)

The user ID and password are used for checking the permissions on SQL
statements. If the password or the user ID and password are not specified, the
user will be prompted to type the missing information.

In Embedded SQL, the user ID and password are used for permission checks
on all dynamic SQL statements.

If you are connected to a user ID with DBA authority, you can connect to
another user ID without specifying a password. (The output of DBTRAN
requires this capability.) For example, if you are connected to a database as
DBA, you can connect without a password with the statement:

connect other user id

In Embedded SQL, you can connect without a password by using a host
variable for the password and setting the value of the host variable to be the
null pointer.

A connection can optionally be named by specifying the AS clause. This
allows multiple connections to the same database, or multiple connections to
the same or different database servers, all simultaneously. Each connection
has its own associated transaction. You may even get locking conflicts
between your transactions if, for example, you try to modify the same record
in the same database from two different connections.

Multiple connections are managed through the concept of a current
connection. After a successful connect statement, the new connection
becomes the current one. To switch to a different connection, use the SET
CONNECTION statement. The DISCONNECT statement is used to drop
connections.

For Syntax 2, a connect string is a list of parameter settings of the form
keyword=value. For a description of valid settings for the connection string,
see "Connection parameters" on page 46 of the book Adaptive Server
Anywhere User's Guide. The connect string must be enclosed in single
quotes.

¢ SQL/M92 Syntax I is a full SQL feature; syntax 2 is a vendor extension.

¢ Sybase Open Client Embedded SQL supports a different syntax for
the CONNECT statement.

¢ The following are examples of CONNECT usage within Embedded
SQL.

Chapter 9 SQL Statements

EXEC SQL CONNECT AS :conn name
USER :userid IDENTIFIED BY :password;

EXEC SQL CONNECT USER "dba" IDENTIFIED BY "sqgl";

Connect to a database from Interactive SQL. Interactive SQL prompts
for a user ID and a password.

CONNECT

Connect to the default database as DBA, from Interactive SQL.
Interactive SQL promptS for a password.

CONNECT USER "DBA"

Connect to the sample database as the DBA, from Interactive SQL.

CONNECT

TO asademo

USER DBA
IDENTIFIED BY sqgl

Connect to the sample database using a connect string, from Interactive
SQL.

CONNECT
USING 'UID=DBA; PWD=sqgl;DBN=asademo'

383

CREATE COMPRESSED DATABASE statement

CREATE COMPRESSED DATABASE statement

Function To create a compressed database from an existing database file, or to expand
a compressed database.
Syntax CREATE [COMPRESSED | EXPANDED] DATABASE new-db-file-
name
... FROM old-db-file-name
Parameters new-db-file-name | old-db-file-name: 'file-name'
Permissions ¢ The permissions required to execute this statement are set on the server

command line, using the —gu command-line option. The default setting
is to require DBA authority.

¢ The account under which the server is running must have write
permissions on the directories where files are created.

¢ The source database file must not be currently loaded on a server.

¢ Not supported on Windows CE.

Side effects An operating system file is created.

See also "The Compression utility" on page 75
"The Uncompression utility" on page 108

Description Creates a compressed database file from an uncompressed database file, or
an uncompressed database file from a compressed one.

Any relative path is taken relative to the current working directory of the
server.

You cannot use this statement on files other than the primary database file.

Standards and ¢ SQL/92 Vendor extension.
compatibility . .
¢ Sybase Not supported by Adaptive Server Enterprise.

Example ¢ The following statement creates a compressed database file named
compress.db in the C:| directory from a database file named fu/l.db in
the current working directory of the server.

CREATE COMPRESSED DATABASE 'C:\\compress.db'
FROM 'full.db'

¢ The following statement creates an uncompressed database file named
full.db in the C:\ directory from a compressed database file named
compress.db in the current working directory of the server.

CREATE EXPANDED DATABASE 'C:\\full.db'
FROM 'compress.db'

384

Chapter 9 SQL Statements

CREATE DATABASE statement

Function

Syntax

Parameters

Permissions

Side effects

See also

Description

To create a database. The database is an operating system file.

CREATE DATABASE db-file-name

[[TRANSACTION] LOG OFF |
[TRANSACTION] LOG ON [log-file-name]
[MIRROR mirror-file-name]

]

[CASE { RESPECT | IGNORE }]
[PAGE SIZE page-size]

[COLLATION collation-label]

[ENCRYPTED { ON | OFF }]

[BLANK PADDING { ON | OFF }]
[ASE [COMPATIBLE]]

[JAVA {ON | OFF }]

[JCONNECT { ON | OFF }]

db-file-name | log-file-name | mirror-file-name :
'file-name’

page-size :
1024 | 2048 | 4096

collation-label: string

The permissions required to execute this statement are set on the server
command line, using the —gu command-line option. The default setting is to
require DBA authority.

The account under which the server is running must have write permissions
on the directories where files are created.

Not supported on Windows CE.
An operating system file is created.

"ALTER DATABASE statement" on page 344
"DROP DATABASE statement" on page 453
"The Initialization utility" on page 84

Creates a database file with the supplied name and attributes.

File name The file names (db-file-name, log-file-name, mirror-file-name)
are strings containing operating system file names. As literal strings, they
must be enclosed in single quotes.

385

CREATE DATABASE statement

386

¢ Ifyou specify a path, any backslash characters (\) must be doubled if
they are followed by an n or an x. This prevents them being interpreted
as a new line character (\n) or as a hexadecimal number (\x), according
to the rules for strings in SQL.

It is safer to always escape the backslash character. For example:

CREATE DATABASE 'c:\\sybase\\my db.db'
LOG ON 'e:\\logdrive\\my db.log'

¢ Ifyou specify no path, or a relative path, the database file is created
relative to the working directory of the server. If you specify no path for
a log file, the file is created in the same directory as the database file.

¢ Ifyou provide no file extension, a file is created with extension .db for
databases or ./og for the transaction log.

TRANSACTION LOG clause The transaction log is a file where the
database server logs all changes made by all users no matter what application
system is being used. The transaction log plays a key role in backup and
recovery (see "The transaction log" on page 557 of the book Adaptive Server
Anywhere User's Guide), and in data replication. If the filename has no path,
it is placed in the same directory as the database file.

MIRROR clause A transaction log mirror is an identical copy of a
transaction log, usually maintained on a separate device, for greater
protection of your data. By default, Adaptive Server Anywhere does not use
a mirrored transaction log. If you do wish to use a transaction log mirror, this
option allows you to provide a filename.

CASE clause For databases created with this option, all values are
considered to be case sensitive in comparisons and string operations.

This option is provided for compatibility with the ISO/ANSI SQL standard.
The default is that all comparisons are case insensitive.

User ID and password

All databases are created with at least one user ID, DBA, with password
sql. If you create a database requiring case-sensitive comparisons, the
DBA user ID and its password must be entered in upper case.

PAGE SIZE clause The page size for a database can be 512, 1024, 2048
or 4096 bytes, with 1024 being the default. Other values for the size will be
changed to the next larger size. Large databases usually benefit from a larger
page size.

For example:

Chapter 9 SQL Statements

Standards and
compatibility

CREATE DATABASE 'c:\\sybase\\my db.db'
PAGE SIZE 4096

Page size limit

The page size cannot be larger than the page size used by the current
server. The server page size is taken from the first database loaded or is
set on the server command line using the —gp command-line option.

COLLATION clause The collation sequence used for all string
comparisons in the database.

& For more information on custom collating sequences, see "Database
Collations and International Languages" on page 289 of the book Adaptive
Server Anywhere User's Guide.

ENCRYPTED clause Encryption makes it more difficult for someone to
decipher the data in your database by using a disk utility to look at the file.
File compaction utilities are not able to compress encrypted database files as
much as unencrypted ones.

BLANK PADDING clause Ifyou specify blank padding, trailing blanks
are ignored for comparison purposes, and Embedded SQL programs pad
strings fetched into character arrays. For example, the two strings

'Smith'

'Smith '
would be treated as equal in a database created with trailing blanks ignored.

This option is provided for compatibility with the ISO/ANSI SQL standard,
which is to ignore trailing blanks in comparisons. The default is that blanks
are significant for comparisons.

JCONNECT clause If you wish to use the Sybase jConnect JDBC driver
to access system catalog information, you need to install jConnect support.
Specify JCONNECT OFF if you wish to exclude the jConnect system
objects. You can still use JDBC, as long as you do not access system
information.

JAVA clause Ifyou wish to use Java in your database, you must install
entries for the Sybase runtime Java classes into the system tables. By default,
these entries are installed. You can specify JAVA OFF if you are sure you
will not be using Java, to avoid installing these entries.

¢ SQL/92 Vendor extension.

¢ Sybase Adaptive Server Enterprise provides a CREATE DATABASE
statement, but with different options.

387

CREATE DATABASE statement

Example ¢ The following statement creates a database file named mydb.db in the
C:\ directory.

CREATE DATABASE 'C:\\mydb'
TRANSACTION LOG ON

CASE IGNORE

PAGE SIZE 1024

COLLATION '437'

ENCRYPTED OFF

BLANK PADDING OFF

JAVA ON

JCONNECT OFF

¢ The following statement creates a database with no Sybase runtime Java
classes. All database operations will execute normally, except for those
involving Java classes or objects.

CREATE DATABASE 'C:\\nojava'
JAVA OFF

388

Chapter 9 SQL Statements

CREATE DBSPACE statement

Function

Syntax

Permissions
Side effects

See also

Description

Standards and
compatibility

Example

To create a new database file.

CREATE DBSPACE dbspace-name
AS filename

Must have DBA authority.
Automatic commit.

"DROP statement" on page 451
"Using additional dbspaces" on page 615 of the book Adaptive Server
Anywhere User's Guide

The CREATE DBSPACE statement creates a new database file. When a
database is initialized, it is composed of one file. All tables and indexes
created are placed in that file. CREATE DBSPACE adds a new file to the
database. This file can be on a different disk drive than the root file, which
means that the database can be larger than one physical device.

The dbspace-name parameter is an internal name for the database file. The
filename parameter is the actual name of the database file, with a path where
necessary.

For each database, there is a limit of twelve dbspaces, including the root file.

A filename without an explicit directory is created in the same directory as
the main database file. Any relative directory is relative to the main database
file. The filename is a filename on the server machine. When you are using
the database server for NetWare, the filename should use a volume name (not
a drive letter) when an absolute directory is specified.

Each table, including its associated indexes, is contained entirely within one
database file. The IN clause of the CREATE TABLE statement specifies the
dbspace into which a table is placed. Tables are put into the root database file
by default.

¢ SQL/92 Vendor extension.

¢ Sybase Not supported by Adaptive Server Enterprise.
¢ Create a dbspace called library to hold the LibraryBooks table and its
indexes.
CREATE DBSPACE library
AS 'e:\dbfiles\library.db"' ;

CREATE TABLE LibraryBooks (
title char(100),
author char (50),

389

CREATE DBSPACE statement

isbn char(30),
) IN library ;

390

Chapter 9 SQL Statements

CREATE DOMAIN statement

Function

Syntax

Parameters

Permissions
Side effects

See also

Description

To create a user-defined data type in the database.

CREATE { DOMAIN | DATATYPE } [AS] domain-name data-type
... [[NOT]NULL]
... [DEFAULT default-value]
... [CHECK (condition)]

domain-name: identifier

data-type: built-in data type, with precision and scale
Must have RESOURCE authority.
Automatic commit.

"DROP statement" on page 451
"SQL Data Types" on page 219

User-defined data types are aliases for built-in data types, including precision
and scale values where applicable. They improve convenience and encourage
consistency in the database.

It is recommended that you use CREATE DOMAIN, rather than CREATE
DATATYPE, because CREATE DOMAIN is the ANSI/ISO SQL3 term.

User-defined data types can have CHECK conditions and DEFAULT
conditions associated with them, and you can indicate whether the data type
permits NULL values or not. These conditions are inherited by any column
defined on the data type. Any conditions explicitly specified on the column
override the data type conditions.

The user who creates a data type is automatically made the owner of that
data type. No owner can be specified in the CREATE DATATYPE
statement. The user-defined data type name must be unique, and all users can
access the data type without using the owner as prefix.

User-defined data types are objects within the database. Their names must
conform to the rules for identifiers. User-defined data type names are always
case insensitive, as are built-in data type names.

By default, user-defined data types allow NULLs unless the
allow_nulls_by default option is set to OFF. In this case, new user-defined
data types by default do not allow NULLs. Any column created on a user-
defined data type either allows or does not allow NULLs depending on the
setting of the user-defined data type at the time the column was created, not
on the current setting of the allow_nulls_by_default option. Any explicit
setting of NULL or NOT NULL in the column definition overrides the user-
defined data type setting.

391

CREATE DOMAIN statement

Standards and
compatibility

Example

392

When creating a CHECK condition, you can use a variable name prefixed
with the @ sign in the condition. When the data type is used in the definition
of a column, such a variable is replaced by the column name. This allows
CHECK conditions to be defined on data types and used by columns of any
name.

To drop the data type from the database, use the DROP statement. You must
be either the owner of the data type or have DBA authority in order to drop a
user-defined data type.

¢ SQL/92 Intermediate level feature.

¢ Sybase Not supported by Adaptive Server Enterprise. Transact-SQL
provides similar functionality using the CREATE DEFAULT and
CREATE RULE statements.

¢ The following statement creates a data type named address, which holds
a 35-character string, and which may be NULL.
CREATE DOMAIN address CHAR(35) NULL

¢ The following statement creates a data type named id, which does not
allow NULLS, and which is autoincremented by default.

CREATE DOMAIN id INT
NOT NULL
DEFAULT AUTOINCREMENT

Chapter 9 SQL Statements

CREATE EXISTING TABLE statement

Function

Syntax

Parameters

Permissions

Side effects
See also

Description

To create a new proxy table representing an existing object on a remote
server.

CREATE EXISTING TABLE [owner.]table_name
[(column-definition, ...)]
AT 'location-string’

column-definition:
column-name data-type [NOT NULL]

location-string:
remote-server-name.[db-name).[owner].object-name
| remote-server-name;[db-name];[owner];object-name

Must have RESOURCE authority. To create a table for another user, you
must have DBA authority.

Supported on Windows 95 and Windows NT only.
Automatic commit.
CREATE TABLE statement

The CREATE EXISTING TABLE statement creates a new local, proxy table
that maps to a table at an external location. The CREATE EXISTING
TABLE statement is a variant of the CREATE TABLE statement. The
EXISTING keyword is used with CREATE TABLE to specify that a table
already exists remotely and that its metadata is to be imported into Adaptive
Server Anywhere. This establishes the remote table as a visible entity to
Adaptive Server Anywhere users. Adaptive Server Anywhere verifies that
the table exists at the external location before it creates the table.

If the object does not exist (either host data file or remote server object), the
statement is rejected with an error message.

Index information from the host data file or remote server table is extracted
and used to create rows for the system table sysindexes. This defines indexes
and keys in server terms and enables the query optimizer to consider any
indexes that may exist on this table.

Referential constraints are passed to the remote location when appropriate.

If column-definitions are not specified, Adaptive Server Anywhere derives
the column list from the metadata it obtains from the remote table. If
column-definitions are specified, Adaptive Server Anywhere verifies the
column-definitions. Column names, data types, lengths, identity property,
and null properties are checked for the following:

¢ Column names must match identically (although case is ignored).

393

CREATE EXISTING TABLE statement

Standards and
compatibility

Examples

394

Data types in the CREATE EXISTING TABLE statement must match
or be convertible to the data types of the column on the remote location.
For example, a local column data type is defined as money, while the
remote column data type is numeric.

Each column's NULL property is checked. If the local column's NULL
property is not identical to the remote column's NULL property, a
warning message is issued, but the statement is not aborted.

Each column's length is checked. If the length of char, varchar, binary,
varbinary, decimal and numeric columns do not match, a warning
message is issued, but the command is not aborted. You may choose to
include only a subset of the actual remote column list in your CREATE
EXISTING statement.

AT clause The AT clause specifies the location of the remote object.
The AT clause supports the semicolon (;) as a delimiter. If a semicolon
is present anywhere in the location-string string, the semicolon is the
field delimiter. If no semicolon is present, a period is the field delimiter.
This allows filenames and extensions to be used in the database and
owner fields. For example, the following statement maps the table al to
the MS Access file mydbfile.mdb:

CREATE EXISTING TABLE al
AT 'access;d:\mydbfile.mdb;;al'

SQL/92 Entry-level feature.
Sybase Supported by Open Client/Open Server.

Create a proxy table named blurbs for the blurbs table at the remote
server server_a.

CREATE EXISTING TABLE blurbs
(author id id not null,
copy text not null)

AT 'server a.dbl.joe.blurbs'

Create a proxy table named blurbs for the blurbs table at the remote
server server_a. Adaptive Server Anywhere derives the column list
from the metadata it obtains from the remote table.

CREATE EXISTING TABLE blurbs
AT 'server a.dbl.joe.blurbs'

Create a proxy table named rda_employee for the employee table at the
Adaptive Server Anywhere remote server asademo.

CREATE EXISTING TABLE rda employee
AT 'asademo..dba.employee'

Chapter 9 SQL Statements

CREATE EXTERNLOGIN statement

Function

Syntax

Permissions

Side effects
See also

Description

Standards and
compatibility

Examples

To assign an alternate login name and password to be used when
communicating with a remote server.

CREATE EXTERNLOGIN /ogin-name
TO remote-server
REMOTE LOGIN remote-user
[IDENTIFIED BY remote-password]

Only the login-name and the DBA account can add or modify an external
login for login-name.

Supported on Windows 95 and Windows NT only.
Automatic commit.
"DROP EXTERNLOGIN statement" on page 455

By default, Adaptive Server Anywhere uses the names and passwords of its
clients whenever it connects to a remote server on behalf of those clients.
CREATE EXTERNLOGIN assigns an alternate login name and password to
be used when communicating with a remote server. It stores the password
internally in encrypted form. The remote server must be known to the local
server by an entry in the sysservers table. For more information, see
CREATE SERVER Statement.

Sites with automatic password expiration should plan for periodic updates of
passwords for external logins.

CREATE EXTERNLOGIN cannot be used from within a transaction.
login-name specifies the local user login name.

TO clause The TO clause specifies the name of the remote server.

REMOTE LOGIN clause The REMOTE LOGIN clause specifies the
corresponding user account on remote-server for the local user login-name.

IDENTIFIED BY clause The IDENTIFIED BY clause specifies remote-
password is the password for remote-user

remote-user and remote-password must be a valid combination on the node
where the remote-server runs.

¢ SQL/92 Entry-level feature.
¢ Sybase Supported by Open Client/Open Server.
¢ Map the local user named dba to the user sa when connecting to the

server sybasel.

395

CREATE EXTERNLOGIN statement

CREATE EXTERNLOGIN dba
TO sybasel

REMOTE LOGIN sa
IDENTIFIED BY monkey

396

Chapter 9 SQL Statements

CREATE FUNCTION statement

Function

Syntax

Parameters

Permissions

Side effects

See also

Description

To create a new function in the database.

CREATE FUNCTION [owner.]function-name ([parameter, ...])
RETURNS data-type
... { EXTERNAL NAME library-call |
... [ON EXCEPTION RESUME]
... compound-statement }

parameter:
IN parameter-name data-type

library-call:
'[operating-system:]function-name@library.dll; ...

operating-system:
082
| Windows3X
| Windows95
| WindowsNT
| NetWare

Must have RESOURCE authority.
For external functions, must have DBA authority.
Automatic commit.

"DROP statement" on page 451

"BEGIN... END statement" on page 361

"CREATE PROCEDURE statement" on page 403

"RETURN statement" on page 534

"Using Procedures, Triggers, and Batches" on page 221 of the book Adaptive
Server Anywhere User's Guide

The CREATE FUNCTION statement creates (stores) a user-defined function
in the database. A function can be created for another user by specifying an
owner name. Subject to permissions, a user-defined function can be used in
exactly the same way as other nonaggregate functions.

Parameter names must conform to the rules for other database identifiers
such as column names. They must have a valid SQL data type (see "SQL
Data Types" on page 219), and must be prefixed by the keyword IN,
signifying that the argument is an expression that provides a value to the
procedure.

397

CREATE FUNCTION statement

Standards and
compatibility

Example

398

A function using the EXTERNAL NAME clause is a wrapper around a call
to an external dynamic link library, and is called an external stored
procedure. An external stored procedure can have no clauses other than the
EXTERNAL NAME clause following the RETURNS clause. For a
description of external procedures, see "Calling external libraries from
procedures" on page 271 of the book Adaptive Server Anywhere User's
Guide.

¢ SQL/92 Persistent Stored Module feature.

¢ Sybase Not supported by Adaptive Server Enterprise.

¢ The following function concatenates a firstname string and a lastname
string.
CREATE FUNCTION fullname (firstname CHAR(30),
lastname CHAR (30))
RETURNS CHAR (61)
BEGIN
DECLARE name CHAR(61) ;
SET name = firstname || ' ' || lastname ;
RETURN (name) ;
END

The following examples illustrate the use of the fullname function.
¢ Return a full name from two supplied strings:

SELECT fullname ('joe','smith')

fullname(‘joe’,'smith’)

joe smith

¢ List the names of all employees:

SELECT fullname (emp fname, emp lname)
FROM employee

fullname (emp_fname, emp_Ilname)

Fran Whitney
Matthew Cobb
Philip Chin
Julie Jordan

Robert Breault

Chapter 9 SQL Statements

CREATE INDEX statement

Function

Syntax

Permissions
Side effects
See also

Description

Notes

To create an index on a specified table. Indexes are used to improve database
performance.

CREATE [UNIQUE] INDEX index-name
... ON [owner.]table-name
... (column-name [ASC | DESC]], ...)
...[{IN | ON } dbspace-name]

Must be the owner of the table or have DBA authority.
Automatic commit.
"DROP statement" on page 451

The CREATE INDEX statement creates a sorted index on the specified
columns of the named table. Indexes are automatically used to improve the
performance of queries issued to the database, and to sort queries with an
ORDER BY clause. Once an index is created, it is never referenced again
except to delete it using the DROP INDEX statement.

UNIQUE constraint The UNIQUE constraint ensures that there will not
be two rows in the table with identical values in all the columns in the index.

Ascending or descending sorting Columns are sorted in ascending
(increasing) order unless descending (DESC) is explicitly specified. An
index will be used for both an ascending and a descending ORDER BY,
whether the index was ascending or descending. However, if an ORDER BY
is performed with mixed ascending and descending attributes, an index will
be used only if the index was created with the same ascending and
descending attributes.

Index placement By default, the index is placed in the same database file
as its table. You can place the index in a separate database file by specifying
a dbspace name in which to put the index. This feature is useful mainly for
large databases, to circumvent the limit, on operating systems other than
Windows NT, of 2 GB per table.

¢ Index ownership There is no way of specifying the index owner in the
CREATE INDEX statement. Indexes are automatically owned by the
owner of the table on which they are defined. The index name must be
unique for each owner.

¢ No indexes on views Indexes cannot be created for views.

399

CREATE INDEX statement

Standards and
compatibility

400

¢ Index name space The name of each index must be unique for a
given table. For databases created previous to version 5.5.01, the
condition was more restrictive: that each index name must be unique for
a given user ID.

¢ Exclusive table use CREATE INDEX is prevented whenever the
statement affects a table currently being used by another connection.
CREATE INDEX can be time consuming and the server will not process
requests referencing the same table while the statement is being
processed.

¢ Automatically created indexes Adaptive Server Anywhere
automatically creates indexes for primary keys and for unique
constraints. These automatically-created indexes are held in the same
database file as the table.

¢ SQL/92 Vendor extension.

¢ Sybase Adaptive Server Enterprise has a more complex CREATE
INDEX statement than Adaptive Server Anywhere. While the Adaptive
Server Enterprise syntax is permitted in Adaptive Server Anywhere,
some clauses and keywords are ignored.

The full syntax for Adaptive Server Enterprise 11.5 is as follows:

CREATE [UNIQUE][CLUSTERED | NONCLUSTERED]
... INDEX index-name
... ON [[database.lowner.]table_name
(column_name [, column_name]...)
... [WITH {
...{ FILLFACTOR | MAX_ROWS_PER_PAGE } = x,
CONSUMERS = x,
... IGNORE_DUP_KEY,
.. SORTED_DATA,
[IGNORE_DUP_ROW | ALLOW_DUP_ROW]
3]

... [ON segment_name]

Adaptive Server Enterprise indexes can be either clustered or nonclustered.
A clustered index almost always retrieves data faster than a nonclustered
index. Only one clustered index is permitted per table.

Adaptive Server Anywhere does not support clustered indexes. The
CLUSTERED and NONCLUSTERED keywords are allowed by Adaptive
Server Anywhere, but no action is taken.

Adaptive Server Anywhere also allows, by ignoring, the following
keywords:

¢ FILLFACTOR
¢ IGNORE DUP KEY

Chapter 9 SQL Statements

Examples

¢ SORTED DATA
¢+ IGNORE DUP ROW
¢+ ALLOW DUP ROW

Physical placement of an index is carried out differently in Adaptive Server
Enterprise and Adaptive Server Anywhere. The ON segment-name clause is
supported in Adaptive Server Anywhere, but segment-name refers to a
dbspace.

Index names must be unique on a given table for both Adaptive Server
Anywhere and Enterprise.

¢ Create a two-column index on the employee table.

CREATE INDEX employee name index
ON employee
(emp lname, emp fname)

¢ Create an index on the sales_order items table for the product ID
column.

CREATE INDEX item prod
ON sales order items
(prod_id)

401

CREATE MESSAGE statement [T-SQL]

CREATE MESSAGE statement [T-SQL]

Function

Syntax

Permissions
Side effects

See also

Description

Standards and
compatibility

402

To add a user-defined message to the SYSUSERMESSAGES system table
for use by PRINT and RAISERROR calls.

CREATE MESSAGE message-num
... AS 'message-text’

Must have resource authority
Automatic commit.

"PRINT statement" on page 523
"RAISERROR statement" on page 526

CREATE MESSAGE is provided in Adaptive Server Anywhere as an
alternative to the sp_addmessage system procedure used in Adaptive Server
Enterprise.

The replaceable text in the syntax is as follows:

¢ message_num The message number of the message to add. The
message number for a user-defined message must be 20000 or greater.

¢ message_text The text of the message to add. The maximum length is
255 bytes. PRINT and RAISERROR recognize placeholders in the
message text. A single message can contain up to 20 unique
placeholders in any order. These placeholders are replaced with the
formatted contents of any arguments that follow the message when the
text of the message is sent to the client.

The placeholders are numbered to allow reordering of the arguments
when translating a message to a language with a different grammatical
structure. A placeholder for an argument appears as "%nn!", a percent
sign (%), followed by an integer from 1 to 20, followed by an
exclamation mark (!). The integer represents the argument number in the
string in the argument list. "%1!" is the first argument in the original
version, "%2!" is the second argument, and so on.

There is no parameter corresponding to the language argument for
sp_addmessage.

¢ SQL/92 Vendor extension.

¢ Sybase The functionality of CREATE MESSAGE is provided by the
sp_addmessage procedure in Adaptive Server Enterprise.

Chapter 9 SQL Statements

CREATE PROCEDURE statement

Function

Syntax

Parameters

Permissions

Side effects

See also

To create a procedure in the database.

CREATE PROCEDURE [owner.lprocedure-name ([parameter , ...1)
... { [RESULT (result-column , ...)]

[ON EXCEPTION RESUME]
... compound-statement

| EXTERNAL NAME library-call

| [DYNAMIC RESULT SETS integer-expression]
EXTERNAL NAME java-call LANGUAGE JAVA

}

parameter:
parameter_mode parameter-name data-type [DEFAULT expression]
| SQLCODE
| SQLSTATE

parameter_mode:
IN | OUT | INOUT

result-column:
column-name data-type

library-call:

'[operating-system:]function-name@library.dil; ...
operating-system:

0S2

| Windows3X

| Windows95

| WindowsNT

| NetWare

Jjava-call:
'[package-name.]ClassName.methodName method-signature'

Must have RESOURCE authority.
For external procedures, must have DBA authority.
Automatic commit.

"DROP statement" on page 451

"CALL statement" on page 367

"BEGIN... END statement" on page 361

"GRANT statement" on page 484

"CREATE FUNCTION statement" on page 397

"EXECUTE IMMEDIATE statement" on page 464

"Using Procedures, Triggers, and Batches" on page 221 of the book Adaptive
Server Anywhere User's Guide

403

CREATE PROCEDURE statement

Description

Result sets

404

The CREATE PROCEDURE statement creates (stores) a procedure in the
database. A procedure can be created for another user by specifying a
owner. A procedure is invoked with a CALL statement

& The body of a procedure consists of a compound statement. For
information about compound statements, see "BEGIN... END statement" on
page 361.

& For information about error handling in stored procedures, see "Errors
and warnings in procedures and triggers" on page 256 of the book Adaptive
Server Anywhere User's Guide.

Parameter names must conform to the rules for other database identifiers
such as column names. They must be a valid SQL data type (see "SQL Data
Types" on page 219), and must be prefixed by one of the keywords IN, OUT
or INOUT. The keywords have the following meanings:

¢ IN The parameter is an expression that provides a value to the
procedure.

¢ OUT The parameter is a variable that could be given a value by the
procedure.

¢ INOUT The parameter is a variable that provides a value to the
procedure, and could be given a new value by the procedure.

When procedures are executed using the CALL statement, not all parameters
need to be specified. If a default value is provided in the CREATE
PROCEDURE statement, missing parameters are assigned the default values.
If no default value is supplied, the parameter is NULL.

SQLSTATE and SQLCODE are special parameters that output the
SQLSTATE or SQLCODE value when the procedure ends (they are OUT
parameters). Whether or not a SQLSTATE and SQLCODE parameter is
specified, the SQLSTATE and SQLCODE special constants can always be
checked immediately after a procedure call to test the return status of the
procedure.

The SQLSTATE and SQLCODE special constant values are modified by the
next SQL statement. Providing SQLSTATE or SQLCODE as procedure
arguments allows the return code to be stored in a variable.

A procedure that returns result sets ("Returning results from procedures" on
page 246 of the book Adaptive Server Anywhere User's Guide) may have a
RESULT clause. The parenthesized list following the RESULT keyword
defines the number of result columns and name and type. This information is
returned by the Embedded SQL DESCRIBE or by ODBC SQLDescribeCol
when a CALL statement is being described. Allowable data types are listed
in "SQL Data Types" on page 219.

Chapter 9 SQL Statements

External
procedures

Java procedures

Some procedures can return different result sets, with different numbers of
columns, depending on how they are executed. For example, the following
procedure returns two columns under some circumstances, and one in others.

CREATE PROCEDURE names(IN formal char(1l))
BEGIN
IF formal = 'n' THEN
SELECT emp fname
FROM employee
ELSE
SELECT emp lname,emp fname
FROM employee
END IF
END

Procedures with variable result sets must be written without a RESULT
clause, or in Transact-SQL. Their use is subject to the following limitations:

¢ Embedded SQL You must DESCRIBE the procedure call after the
cursor for the result set is opened, but before any rows are returned, in
order to get the proper shape of result set.

¢ ODBC Variable result-set procedures can be used by ODBC
applications. The proper description of the variable result sets is carried
out by the ODBC driver.

¢ Open Client applications Variable result-set procedures can be used
by Open Client applications.

If your procedure does not return variable result sets, you should use a
RESULT clause. The presence of this clause prevents ODBC and Open
Client applications from re-describing the result set after a cursor is open.

In order to handle multiple result sets, ODBC must describe the currently
executing cursor, not the procedure defined result set. Therefore, ODBC does
not always describe column names as defined in the RESULT clause of the
stored procedure definition. To avoid this problem, you can use column
aliases in your procedure result set cursor.

A procedure using the EXTERNAL NAME clause is a wrapper around a call
to an external dynamic link library, and is called an external stored
procedure. An external stored procedure can have no clauses other than the
EXTERNAL NAME clause following the parameter list. For a description of
external procedures, see "Calling external libraries from procedures" on page
271 of the book Adaptive Server Anywhere User's Guide.

A procedure that uses EXTERNAL NAME with a LANGUAGE JAVA
clause is a wrapper around a Java method.

If the DYNAMIC RESULT SETS clause is not provided, it is assumed that
no result sets are being returned from the method.

405

CREATE PROCEDURE statement

Java method
signatures

Standards and
compatibility

406

If the number of parameters is less than the number indicated in the method-
signature then the difference must equal the number specified in DYNAMIC
RESULT SETS, and each parameter in the method signature in excess of
those in the procedure parameter list must have a method signature of
[Ljava.sql.ResultSet.

A Java method signature is compact character representation of the types of
the parameters and the type of the return value. The format is...

'([type,...]1) type'

... where type is as follows:

[type array of type

Lclass-name object class

¢ 'Z' boolean
¢ 'B' byte

¢ 'S' short

¢ 'l' int

¢ 'J' long

¢ 'F' float

¢ 'D' double
¢ 'C' char

¢ 'V' void

L4

¢

For example,

double some method (
boolean a,

int b,
java.math.BigDecimal c,
byte [][] d,

java.sgl.ResultSet[] d) {
}

would have the following signature:
'(ZILjava/math/BigDecimal; [[B[Ljava/sqgl/ResultSet;)D'
¢ SQL/92 Persistent Stored Module feature.

¢ Sybase The Transact-SQL CREATE PROCEDURE statement is
different.

¢ SQLJ The syntax extensions for Java result sets are as specified in the
proposed SQLJ1 standard.

Chapter 9 SQL Statements

Example ¢ The following procedure uses a case statement to classify the results of a
query.

CREATE PROCEDURE ProductType (IN product id INT, OUT
type CHAR(10))
BEGIN
DECLARE prod name CHAR(20) ;
SELECT name INTO prod name FROM "DBA"."product"
WHERE id = product id;
CASE prod name
WHEN 'Tee Shirt' THEN
SET type = 'Shirt'
WHEN 'Sweatshirt' THEN
SET type = 'Shirt'
WHEN 'Baseball Cap' THEN
SET type = 'Hat'
WHEN 'Visor' THEN
SET type = 'Hat'
WHEN 'Shorts' THEN
SET type = 'Shorts'
ELSE
SET type = 'UNKNOWN'
END CASE ;
END

¢ The following procedure uses a cursor and loops over the rows of the
cursor to return a single value.

CREATE PROCEDURE TopCustomer (OUT TopCompany
CHAR (35), OUT TopValue INT)
BEGIN
DECLARE err notfound EXCEPTION
FOR SQLSTATE '02000' ;
DECLARE curThisCust CURSOR FOR
SELECT company name, CAST (
sum(sales order items.quantity *
product.unit price) AS INTEGER) VALUE
FROM customer
LEFT OUTER JOIN sales order
LEFT OUTER JOIN sales order items
LEFT OUTER JOIN product
GROUP BY company name ;

DECLARE ThisValue INT ;

DECLARE ThisCompany CHAR (35) ;

SET TopValue = 0 ;

OPEN curThisCust ;

CustomerLoop:

LOOP
FETCH NEXT curThisCust
INTO ThisCompany, ThisValue ;
IF SQLSTATE = err_notfound THEN

407

CREATE PROCEDURE statement

LEAVE CustomerLoop ;
END IF ;
IF ThisValue > TopValue THEN
SET TopValue = ThisValue ;
SET TopCompany = ThisCompany ;
END IF ;
END LOOP CustomerLoop ;
CLOSE curThisCust ;
END

408

Chapter 9 SQL Statements

CREATE PROCEDURE statement [T-SQL]

Function

Syntax

Parameters

Description

To create a new procedure in the database in a manner compatible with
Adaptive Server Enterprise.

The following subset of the Transact-SQL CREATE PROCEDURE
statement is supported in Adaptive Server Anywhere.

CREATE PROCEDURE [owner.]procedure_name
..[[(] @parameter_name data-type [= default] [OUTPUT], ...[)]

|

...l WITH RECOMPILE]
...AS

... Statement-list

procedure-name: identifier
parameter_name: identifier

¢ Ifthe Transact-SQL WITH RECOMPILE optional clause is supplied, it
is ignored. Adaptive Server Anywhere always recompiles procedures the
first time they are executed after a database is started, and stores the
compiled procedure until the database is stopped.

¢ Groups of procedures are not supported.

The following differences between Transact-SQL and Adaptive Server
Anywhere statements (Watcom-SQL) are listed to help those writing in both
dialects.

¢ Variable names prefixed by @ The "@" sign denotes a Transact-SQL
variable name, while Watcom-SQL variables can be any valid identifier,
and the @ prefix is optional.

¢ Input and output parameters Watcom-SQL procedure parameters are
specified as IN, OUT, or INOUT, while Transact-SQL procedure
parameters are INPUT parameters by default or can be specified as
OUTPUT. Those parameters that would be declared as INOUT or as
OUT in Adaptive Server Anywhere should be declared with OUTPUT
in Transact-SQL.

¢ Parameter default values Watcom-SQL procedure parameters are
given a default value using the keyword DEFAULT, while Transact-
SQL uses an equality sign (=) to provide the default value.

¢ Returning result sets Watcom-SQL uses a RESULT clause to specify
returned result sets. In Transact-SQL procedures, the column names or
alias names of the first query are returned to the calling environment.

The following Transact-SQL procedure illustrates how result sets are
returned from Transact-SQL stored procedures:

409

CREATE PROCEDURE statement [T-SQL]

CREATE PROCEDURE showdept @deptname varchar (30)
AS
SELECT employee.emp lname, employee.emp fname
FROM department, employee
WHERE department.dept name = @deptname
AND department.dept id = employee.dept id

The following is the corresponding Watcom-SQL procedure:

CREATE PROCEDURE showdept (in deptname
varchar (30))

RESULT (lastname char(20), firstname char (20))
ON EXCEPTION RESUME
BEGIN

SELECT employee.emp lname, employee.emp fname

FROM department, employee

WHERE department.dept name = deptname

AND department.dept id = employee.dept id
END

¢ Procedure body The body of a Transact-SQL procedure is a list of
Transact-SQL statements prefixed by the AS keyword. The body of a
Watcom-SQL procedure is a compound statement, bracketed by BEGIN
and END keywords.

Standards and ¢ SQL/92 Transact-SQL extension.

compatibility . .
¢ Sybase Anywhere supports a subset of the Adaptive Server Enterprise

CREATE PROCEDURE statement syntax.

410

Chapter 9 SQL Statements

CREATE SCHEMA statement

Function

Syntax

Permissions

Side effects

See also

Description

Standards and
compatibility

Creates a collection of tables, views, and permissions for a database user.

CREATE SCHEMA AUTHORIZATION userid

create-table-statement
| create-view-statement
| grant-statement

...
Must have RESOURCE authority.

Automatic commit.

"CREATE TABLE statement" on page 415
"CREATE VIEW statement" on page 430
"GRANT statement" on page 484

The CREATE SCHEMA statement creates a schema. A schema is a
collection of tables, views, and their associated permissions.

The userid must be the user ID of the current connection. You cannot create
a schema for another user.

If any statement contained in the CREATE SCHEMA statement fails, the
entire CREATE SCHEMA statement is rolled back.

The CREATE SCHEMA statement is simply a way of collecting together
individual CREATE and GRANT statements into one operation. There is no
SCHEMA database object created in the database, and to drop the objects
you must use individual DROP TABLE or DROP VIEW statements. To
revoke permissions, you must use a REVOKE statement for each permission
granted.

The individual CREATE or GRANT statements are not separated by
statement delimiters. The statement delimiter marks the end of the CREATE
SCHEMA statement itself.

The individual CREATE or GRANT statements must be ordered such that
the objects are created before permissions are granted on them.

Although you can currently create more than one schema for a user, this is
not recommended, and may not be supported in future releases.

¢ SQL/92 Entry level feature.

¢ Sybase Adaptive Server Anywhere does not support the use of
REVOKE statements within the CREATE SCHEMA statement, and
does not allow its use within Transact-SQL batches or procedures.

411

CREATE SCHEMA statement

Examples

412

The following CREATE SCHEMA statement creates a schema
consisting of two tables. The statement must be executed by the user ID
sample_user, who must have RESOURCE authority. If the statement
creating table t2 fails, neither table is created.

CREATE SCHEMA AUTHORIZATION sample user
CREATE TABLE tl (idl INT PRIMARY KEY)
CREATE TABLE t2 (id2 INT PRIMARY KEY) ;

The statement delimiter in the following CREATE SCHEMA statement
is placed after the first CREATE TABLE statement. As the statement
delimiter marks the end of the CREATE SCHEMA statement, the
example is interpreted as a two statement batch by the database server.
Consequently, if the statement creating table t2 fails, the table t1 is still
created.

CREATE SCHEMA AUTHORIZATION sample user
CREATE TABLE tl1 (idl INT PRIMARY KEY) ;
CREATE TABLE t2 (id2 INT PRIMARY KEY) ;

Chapter 9 SQL Statements

CREATE SERVER statement

Function

Syntax

Parameters

Permissions

Side effects

See also

Description

To add a server to the sysservers table.

CREATE SERVER server-name
CLASS 'server-class'
USING 'connection-info'

[READ ONLY]

server-class:
{ asajdbc
| asejdbc
| asaodbc
| aseodbc
| db2odbc
| mssodbc
| oraodbc
| odbc }

connection-info:
{ machine-name:port-number{/dbname] | data-source-name }

Must have RESOURCE authority.
Supported on Windows 95 and Windows NT only.
Automatic commit.

"ALTER SERVER statement" on page 349

"DROP SERVER statement" on page 457

"Server Classes for Remote Data Access" on page 761 of the book Adaptive
Server Anywhere User's Guide

The CREATE SERVER statement defines a remote server from the Adaptive
Server Anywhere catalogs.

& For more information on server classes and how to configure a server,
see "Server Classes for Remote Data Access" on page 761 of the book
Adaptive Server Anywhere User's Guide.

USING clause Ifa JDBC-based server class is used, the USING clause is
the machine-name:port-number. If an ODBC-based server class is used, the
USING clause is the data-source-name. The data-source-name is the user
Data Source Name in the Configuration Manager.

READ ONLY The READ ONLY clause specifies that the remote server is
a read-only data source. Any update request is rejected by Adaptive Server
Anywhere.

413

CREATE SERVER statement

Standards and
compatibility

Examples

414

connection-info The machine name or IP number is required. By default.
Adaptive Server Anywhere uses port 2638. The database name /dbname is
useful when creating a remote server that is of class asajdbe. If you do not
use this, then the default database is used.

The /dbname parameter is optional for asejdbec. If you don't specify it uses
master, or you can specify another database by some other means (for
example, in the FORWARD TO statement).

¢ SQL/92 Entry-level feature.
¢ Sybase Supported by Open Client/Open Server.

¢ Create an entry in the sysservers table for the JDBC-based Adaptive
Server named ase_prod. Its machine name is banana and port number is
3025.

CREATE SERVER ase prod
CLASS 'asejdbc'
USING 'banana:3025"

¢ Create an entry in the sysservers table for the Oracle server named
oracle723. Its user Data Source Name in the Configuration Manager is
also oracle723.

CREATE SERVER oracle723
CLASS 'oraodbc'
USING 'oracle723"'

Chapter 9 SQL Statements

CREATE TABLE statement

Function

Syntax

Parameters

To create a new table in the database, and (optionally) to create a table on a
remote server.

CREATE [GLOBAL TEMPORARY] TABLE [owner.]table-name
... ({ column-definition [column-constraint ...] | table-constraint}, ...)
...[{IN | ON } dbspace-name]
... [ON COMMIT { DELETE | PRESERVE } ROWS]
[AT location-string |

column-definition:
column-name data-type [NOT NULL] [DEFAULT default-value]

column-constraint:
UNIQUE
| PRIMARY KEY
| REFERENCES table-name [(column-name)] [actions]
| CHECK (condition)
| COMPUTE (expression)

default-value:
string
| global variable
| number
| AUTOINCREMENT
| CURRENT DATE
| CURRENT TIME
| CURRENT TIMESTAMP
| NULL
| USER
| (constant-expression)

table-constraint:
UNIQUE (column-name, ...))
| PRIMARY KEY (column-name, ...)
| CHECK (condition)
| foreign-key-constraint

foreign-key-constraint:
[NOT NULL] FOREIGN KEY [role-name] [(column-name, ...)]
... REFERENCES fable-name [(column-name, ...)]
... [actions][CHECK ON COMMIT]

action:
ON { UPDATE | DELETE }
...{CASCADE | SET NULL | SET DEFAULT | RESTRICT}

location-string:
remote-server-name.[db-name].[owner].object-name
| remote-server-name;[db-name];[owner];object-name

415

CREATE TABLE statement

Permissions

Side effects

See also

Description

416

Must have RESOURCE authority. To create a table for another user, you
must have DBA authority.

The AT clause to create proxy tables is supported on Windows 95 and
Windows NT only.

Automatic commit.

"DROP statement" on page 451

"ALTER TABLE statement" on page 351

"CREATE DBSPACE statement" on page 389

"CREATE EXISTING TABLE statement" on page 393

"SQL Data Types" on page 219

"Creating tables" on page 71 of the book Adaptive Server Anywhere User's
Guide

The CREATE TABLE statement creates a new table. A table can be created
for another user by specifying an owner name. [f GLOBAL TEMPORARY
is specified, the table is a temporary table. Otherwise, the table is a base
table.

A created temporary table exists in the database like a base table and remains
in the database until it is explicitly removed by a DROP TABLE statement.
The rows in a temporary table are visible only to the connection that inserted
the rows. Multiple connections from the same or different applications can
use the same temporary table at the same time, and each connection will see
only its own rows. The rows of a temporary table are deleted when the
connection ends.

IN clause The IN clause specifies in which database file (dbspace) the
table is to be created. If the table is a GLOBAL TEMPORARY table, the IN
clause is ignored.

& For more information about dbspaces, see "CREATE DBSPACE
statement" on page 389.

ON COMMIT clause The ON COMMIT clause is allowed only for
temporary tables. By default, the rows of a temporary table are deleted on
COMMIT.

The parenthesized list following the CREATE TABLE statement can contain
the following clauses in any order:

Chapter 9 SQL Statements

AT clause The AT clause is used to create a table at the remote location
specified by location-string. The local table that is created is a proxy table
that maps to the remote location. The AT clause supports the semicolon (;) as
a delimiter. If a semicolon is present anywhere in the location-string string,
the semicolon is the field delimiter. If no semicolon is present, a period is the
field delimiter. This allows filenames and extensions to be used in the
database and owner fields.

For example, the following statement maps the table al to the MS Access
file mydbfile.mdb:

CREATE TABLE al
AT 'access;d:\mydbfile.mdb;;al'

column-name data-type [NOT NULL] [DEFAULT default-value] [
column-constraint] Define a column in the table. Allowable data types
are described in "SQL Data Types" on page 219. Two columns in the same
table cannot have the same name.

If NOT NULL is specified, or if the column is in a UNIQUE or PRIMARY
KEY constraint, the column cannot contain any NULL values. If a
DEFAULT value is specified, it will be used as the value for the column in
any INSERT statement that does not specify a value for the column. If no
DEFAULT is specified, it is equivalent to DEFAULT NULL.

When using DEFAULT AUTOINCREMENT, the data type must be one of
the integer data types, or FLOAT, or DOUBLE. On INSERTs into the table,
if a value is not specified for the autoincrement column, a unique value is
generated. If a value is specified, it will be used. If the value is larger than
the current maximum value for the column, that value will be used as a
starting point for subsequent INSERTs.

Deleting rows does not decrement the autoincrement counter. Gaps created
by deleting rows can only be filled by explicit assignment when using an
insert. After an explicit insert of a row number less then the maximum,
subsequent rows without explicit assignment are still autoincremented with a
value of one greater than the previous maximum.

The next value to be used for each column is stored as a long integer (4
bytes). Using values greater than (2**31 - 1), that is, large double or numeric
values, may cause wraparound to negative values, and AUTOINCREMENT
should not be used in such cases.

For performance reasons, it is highly recommended that DEFAULT
AUTOINCREMENT be used only with columns defined as a PRIMARY
KEY, with a UNIQUE constraint; or the first column of an index. This
allows the maximum value to be found at startup time without scanning the
entire table.

417

CREATE TABLE statement

418

Constant expressions that do not reference database objects are allowed in a
DEFAULT clause, so functions such as getdate or dateadd can be used. If
the expression is not a function or simple value, it must be enclosed in
parentheses.

Column constraints are abbreviations for the corresponding table constraints.
For example, the following are equivalent:

CREATE TABLE Product (
product num integer UNIQUE
)

CREATE TABLE Product (
product num integer,
UNIQUE (product num)

)

Column constraints are normally used unless the constraint references more
than one column in the table. In these cases, a table constraint must be used.

table-constraint Table constraints help ensure the integrity of data in the
database. There are four types of integrity constraints:

¢ UNIQUE constraint Identifies one or more columns that uniquely
identify each row in the table.

¢ PRIMARY KEY constraint This is the same as a unique constraint,
except that a table can have only one primary key constraint. The
primary key usually identifies the best identifier for a row. For example,
the customer number might be the primary key for the customer table.

¢ FOREIGN KEY constraint This restricts the values for a set of
columns to match the values in a primary key or uniqueness constraint
of another table. For example, a foreign key constraint could be used to
ensure that a customer number in an invoice table corresponds to a
customer number in the customer table.

¢ CHECK constraint This allows arbitrary conditions to be verified. For
example, a check constraint could be used to ensure that a column called
Sex only contains the values M or F.

No row is allowed to fail the condition. If an INSERT or UPDATE
statement would cause a row to fail the condition, the operation is not
permitted and the effects of the statement are undone.

When is the change rejected?

The change is rejected only if the condition is FALSE; in particular,
the change is allowed if the condition is UNKNOWN. (See "NULL
value" on page 213 and "Search conditions" on page 194 for more
information about TRUE, FALSE, and UNKNOWN conditions.)

Chapter 9 SQL Statements

Integrity
constraints

¢ COMPUTE clause When a column is created using a COMPUTE
clause, its value in any row is the value of the supplied expression.
Columns created with this constraint are read-only columns.

Any UPDATE statement that attempts to change the value of a
computed column does, however, fire any triggers associated with the
column.

&> The Compute constraint is particularly useful when designing
databases using Java class data types. For more information, see "Using
computed columns with Java classes" on page 498 of the book Adaptive
Server Anywhere User's Guide.

If a statement would cause changes to the database that would violate an
integrity constraint, the statement is effectively not executed and an error is
reported. (Effectively means that any changes made by the statement before
the error was detected are undone.)

column-definition UNIQUE or UNIQUE (column-name, ...) No two
rows in the table can have the same values in all the named column(s). A
table may have more than one unique constraint.

Unique constraint versus unique index

There is a difference between a unique constraint and a unique index.
Columns in a unique index are allowed to be NULL, while columns in a
unique constraint are not. Also, the column referenced by a foreign key
can be either a primary key or a column with a unique constraint. Unique
indexes cannot be referenced, because they can include multiple NULLSs.

column-definition PRIMARY KEY, or PRIMARY KEY (column-name,
...) The primary key for the table will consist of the listed column(s), none
of which can contain any NULL values. Each row in the table has a unique
primary key value. A table can have only one PRIMARY KEY.

When PRIMARY KEY is followed by a list of columns, the primary key
includes the columns in the order in which they are defined in the original
CREATE TABLE statement, not the order in which they are listed.

column-definition REFERENCES primary-table-name
[(primary-column-name)] The column is a foreign key for the primary
key or a unique constraint in the primary table. Normally, a foreign key
would be for a primary key rather than a unique constraint. If a primary
column name is specified, it must match a column in the primary table which
is subject to a unique constraint or primary key constraint, and that constraint
must consist of only that one column. Otherwise the foreign key references
the primary key of the second table.

419

CREATE TABLE statement

420

A temporary table cannot have a foreign key that references a base table and
a base table cannot have a foreign key that references a temporary table.

[NOT NULL] FOREIGN KEY [role-name] [(...)]] REFERENCES
primary-table-name [(...)] The table contains a foreign key for the
primary key or a unique constraint in another table. Normally, a foreign key
would be for a primary key rather than a unique constraint. (In this
description, this other table will be called the primary table.)

If the primary table column names are not specified, then the primary table
columns will be the columns in the table's primary key. If foreign key
column names are not specified then the foreign key columns will have the
same names as the columns in the primary table. If foreign key column
names are specified, then the primary key column names must be specified,
and the column names are paired according to position in the lists.

Any foreign key column not explicitly defined will automatically be created
with the same data type as the corresponding column in the primary table.
These automatically created columns cannot be part of the primary key of the
foreign table. Thus, a column used in both a primary key and foreign key of
the same table must be explicitly created.

A NULL foreign key means that no row in the primary table corresponds to
this row in the foreign table.

The role name is the name of the foreign key. The main function of the role
name is to distinguish two foreign keys to the same table. If no role name is
specified, the role name is assigned as follows:

1 If'there is no foreign key with a role name the same as the table name,
the table name is assigned as the role name.

2 If'the table name is already taken, the role name is the table name
concatenated with a zero-padded three-digit number unique to the table.

The referential integrity action defines the action to be taken to maintain
foreign key relationships in the database. Whenever a primary key value is
changed or deleted from a database table, there may be corresponding
foreign key values in other tables that should be modified in some way. You
can specify either an ON UPDATE clause, an ON DELETE clause, or both,
followed by one of the following actions:

CASCADE When used with ON UPDATE, updates the corresponding
foreign keys to match the new primary key value. When used with ON
DELETE, deletes the rows from the foreign table that match the deleted
primary key.

SET NULL Sets to NULL all the foreign key values that correspond to the
updated or deleted primary key.

Chapter 9 SQL Statements

Remote tables

Standards and
compatibility

SET DEFAULT Sets foreign key values that match the updated or deleted
primary key value to values specified on the DEFAULT clause of each
foreign key column.

RESTRICT Generates an error if an attempt is made to update or delete a
primary key value while there are corresponding foreign keys elsewhere in
the database. This is the default action.

The CHECK ON COMMIT clause causes the database to wait for a
COMMIT before checking the referential integrity of inserts and RESTRICT
actions on this foreign key, overriding the setting of the

WAIT_FOR _COMMIT database option. The CHECK ON COMMIT clause
does not delay CASCADE, SET NULL, or SET DEFAULT actions.

If you use CHECK ON COMMIT with out specifying any actions, then
RESTRICT is implied as an action for UPDATE and DELETE.

A temporary table cannot have a foreign key that references a base table and
a base table cannot have a foreign key that references a temporary table.

¢ Foreign key definitions are ignored on remote tables. Foreign key
definitions on local tables that refer to remote tables are also ignored.
Primary key definitions will be sent to the remote server if the server
supports it.

¢ The COMPUTE clause is not supported for remote tables and will be
ignored. You may however perform a CREATE EXISTING TABLE
against remote tables that contain COMPUTE clause.

¢ SQL/92 Entry level feature.
The following are vendor extensions:
¢ The { IN| ON } dbspace-name clause.
¢ The ON COMMIT clause
¢ Some of the default values.

¢ Sybase Supported by Adaptive Server Enterprise, with some
differences.

¢ Temporary tables You can create a temporary table by preceding
the table name in a CREATE TABLE statement with a pound sign
(#). In Adaptive Server Anywhere, these are declared temporary
tables, which are available only in the current connection. For
information, see "DECLARE LOCAL TEMPORARY TABLE
statement" on page 441.

421

CREATE TABLE statement

¢ Physical placement Physical placement of a table is carried out
differently in Adaptive Server Anywhere and in Adaptive Server
Enterprise. The ON segment-name clause supported by Adaptive
Server Enterprise is supported in Adaptive Server Anywhere, but
segment-name refers to a dbspace name.

¢ Constraints Adaptive Server Anywhere does not support named
constraints or named defaults, but does support user-defined data
types which allow constraint and default definitions to be
encapsulated in the data type definition. It also supports explicit
defaults and CHECK conditions in the CREATE TABLE statement.

¢ NULL default By default, columns in Adaptive Server Enterprise
default to NOT NULL, whereas in Adaptive Server Anywhere the
default setting is NULL, to allow NULL values. This setting can be
controlled using the allow_nulls_by default option. For
information on this option, see "ALLOW _NULLS BY DEFAULT
option" on page 140. You should explicitly specify NULL or NOT
NULL to make your data definition statements transferable.

Examples ¢ Create a table for a library database to hold book information.

CREATE TABLE library books (
—-— NOT NULL is assumed for primary key columns

isbn CHAR (20) PRIMARY KEY,
copyright date DATE,

title CHAR(100),
author CHAR (50),

-— column(s) corresponding to primary key of room
-— will be created

FOREIGN KEY location REFERENCES room

)

¢ Create a table for a library database to hold information on borrowed
books.

CREATE TABLE borrowed book (

-— Default on insert is that book is borrowed today
date borrowed DATE NOT NULL DEFAULT CURRENT DATE,
—-- date returned will be NULL until the book is

returned
date returned DATE,
book CHAR (20)

REFERENCES library books (isbn),
—-— The check condition is UNKNOWN until
-— the book is returned, which is allowed
CHECK(date returned >= date borrowed)
)

¢ Create tables for a sales database to hold order and order item
information.

422

Chapter 9 SQL Statements

CREATE TABLE Orders (

order num INTEGER NOT NULL PRIMARY KEY,
date ordered DATE,

name CHAR (80)

) i

CREATE TABLE Orderiitem (
Order_num, INTEGER NOT NULL,
itemﬁnum SMALLINT NOT NULL,
PRIMARY KEY (order num, item num),
—-— When an order is deleted, delete all of its
-— items.
FOREIGN KEY (order num)
REFERENCES Orders (order num)
ON DELETE CASCADE
)

Creates a table named t1 at the remote server SERVER A and creates a
proxy table named t1 that is mapped to the remote table.

CREATE TABLE t1
(a INT,
b CHAR(10))
AT 'SERVER A.dbl.joe.tl'

423

CREATE TRIGGER statement

CREATE TRIGGER statement

Function

Syntax

Parameters

Permissions

Side effects

See also

Description

424

To create a new trigger in the database.

CREATE TRIGGER frigger-name trigger-time trigger-event [, trigger-event,..]
... | ORDER integer] ON table-name
... | REFERENCING [OLD AS old-name]
[NEW AS new-name]]
[REMOTE AS remote-name] |
...[FOR EACH { ROW | STATEMENT }]
... [WHEN (search-condition)]
... [IF UPDATE (column-name) THEN
..[{ AND | OR } UPDATE (column-name)] ...]
... compound-statement
... [ELSEIF UPDATE (column-name) THEN
..[{ AND | OR } UPDATE (column-name)] ...
... compound-statement
... ENDIF]]

trigger-time:
BEFORE | AFTER | RESOLVE

trigger-event:
DELETE | INSERT | UPDATE | UPDATE OF column-list

Must have RESOURCE authority and have ALTER permissions on the table,
or must have DBA authority. CREATE TRIGGER puts a table lock on the
table, and thus requires exclusive use of the table.

Automatic commit.

"BEGIN... END statement" on page 361

"CREATE PROCEDURE statement" on page 403

"DROP statement" on page 451

"Using Procedures, Triggers, and Batches" on page 221 of the book Adaptive
Server Anywhere User's Guide

The CREATE TRIGGER statement creates a trigger associated with a table
in the database, and stores the trigger in the database.

Triggers can be triggered by one or more of the following events:

¢ INSERT Invoked whenever a new row is inserted into the table
associated with the trigger.

¢ DELETE Invoked whenever a row of the associated table is deleted.
¢ UPDATE Invoked whenever a row of the associated table is updated.

¢ UPDATE OF column-list Invoked whenever a row of the associated
table is updated and a column in the column-list has been modified.

Chapter 9 SQL Statements

Row and
statement-level
triggers

Order of firing

Referencing
deleted and
inserted values

The trigger is declared as either a row-level trigger, in which case it executes
before or after each row is modified, or as a statement-level trigger, in which
case it executes after the entire triggering statement is completed.

Row-level triggers can be defined to execute BEFORE or AFTER the insert,
update, or delete. Statement-level triggers execute AFTER the statement.
The RESOLVE trigger time is for use with SQL Remote; it fires before row-
level UPDATE or UPDATE OF column-lists only.

To declare a trigger as a row-level trigger, use the FOR EACH ROW clause.
To declare a trigger as a statement-level trigger, you can either use a FOR
EACH STATEMENT clause or omit the FOR EACH clause. For clarity, it is
recommended that you enter the FOR EACH STATEMENT clause if
declaring a statement-level trigger.

The WHEN (search-condition) clause can only be used with row level
triggers.

Triggers of the same type (insert, update, or delete) that fire at the same time
(before, after, or resolve) can use the ORDER clause to determine the order
that the triggers are fired.

The REFERENCING OLD and REFERENCING NEW clauses allow you to
refer to the deleted and inserted rows. For the purposes of this clause, an
UPDATE is treated as a delete followed by an insert.

The REFERENCING REMOTE clause is for use with SQL Remote. It
allows you to refer to the values in the VERIFY clause of an UPDATE
statement. It should be used only with RESOLVE UPDATE or RESOLVE
UPDATE OF column-list triggers.

The meaning of REFERENCING OLD and REFERENCING NEW differs,
depending on whether the trigger is a row-level or a statement-level trigger.
For row-level triggers, the REFERENCING OLD clause allows you to refer
to the values in a row prior to an update or delete, and the REFERENCING
NEW clause allows you to refer to the inserted or updated values. The OLD
and NEW rows can be referenced in BEFORE and AFTER triggers. The
REFERENCING NEW clause allows you to modify the new row in a
BEFORE trigger before the insert or update operation takes place.

For statement-level triggers, the REFERENCING OLD and
REFERENCING NEW clauses refer to declared temporary tables holding
the old and new values of the rows. The default names for these tables are
deleted and inserted.

The WHEN clause causes the trigger to fire only for rows where the search-
condition evaluates to true. The WHEN clause can be used only with row
level triggers.

425

CREATE TRIGGER statement

Updating values
with the same
value

Standards and
compatibility

Example

426

BEFORE UPDATE triggers fire any time an UPDATE occurs on a row,
whether or not the new value differs from the old value. AFTER UPDATE
triggers fire only if the new value is different from the old value.

¢ SQL/92 Persistent stored module feature. Some clauses are vendor
extensions.

¢ Sybase This syntax is different to that supported by Adaptive Server
Enterprise.

¢ When a new department head is appointed, update the manager_id
column for employees in that department.

CREATE TRIGGER
tr manager BEFORE UPDATE OF dept head id ON
department
REFERENCING OLD AS old dept
NEW AS new dept
FOR EACH ROW
BEGIN
UPDATE employee
SET employee.manager id=new dept.dept head id
WHERE employee.dept id=old dept.dept id
END

Chapter 9 SQL Statements

CREATE TRIGGER statement [T-SQL]

Function

Syntax 1

Syntax 2

Description

Standards and
compatibility

To create a new procedure in the database in a manner compatible with
Adaptive Server Enterprise.

CREATE TRIGGER [owner.]trigger_name
.. ON [owner.]table_name
.. FOR {INSERT , UPDATE , DELETE }
... AS
statement-list

CREATE TRIGGER [owner.]trigger_name
. ON [owner.]table_name
... FOR{INSERT , UPDATE}
... AS
... [IF UPDATE (column_name)
. [{ AND | OR} UPDATE (column_name)] ...]
e statement-list
... [IF UPDATE (column_name)
. [{ AND | OR} UPDATE (column_name)] ...]
statement-list

The rows deleted or inserted are held in two declared temporary tables
given the default names deleted, and inserted, as in Adaptive Server
Enterprise.

In Adaptive Server Enterprise, trigger names must be unique in the
database. In Adaptive Server Anywhere, trigger names must be unique
for a given owner. For compatible databases, you should make trigger
names unique in the database.

Transact-SQL triggers are executed after the triggering statement.

SQL/92 Transact-SQL extension.

Sybase Anywhere supports a subset of the Adaptive Server Enterprise
syntax.

427

CREATE VARIABLE statement

CREATE VARIABLE statement

Function
Syntax
Permissions
Side effects

See also

Description

Standards and
compatibility

Example

428

To create a SQL variable.

CREATE VARIABLE identifier data-type
None.

None.

"BEGIN... END statement" on page 361
"SQL Data Types" on page 219

"DROP VARIABLE statement" on page 459
"SET statement" on page 546

The CREATE VARIABLE statement creates a new variable of the specified
data type. The variable contains the NULL value until it is assigned a
different value by the SET VARIABLE statement.

A variable can be used in a SQL statement anywhere a column name is
allowed. If column name matches the identifier, Adaptive Server Anywhere
checks to see if there is a variable that matches and uses its value.

Variables belong to the current connection, and disappear when you
disconnect from the database or when you use the DROP VARIABLE
statement. Variables are not visible to other connections. Variables are not
affected by COMMIT or ROLLBACK statements.

Variables are useful for creating large text or binary objects for INSERT or
UPDATE statements from Embedded SQL programs.

Variables created by CREATE VARIABLE can be used in any SQL
statement or in any procedure or trigger.

Local variables in procedures and triggers are declared within a compound
statement (see "Using compound statements" on page 239 of the book
Adaptive Server Anywhere User's Guide).

¢ SQL/92 Vendor extension.

¢ Sybase Not supported by Adaptive Server Enterprise.

¢ The following code fragment could be used to insert a large text value
into the database.

EXEC SQL BEGIN DECLARE SECTION;
char buffer[5000];
EXEC SQL END DECLARE SECTION;
EXEC SQL CREATE VARIABLE hold_blob LONG VARCHAR;
EXEC SQL SET hold blob = '';
for(;;) {
/* read some data into buffer ... */

Chapter 9 SQL Statements

size = fread(buffer, 1, 5000, fp);

if(size <= 0) break;

/* add data to blob using concatenation

Note that concatenation works for binary

data too! */

EXEC SQL SET hold blob = hold blob || :buffer;
}
EXEC SQL INSERT INTO some table VALUES (1,

hold blob);
EXEC SQL DROP VARIABLE hold blob;

429

CREATE VIEW statement

CREATE VIEW statement

Function

Syntax

Permissions

Side effects

See also

Description

Standards and
compatibility

430

To create a view on the database. Views are used to give a different
perspective on the data, even though it is not stored that way.

CREATE VIEW
... [owner.Jview-name [(column-name, ...)]
... AS select-without-order-by
... [WITH CHECK OPTION]

Must have RESOURCE authority and SELECT permission on the tables in
the view definition.

Automatic commit.

"DROP statement" on page 451
"CREATE TABLE statement" on page 415

The CREATE VIEW statement creates a view with the given name. You can
create a view owned by another user by specifying the owner. You must
have DBA authority to create a view for another user.

A view name can be used in place of a table name in SELECT, DELETE,
UPDATE, and INSERT statements. Views, however, do not physically exist
in the database as tables. They are derived each time they are used. The view
is derived as the result of the SELECT statement specified in the CREATE
VIEW statement. Table names used in a view should be qualified by the user
ID of the table owner. Otherwise, a different user ID might not be able to
find the table or might get the wrong table.

The columns in the view are given the names specified in the column name
list. If the column name list is not specified, the view columns are given
names from the select list items. In order to use the names from the select list
items, each item must be a simple column name or have an alias-name
specified (see "SELECT statement" on page 542).

Views can be updated unless the SELECT statement defining the view
contains a GROUP BY clause, an aggregate function, or involves a UNION
operation. An update to the view causes the underlying table(s) to be
updated.

The WITH CHECK OPTION clause rejects any updates and inserts to the
view that do not meet the criteria of the views as defined by its SELECT
statement.

The SELECT statement must not have an ORDER BY clause on it. It may
have a GROUP BY clause and may be a UNION.

¢ SQL/92 Entry level feature.
¢ Sybase Supported by Adaptive Server Enterprise.

Chapter 9 SQL Statements

Examples ¢ Create a view showing information for male employees only. This view
has the same column names as the base table.

CREATE VIEW male employee
AS SELECT *

FROM Employee

WHERE Sex = 'M'

¢ Create a view showing employees and the departments they belong to.

CREATE VIEW emp dept

AS SELECT emp lname, emp fname, dept name
FROM Employee JOIN Department

ON Employee.dept id = Department.dept id

431

CREATE WRITEFILE statement

CREATE WRITEFILE statement

Function

Syntax

Parameters

Permissions

Side effects

See also

Description

Standards and
compatibility

Example

432

To create a write file for a database.

CREATE WRITEFILE write-file-name
... FOR DATABASE db-file-name
... [LOG OFF | LOG ON [log-file-name [MIRROR mirrorfile-name 1] 1

write-file-name | db-file-name | log-file-name | mirror-file-name :
'file-name’

The permissions required to execute this statement are set on the server
command line, using the —gu command-line option. The default setting is to
require DBA authority.

The account under which the server is running must have write permissions
on the directories where files are created.

Not supported on Windows CE.

An operating system file is created.

"CREATE DATABASE statement" on page 385

"The Write File utility" on page 121

"Working with write files" on page 618 of the book Adaptive Server
Anywhere User's Guide

Creates a database write file with the supplied name and attributes.

The file names (write-file-name, db-file-name, log-file-name, mirror-file-
name) are strings containing operating system file names. As literal strings,
they must be enclosed in single quotes. If you specify a path, any backslash
characters (\) must be doubled according to the rules for strings in SQL.

If you specify no path, or a relative path, the file is created relative to the
current working directory of the server.

You cannot create a write file for a database that is currently loaded.
¢ SQL/92 Vendor extension.

¢ Sybase Adaptive Server Enterprise provides a CREATE DATABASE
statement, but with different options.

¢ The following statement creates a write file..

CREATE WRITEFILE 'c:\\sybase\\my db.wrt'
FOR DATABASE 'c:\\sybase\\my db.db'
LOG ON 'e:\\logdrive\\my db.log'

Chapter 9 SQL Statements

DEALLOCATE DESCRIPTOR statement [ESQL]

Function
Syntax
Permissions
Side effects

See also

Description

Standards and
compatibility

Example

Frees memory associated with a SQL descriptor area.
DEALLOCATE DESCRIPTOR descriptor-name
None.

None.

"ALLOCATE DESCRIPTOR statement" on page 342

"The SQL descriptor area (SQLDA)" on page 45 of the book Adaptive Server
Anywhere Programming Interfaces Guide

"SET DESCRIPTOR statement" on page 552

Frees all memory associated with a descriptor area, including the data items,
indicator variables, and the structure itself.

¢+ SQL/92 Entry-level feature.
¢ Sybase Supported by Open Client/Open Server.

¢ For an example, see "ALLOCATE DESCRIPTOR statement" on page
342.

433

Declaration section [ESQL]

Declaration section [ESQL]

Function

Syntax

Permissions
See also

Description

Standards and
compatibility

Examples

434

To declare host variables in an Embedded SQL program. Host variables are
used to exchange data with the database.

EXEC SQL BEGIN DECLARE SECTION;
...C declarations
EXEC SQL END DECLARE SECTION;

None.
"BEGIN... END statement" on page 361

A declaration section is simply a section of C variable declarations
surrounded by the BEGIN DECLARE SECTION and END DECLARE
SECTION statements. A declaration section makes the SQL preprocessor
aware of C variables that will be used as host variables. Not all C
declarations are valid inside a declaration section. See "Using host variables"
on page 20 of the book Adaptive Server Anywhere Programming Interfaces
Guide for more information.

¢ SQL/92
¢ Sybase

EXEC SQL BEGIN DECLARE SECTION;
char *emp lname, initials([5];
int dept;

EXEC SQL END DECLARE SECTION;

Chapter 9 SQL Statements

DECLARE statement

Function
Syntax

Description

Standards and
compatibility

Examples

To declare a SQL variable within a compound statement (BEGIN... END).
DECLARE variable_name data-type

Variables used in the body of a procedure or trigger can be declared using
the DECLARE statement. The variable persists for the duration of the
compound statement in which it is declared.

The body of a Watcom-SQL procedure or trigger is a compound statement,
and variables must be declared immediately following BEGIN. In a
Transact-SQL procedure or trigger, there is no such restriction.

¢ SQL/92 Persistent Stored Module feature.
¢ Sybase Supported by Adaptive Server Enterprise.

¢ To be compatible with Adaptive Server Enterprise, the variable
name must be preceded by an @.

¢ In Adaptive Server Enterprise, a variable that is declared in a
procedure or trigger exists for the duration of the procedure or
trigger. In Adaptive Server Anywhere, if a variable is declared
inside a compound statement, it exists only for the duration of that
compound statement (whether it is declared in a Watcom-SQL or
Transact-SQL compound statement).

¢ The following batch illustrates the use of the DECLARE statement and
prints a message on the server window:

BEGIN
DECLARE varname CHAR(61) ;
SET varname = 'Test name';
MESSAGE name;

END

435

DECLARE CURSOR statement [ESQL] [SP]

DECLARE CURSOR statement [ESQL] [SP]

Function

Syntax

Parameters

Permissions
Side effects

See also

Description

436

To declare a cursor. Cursors are the primary means for manipulating the
results of queries.

DECLARE cursor-name
[UNIQUE
| SCROLL
| NO SCROLL
| DYNAMIC SCROLL
| INSENSITIVE]
CURSOR FOR statement | CURSOR FOR statement-name
[FOR UPDATE | FOR READ ONLY]

cursor-name: identifier
statement-name: identifier or host-variable
None.

None.

"PREPARE statement" on page 519
"OPEN statement" on page 511
"EXPLAIN statement" on page 466
"SELECT statement" on page 542
"CALL statement" on page 367

The DECLARE CURSOR statement declares a cursor with the specified
name for a SELECT statement or a CALL statement.

When a cursor is declared UNIQUE, the query is forced to return all the
columns required to uniquely identify each row. Often this will mean
ensuring that all of the columns in the primary key or a uniqueness table
constraint are returned. Any columns that are required but were not specified
will be added.

A DESCRIBE done on a UNIQUE cursor sets the following additional flags
in the indicator variables:

¢ DT KEY COLUMN The column is part of the key for the row

¢ DT HIDDEN COLUMN The column was added to the query,
because it was required to uniquely identify the rows

A cursor declared FOR READ ONLY may not be used in an UPDATE
(positioned) or a DELETE (positioned) operation. FOR UPDATE is the
default.

Chapter 9 SQL Statements

A cursor declared NO SCROLL is restricted to FETCH NEXT and FETCH
RELATIVE 0 seek operations. A cursor declared SCROLL or DYNAMIC
SCROLL can use all formats of the FETCH statement. DYNAMIC SCROLL
is the default.

SCROLL cursors behave differently from DYNAMIC SCROLL cursors
when a row in the cursor is modified or deleted after the first time the row is
read. SCROLL cursors have more predictable behavior when changes
happen.

Each row fetched in a SCROLL cursor is remembered. If one of these rows
is deleted, either by your program or by another program in a multiuser
environment, it creates a "hole" in the cursor. If you fetch the row at this
"hole" with a SCROLL cursor, Adaptive Server Anywhere returns the error
SQLE NO CURRENT ROW indicating that the row has been deleted, and
leaves the cursor positioned on the "hole". (A DYNAMIC SCROLL cursor
will just skip the "hole" and retrieve the next row.)

This allows your application to remember row positions within a cursor and
be assured that these positions will not change. For example, an application
could remember that Cobb is the second row in the cursor for SELECT *
FROM employee. If the first employee (Whitney) is deleted while the
SCROLL cursor is still open, FETCH ABSOLUTE 2 will still position on
Cobb while FETCH ABSOLUTE 1 will return

SQLE NO CURRENT_ ROW. Similarly, if the cursor is on Cobb, FETCH
PREVIOUS will return SQLE NO CURRENT _ROW.

In addition, a fetch on a SCROLL cursor will return the warning

SQLE ROW_UPDATED WARNING if the row has changed since it was
last read. (The warning only happens once; fetching the same row a third
time will not produce the warning.) Similarly, an UPDATE (positioned) or
DELETE (positioned) statement on a row that has been modified since it was
last fetched will return the error SQLE_ ROW_UPDATED SINCE READ
and abort the statement. An application must FETCH the row again before
the UPDATE or DELETE will be permitted.

Note that an update to any column will cause the warning/error, even if the
column is not referenced by the cursor. For example, a cursor on Surname
and Initials would report the update even if only the Birthdate column were
modified. These update warning and error conditions will not occur in bulk
operations mode (-b database server statement line switch) when row
locking is disabled. See "Tuning bulk loading of data" on page 287 of the
book Adaptive Server Anywhere User's Guide.

437

DECLARE CURSOR statement [ESQL] [SP]

Embedded SQL

Standards and
compatibility

Examples

438

Adaptive Server Anywhere maintains more information about SCROLL
cursors than DYNAMIC SCROLL cursors; thus, DYNAMIC SCROLL
cursors are more efficient and should be used unless the consistent behavior
of SCROLL cursors is required. There is no extra overhead in Adaptive
Server Anywhere for DYNAMIC SCROLL cursors versus NO SCROLL
cursors.

A cursor declared INSENSITIVE has its membership fixed when it is
opened; a temporary table is created with a copy of all the original rows.
FETCHING from an INSENSITIVE cursor does not see the effect of any
other INSERT, UPDATE, or DELETE statement, or any other PUT,
UPDATE WHERE CURRENT, DELETE WHERE CURRENT operations
on a different cursor. It does see the effect of PUT, UPDATE WHERE
CURRENT, DELETE WHERE CURRENT operations on the same cursor.

INSENSITIVE cursors make it easier to write an application that deals with
cursors, since you only have to worry about changes you make explicitly to
the cursor; you do not have to worry about actions taken by other users or by
other parts of your application.

INSENSITIVE cursors can be expensive if the cursor is on a lot of rows.
Also, INSENSITIVE cursors are not affected by ROLLBACK or
ROLLBACK TO SAVEPOINT; the ROLLBACK is not an operation on the
cursor that changes the cursor contents.

INSENSITIVE cursors meet the ODBC requirements for static cursors.

Statements are named using the PREPARE statement. Cursors can be
declared only for a prepared SELECT or CALL.

The DECLARE CURSOR statement does not generate any C code.
Cursor-name is a string supplied by the programmer.

¢ SQL/92 Entry level feature.

¢ Sybase Supported by Open Client/Open Server.

¢ The following example illustrates how to declare a scroll cursor in
Embedded SQL:

EXEC SQL DECLARE cur employee SCROLL CURSOR
FOR SELECT * FROM employee ;

¢ The following example illustrates how to declare a cursor for a prepared
statement in Embedded SQL:

EXEC SQL PREPARE employee statement
FROM 'SELECT emp lname FROM employee' ;
EXEC SQL DECLARE cur employee CURSOR
FOR employee statement ;

Chapter 9 SQL Statements

¢ The following example illustrates the use of cursors in a stored
procedure:

BEGIN
DECLARE cur employee CURSOR FOR
SELECT emp lname
FROM employee ;
DECLARE name CHAR (40) ;
OPEN cur employee;
LOOP
FETCH NEXT cur employee INTO name ;

END LOOP

CLOSE cur employee;
END

439

DECLARE CURSOR statement [T-SQL]

DECLARE CURSOR statement [T-SQL]

Function

Syntax

Permissions
Side effects
See also

Description

Standards and
compatibility

440

To declare a cursor in a manner compatible with Adaptive Server Enterprise.

DECLARE cursor-name
... CURSOR FOR select-statement
...l FOR{READ ONLY | UPDATE }]

None.
None.
"DECLARE CURSOR statement" on page 436

Adaptive Server Anywhere supports a DECLARE CURSOR syntax that is
not supported in Enterprise. For information on the full DECLARE
CURSOR syntax, see "DECLARE CURSOR statement" on page 436.

This section describes the overlap between the Adaptive Server Anywhere
and Enterprise flavors of DECLARE CURSOR.

¢ SQL/92 Entry-level compliant. The FOR UPDATE and FOR READ
ONLY options are Transact-SQL extensions.

¢ Sybase There are some features of the Adaptive Server Enterprise
DECLARE CURSOR statement that are not supported in Adaptive
Server Anywhere.

¢ Adaptive Server Enterprise supports cursors opened for update of a
list of columns from the tables specified in the select-statement.
This is not supported in Adaptive Server Anywhere.

¢ Inthe Watcom-SQL dialect, a DECLARE CURSOR statement in a
procedure, trigger, or batch must immediately follow the BEGIN
keyword. In the Transact-SQL dialect, there is no such restriction.

¢ In Adaptive Server Enterprise, when a cursor is declared in a
procedure, trigger, or batch, it exists for the duration of the
procedure, trigger, or batch. In Adaptive Server Anywhere, if a
cursor is declared inside a compound statement, it exists only for
the duration of that compound statement (whether it is declared in a
Watcom-SQL or Transact-SQL compound statement).

¢ CURSOR type and CURSOR FOR statement name are not
supported in Adaptive Server Anywhere.

Chapter 9 SQL Statements

DECLARE LOCAL TEMPORARY TABLE
statement

Function To declare a local temporary table.

Syntax DECLARE LOCAL TEMPORARY TABLE table-name
... ({ column-definition [column-constraint ...] | table-constraint}, ...)
...[ON COMMIT { DELETE | PRESERVE } ROWS]

Permissions None.
Side effects None.
See also "CREATE TABLE statement" on page 415

"Using compound statements" on page 239 of the book Adaptive Server
Anywhere User's Guide

Description The DECLARE LOCAL TEMPORARY TABLE statement declares a
temporary table. See "CREATE TABLE statement" on page 415 for
definitions of column-definition, column-constraint, and table-constraint.

Declared local temporary tables within compound statements exist within the
compound statement. (See "Using compound statements" on page 239 of the
book Adaptive Server Anywhere User's Guide). Otherwise, the declared local
temporary table exists until the end of the connection.

By default, the rows of a temporary table are deleted on COMMIT.

Standards and ¢ 8SQL/92 Conforms to the SQL/92 standard.
compatibility . .
¢ Sybase Adaptive Server Enterprise does not support DECLARE
TEMPORARY TABLE.
Examples ¢ The following example illustrates how to declare a temporary table in

Embedded SQL:

EXEC SQL DECLARE LOCAL TEMPORARY TABLE MyTable (
number INT
)i

¢ The following example illustrates how to declare a temporary table in a
stored procedure:

BEGIN
DECLARE LOCAL TEMPORARY TABLE TempTab (
number INT
)i
END

441

DELETE statement

DELETE statement

Function

Syntax

Permissions
Side effects

See also

Description

Correlation name
resolution

442

To delete rows from the database.

DELETE [FROM] [owner.]table-name
... [FROM table-list]
... [WHERE search-condition)

Must have DELETE permission on the table.
None.

"TRUNCATE TABLE statement" on page 568
"INSERT statement" on page 498

"INPUT statement" on page 494

"FROM clause" on page 476

The DELETE statement deletes all the rows from the named table that satisfy
the search condition. If no WHERE clause is specified, all rows from the
named table are deleted.

The DELETE statement can be used on views, provided the SELECT
statement defining the view has only one table in the FROM clause and does
not contain a GROUP BY clause, an aggregate function, or involve a
UNION operation.

& For a full description of the FROM clause and joins, see "FROM
clause" on page 476.

The optional second FROM clause in the DELETE statement allows rows to
be deleted based on joins. If the second FROM clause is present, the
WHERE clause qualifies the rows of this second FROM clause. Rows are
deleted from the table name given in the first FROM clause.

The following statement illustrates a potential ambiguity in table names in
DELETE statements with two FROM clauses that use correlation names:

DELETE

FROM table 1

FROM table 1 AS alias 1, table 2 AS alias 2
WHERE ...

The table table 1 is identified without a correlation name in the first FROM
clause, but with a correlation name in the second FROM clause. In this case,
table 1 in the first clause is identified with alias_1 in the second clause—
there is only one instance of table 1 in this statement.

This is an exception to the general rule that where a table is identified with a
correlation name and without a correlation name in the same statement, two
instances of the table are considered.

Chapter 9 SQL Statements

Standards and
compatibility

Examples

Consider the following example:

DELETE

FROM table 1

FROM table 1 AS alias 1, table 1 AS alias 2
WHERE ...

In this case, there are two instances of table 1 in the second FROM clause.
In this case, there is no way of identifying which instance the first FROM
clause should be identified with. The usual rules of correlation names apply,
and table_1 in the first FROM clause is identified with neither instance in
the second clause: there are three instances of table_1 in the statement.

Internally, PowerBuilder processes DELETE, INSERT, and UPDATE
statements the same way. PowerBuilder inspects them for any PowerBuilder
variable references and replaces all references with a constant that conforms
to Adaptive Server Anywhere rules for the data type.

¢ SQL/92 Entry level compliant. The use of more than one table in the
FROM clause is a vendor extension.

¢ Sybase Supported by Adaptive Server Enterprise, including the
vendor extension.

¢ Remove employee 105 from the database.

DELETE
FROM employee
WHERE emp id = 105

¢ Remove all data prior to 1993 from the fin_data table.

DELETE
FROM fin data
WHERE year < 1993

¢ Remove all names from the contact table if they are already present in
the customer table.

DELETE

FROM contact

FROM contact, customer

WHERE contact.last name = customer.lname
AND contact.first name = customer.fname

443

DELETE (positioned) statement [ESQL] [SP]

DELETE (positioned) statement [ESQL] [SP]

Function

Syntax

Parameters

Permissions
Side effects

See also

Description

Name resolution

Standards and
compatibility

444

To delete the data at the current location of a cursor.

DELETE [FROM table-spec]
...WHERE CURRENT OF cursor-name

cursor-name: identifier or host-variable

table-spec: [owner.]Jcorrelation-name

owner. identifier

Must have DELETE permission on tables used in the cursor.

None.

"UPDATE statement" on page 572

"UPDATE (positioned) statement" on page 575
"INSERT statement" on page 498

"PUT statement" on page 524

This form of the DELETE statement deletes the current row of the specified
cursor. The current row is defined to be the last row fetched from the cursor.

The table from which rows are deleted is determined as follows:

¢ Ifno FROM clause is included, the cursor must be on a single table
only.

¢ Ifthe cursor is for a joined query (including using a view containing a
join), then the FROM clause must be used. Only the current row of the
specified table is deleted. The other tables involved in the join are not
affected.

¢ Ifa FROM clause is included, and no table owner is specified, the table-
spec value is first matched against any correlation names.

¢ Ifa correlation name exists, the table-spec value is identified with
the correlation name.

¢ Ifa correlation name does not exist, the table-spec value must be
unambiguously identifiable as a table name in the cursor.

¢ Ifa FROM clause is included, and a table owner is specified, the table-
spec value must be unambiguously identifiable as a table name in the
Cursor.

¢ The positioned DELETE statement can be used on a cursor open on a
view as long as the view is updatable.

¢ SQL/92 Entry level feature.

Chapter 9 SQL Statements

¢ Sybase Embedded SQL use is supported by Open Client/Open

Server, and procedure and trigger use is supported only in Adaptive
Server Anywhere.

Example ¢ The following statement removes the current row from the database.

DELETE
WHERE CURRENT OF cur employee

445

DESCRIBE statement [ESQL]

DESCRIBE statement [ESQL]

Function

Syntax

Parameters

Permissions
Side effects

See also

Description

446

To get information about the host variables required to store data retrieved
from the database, or host variables used to pass data to the database.

DESCRIBE
...[| USERTYPES]
...[ALL | BIND VARIABLES FOR |
INPUT | OUTPUT | SELECT LIST FOR]
[LONG NAMES [/long-name-spec] | WITH VARIABLE RESULT]
[FOR] { statement-name | CURSOR cursor-name }
INTO sqlda-name

long-name-spec:
OWNER.TABLE.COLUMN | TABLE.COLUMN | COLUMN

statement-name: identifier, or host-variable

cursor-name: declared cursor
sqlda-name: identifier

None.

None.

"ALLOCATE DESCRIPTOR statement" on page 342
"DECLARE CURSOR statement" on page 436
"OPEN statement" on page 511

"PREPARE statement" on page 519

The DESCRIBE statement sets up the named SQLDA to describe either the
OUTPUT (equivalently SELECT LIST) or the INPUT (BIND
VARIABLES) for the named statement.

In the INPUT case, DESCRIBE BIND VARIABLES does not set up the data
types in the SQLDA: this needs to be done by the application. The ALL
keyword allows you to describe INPUT and OUTPUT in one SQLDA.

If you specify a statement name, the statement must have been previously
prepared using the PREPARE statement with the same statement name and
the SQLDA must have been previously allocated (see the "ALLOCATE
DESCRIPTOR statement" on page 342).

If you specify a cursor name, the cursor must have been previously declared
and opened. The default action is to describe the OUTPUT. Only SELECT
statements and CALL statements have OUTPUT. A DESCRIBE OUTPUT
on any other statement will indicate no output by setting the sqld field of the
SQLDA to zero.

Chapter 9 SQL Statements

USER TYPES A DESCRIBE statement with the USER TYPES clause
returns information about user-defined data types of a column. Typically,
such a DESCRIBE will be done when a previous DESCRIBE returns an
indicator of DT HAS USERTYPE INFO.

The information returned is the same as for a DESCRIBE without the USER
TYPES keywords, except that the sqlname field holds the name of the user-
defined data type, instead of the name of the column.

If the DESCRIBE uses the LONG NAMES clause, the sqldata field holds
this information.

SELECT The DESCRIBE OUTPUT statement fills in the data type and
length for each select list item in the SQLDA. The name field is also filled in
with a name for the select list item. If an alias is specified for a select list
item, the name will be that alias. Otherwise, the name will be derived from
the select list item: if the item is a simple column name, it will be used;
otherwise, a substring of the expression will be used. DESCRIBE will also
put the number of select list items in the sqld field of the SQLDA.

If the statement being described is a UNION of two or more SELECT
statements, the column names returned for DESCRIBE OUTPUT are the
same column names which would be returned for the first SELECT
statement.

CALL The DESCRIBE OUTPUT statement fills in the data type, length,
and name in the SQLDA for each INOUT or OUT parameter in the
procedure. DESCRIBE OUTPUT will also put the number of INOUT or
OUT parameters in the sqld field of the SQLDA.

CALL (result set) The DESCRIBE OUTPUT statement fills in the data
type, length, and name in the SQLDA for each RESULT column in the
procedure definition. DESCRIBE OUTPUT will also put the number of
result columns in the sqld field of the SQLDA.

A bind variable is a value supplied by the application when the database
executes the statements. Bind variables can be considered parameters to the
statement. DESCRIBE INPUT will fill in the name fields in the SQLDA
with the bind variable names. DESCRIBE INPUT will also put the number
of bind variables in the sqld field of the SQLDA.

447

DESCRIBE statement [ESQL]

Retrieving long
column names

Describing variable
result sets

448

DESCRIBE uses the indicator variables in the SQLDA to provide additional
information. DT _PROCEDURE IN and DT PROCEDURE OUT are bits
that are set in the indicator variable when a CALL statement is described.
DT PROCEDURE IN indicates an IN or INOUT parameter and

DT PROCEDURE_OUT indicates an INOUT or OUT parameter. Procedure
RESULT columns will have both bits clear. After a describe OUTPUT, these
bits can be used to distinguish between statements that have result sets (need
to use OPEN, FETCH, RESUME, CLOSE) and statements that do not (need
to use EXECUTE). DESCRIBE INPUT only sets DT PROCEDURE IN
and DT PROCEDURE _OUT appropriately when a bind variable is an
argument to a CALL statement; bind variables within an expression that is an
argument in a CALL statement will not set the bits.

DESCRIBE ALL allows you to describe INPUT and OUTPUT with one
request to the database server. This has a performance benefit in a multi-user
environment. The INPUT information will be filled in the SQLDA first,
followed by the OUTPUT information. The sqld field contains the total
number of INPUT and OUTPUT variables. The DT _DESCRIBE INPUT bit
in the indicator variable is set for INPUT variables and clear for OUTPUT
variables.

The LONG NAMES clause is provided to retrieve column names for a
statement or cursor. Without this clause, there is a 29-character limit on the
length of column names; with the clause, names of an arbitrary length are
supported.

If LONG NAMES is used, the long names are placed into the SQLDATA
field of the SQLDA, as if you were fetching from a cursor. None of the other
fields (SQLLEN, SQLTYPE, and so on) are filled in. The SQLDA must be
set up like a FETCH SQLDA: it must contain one entry for each column, and
the entry must be a string type.

The default specification for the long names is TABLE.COLUMN.

The WITH VARIABLE RESULT statement is used to describe procedures
that may have more than one result set, with different numbers or types of
columns.

If WITH VARIABLE RESULT is used, the database server sets the
SQLCOUNT value after the DESCRIBE statement to one of the following
values:

¢ 0 The result set may change. The procedure call should be described
again following each OPEN statement.

¢ 1 The result set is fixed. No redescribing is required.

& For more information on the use of the SQLDA structure, see "The SQL
descriptor area (SQLDA)" on page 45 of the book Adaptive Server Anywhere
Programming Interfaces Guide.

Chapter 9 SQL Statements

Standar'd?and ¢ SQL/92 Part of the SQL/92 standard. Some clauses are vendor
compatibility extensions.

¢ Sybase Some clauses supported by Open Client/Open Server.

Example ¢ The following example shows how to use the DESCRIBE statement:

sqlda = alloc sqglda(3);
EXEC SQL DESCRIBE OUTPUT
FOR employee statement
INTO sglda;
if(sglda->sgqld > sglda->sgln) {
actual size = sglda->sqld;
free sqlda(sglda);
sqlda = alloc sglda(actualisize)
EXEC SQL DESCRIBE OUTPUT
FOR employee statement
INTO sglda;

449

DISCONNECT statement [ESQL][ISQL]

DISCONNECT statement [ESQL][ISQL]

Function

Syntax

Parameters
Permissions
Side effects

See also

Description

Standards and
compatibility

Examples

450

To drop a connection with the database.

DISCONNECT
connection-name
| [CURRENT]
| ALL

connection-name:identifier, string, or host-variable.
None.
None.

"CONNECT statement" on page 381
"SET CONNECTION statement" on page 551

The DISCONNECT statement drops a connection with the database server
and releases all resources used by it. If the connection to be dropped was
named on the CONNECT statement, the name can be specified. Specifying
ALL will drop all of the application's connections to all database
environments. CURRENT is the default, and will drop the current
connection.

An implicit ROLLBACK is executed on connections that are dropped.
¢ SQL/92 Intermediate level feature.

¢ Sybase Supported by Open Client/Open Server.
¢ The following statement shows how to use DISCONNECT in
Embedded SQL.:
EXEC SQL DISCONNECT :conn name

¢ The following statement shows how to use DISCONNECT from
Interactive SQL to disconnect all connections:

DISCONNECT ALL

Chapter 9 SQL Statements

DROP statement

Function

Syntax

Permissions

Side effects

See also

Description

To remove objects from the database.

DROP
DATABASE file-name
| { DATATYPE | DOMAIN } datatype-name
| DBSPACE dbspace-name
| FUNCTION [owner.]function-name
| INDEX [[owner].table-name.lindex-name
| PROCEDURE [owner.]Jprocedure-name
| TABLE [owner.]table-name
| TRIGGER [[owner.]table-name ltrigger-name
| VIEW [owner.]view-name

Any user who owns the object, or has DBA authority, can execute the DROP
statement.

For DROP DBSPACE, you must be the only connection to the database.
A user with ALTER permissions on the table can execute DROP TRIGGER.

A user with REFERENCES permissions on the table can execute DROP
INDEX.

Global temporary tables cannot be dropped unless all users that have
referenced the temporary table have disconnected.

Automatic commit. Clears the Data window in Interactive SQL. DROP
TABLE and DROP INDEX close all cursors for the current connection.

Local temporary tables is an exception; no commit is performed when one is
dropped.

"CREATE DATABASE statement" on page 385
"CREATE DOMAIN statement" on page 391
"CREATE INDEX statement" on page 399
"CREATE FUNCTION statement" on page 397
"CREATE PROCEDURE statement" on page 403
"CREATE TABLE statement" on page 415
"CREATE TRIGGER statement" on page 424
"CREATE VIEW statement" on page 430

The DROP statement removes the definition of the indicated database
structure. If the structure is a dbspace, all tables in that dbspace must be
dropped prior to dropping the dbspace. If the structure is a table, all data in
the table is automatically deleted as part of the dropping process. Also, all
indexes and keys for the table are dropped by the DROP TABLE statement.

451

DROP statement

Standards and
compatibility

Examples

452

DROP TABLE, DROP INDEX, and DROP DBSPACE are prevented
whenever the statement affects a table that is currently being used by another
connection.

DROP PROCEDURE and DROP FUNCTION are prevented when the
procedure or function is in use by another connection.

DROP DATATYPE is prevented if the data type is used in a table. You must
change data types on all columns defined on the user-defined data type in
order to drop the data type. It is recommended that you use DROP
DOMAIN rather than DROP DATATYPE, as DROP DOMAIN is the syntax
used in the ANSI/ISO SQL3 draft.

¢ SQL/92 Entry level feature.

¢ Sybase Supported by Adaptive Server Enterprise for those objects
that exist in Adaptive Server Enterprise.

¢ Drop the department table from the database.
DROP TABLE department

¢ Drop the emp_dept view from the database.

DROP VIEW emp dept

Chapter 9 SQL Statements

DROP DATABASE statement

Function
Syntax

Permissions

Side effects

See also

Description

Standards and
compatibility

Examples

To delete a database file and the associated transaction log.
DROP DATABASE file-name

Required permissions are set using the database server —gu command-line
option. The default setting is to require DBA authority.

The file must not be in use in order to be deleted.
Not supported on Windows CE.

In addition to deleting the database file from disk, the associated transaction
log file is deleted.

"CREATE DATABASE statement" on page 385

The DROP DATABASE statement physically deletes the database file from
disk. The statement can be used in SQL scripts that create databases, to make
sure there is no database file in the place where it is to be created.

If the file does not exist, an error is generated.

¢ SQL/92 Vendor extension.

¢ Sybase Not supported by Adaptive Server Enterprise.
¢ Drop the database temp.db, in the C:\temp directory..

DROP DATABASE 'c:\temp\temp.db'

453

DROP CONNECTION statement

DROP CONNECTION statement

Function To drop a connection to the database, belonging to any user.

Syntax DROP CONNECTION connection-id

Permissions Must have DBA authority.

Side effects None.

See also "CONNECT statement" on page 381

Description The DROP CONNECTION statement disconnects a user from the database

by dropping the connection to the database.

You can obtain the connection-id by using the connection_property
function to request the connection number. The following statement returns
the connection ID of the current connection:

SELECT connection property('number')
Standards and ¢ SQL/92 Vendor extension.

compatibilit
P y ¢ Sybase Not supported by Adaptive Server Enterprise.

Example ¢ The following statement drops the connection with ID number 4.

DROP CONNECTION 4

454

Chapter 9 SQL Statements

DROP EXTERNLOGIN statement

Function

Syntax

Permissions

Side effects
See also

Description

Standards and
compatibility

Example

To drop an external login from the Adaptive Server Anywhere catalogs.

DROP EXTERNLOGIN /ogin-name
TO remote-server

Only the login-name and the DBA account can delete an external login for
login-name.

Automatic commit.
"CREATE EXTERNLOGIN statement" on page 395

DROP EXTERNLOGIN deletes an external login from the Adaptive Server
Anywhere catalogs.

login-name specifies the local user login name

TO clause The TO clause specifies the name of the remote server. The
local user's alternate login name and password for that server is the external
login that is deleted.

¢ SQL/92 Entry-level feature.
¢ Sybase Supported by Open Client/Open Server.

DROP EXTERNLOGIN dba TO sybasel

455

DROP OPTIMIZER STATISTICS statement

DROP OPTIMIZER STATISTICS statement

Function
Syntax
Permissions
Side effects

Description

Standards and
compatibility

456

To reset optimizer statistics.
DROP OPTIMIZER STATISTICS
Must have DBA authority.
None.

The DROP OPTIMIZER STATISTICS statement resets optimizer statistics.
The query optimizer maintains statistics as it evaluates queries, and uses
these statistics to make better decisions when optimizing subsequent queries.
These statistics are stored permanently in the database. The DROP
OPTIMIZER STATISTICS statement resets these statistics to default values.
This statement is most useful when first learning about the optimizer. It can
help you understand the process used by the optimizer.

¢ SQL/92 Vendor extension

¢ Sybase Not supported by Adaptive Server Enterprise.

Chapter 9 SQL Statements

DROP SERVER statement

Function
Syntax

Permissions

Side effects
See also

Description

Standards and
compatibility

Example

To drop a remote server from the Adaptive Server Anywhere catalogs.
DROP SERVER server-name

Only the DBA account can delete a remote server.

Not supported on Windows CE.

Automatic commit.

"CREATE SERVER statement" on page 413

DROP SERVER deletes a remote server from the Adaptive Server
Anywhere catalogs. You must drop all the proxy tables that have been
defined for the remote server before this statement will succeed.

¢ SQL/92 Entry-level feature.
¢ Sybase Supported by Open Client/Open Server.

DROP SERVER ase prod

457

DROP STATEMENT statement [ESQL]

DROP STATEMENT statement [ESQL]

Function
Syntax
Parameters
Permissions
Side effects
See also

Description

Standards and
compatibility

Example

458

To free statement resources.

DROP STATEMENT [owner.]statement-name
statement-name: identifier or host-variable
Must have prepared the statement.

None.

"PREPARE statement" on page 519

The DROP STATEMENT statement frees resources used by the named
prepared statement. These resources are allocated by a successful PREPARE
statement, and are normally not freed until the database connection is
released.

¢ SQL/92 Vendor extension.
¢ Sybase Not supported in Open Client/Open Server
¢ The following are examples of DROP STATEMENT use:

EXEC SQL DROP STATEMENT S1;

EXEC SQL DROP STATEMENT :stmt;

Chapter 9 SQL Statements

DROP VARIABLE statement

Function

Syntax

Permissions
Side effects

See also

Description

Standards and
compatibility

To eliminate a SQL variable.
DROP VARIABLE identifier
None.

None.

"CREATE VARIABLE statement" on page 428
"SET statement" on page 546

The DROP VARIABLE statement eliminates a SQL variable that was
previously created using the CREATE VARIABLE statement. Variables will
be automatically eliminated when the database connection is released.
Because, variables are often used for large objects, eliminating them after use
may free up significant resources (primarily disk space).

¢ SQL/92 Vendor extension.
¢ Sybase Not supported in Adaptive Server Enterprise.

459

EXECUTE statement [ESQL]

EXECUTE statement [ESQL]

Function

Syntax 1

Syntax 2

Parameters

Permissions
Side effects

See also

Description

460

To execute a SQL statement.

EXECUTE statement-name
[USING DESCRIPTOR sqlda-name
| USING host-variable-list]

[INTO DESCRIPTOR into-sqlda-name
| INTO into-host-variable-list]

[ARRAY :nnn]
EXECUTE IMMEDIATE statement
statement-name: identifier or host-variable
sqlda-name: identifier
into-sqlda-name: identifier
statement. string or host-variable
Permissions are checked on the statement being executed.

None.

"PREPARE statement" on page 519
"DECLARE CURSOR statement" on page 436

Format 1 executes the named dynamic statement, which was previously
prepared. If the dynamic statement contains host variable place holders
which supply information for the request (bind variables), either the sqlda-
name must specify a C variable which is a pointer to an SQLDA containing
enough descriptors for all of the bind variables occurring in the statement, or
the bind variables must be supplied in the host-variable-list.

The optional ARRAY clause can be used with prepared INSERT statements
to allow wide inserts, which insert more than one row at a time and which
may improve performance. The value nnn is the number of rows to be
inserted. The SQLDA must contain nnn * (columns per row) variables. The
first row is placed in SQLDA variables 0 to (columns per row)-1, and so on.

OUTPUT from a SELECT statement or a CALL statement is put into either
the variables in the variable list or the program data areas described by the
named SQLDA. The correspondence is one-to-one from the OUTPUT
(selection list or parameters) to either the host variable list or the SQLDA
descriptor array.

Chapter 9 SQL Statements

Standards and
compatibility

Examples

If EXECUTE is used with an INSERT statement, the inserted row is returned
in the second descriptor. For example, when using auto-increment primary
keys or BEFORE INSERT triggers that generate primary key values, the
EXECUTE statement provides a mechanism to re-fetch the row immediately
and determine the primary key value that was assigned to the row. The same
thing can be achieved by using @@identity with auto-increment keys.

Format 2 is a short form to PREPARE and EXECUTE a statement that does
not contain bind variables or output. The SQL statement contained in the
string or host-variable is immediately executed.

The EXECUTE statement can be used for any SQL statement that can be
prepared. Cursors are used for SELECT statements or CALL statements that
return many rows from the database (see "Cursors in Embedded SQL" on
page 33 of the book Adaptive Server Anywhere Programming Interfaces
Guide).

After successful execution of an INSERT, UPDATE or DELETE statement,
the sqlerrd[2] field of the SQLCA (SQLCOUNT) is filled in with the
number of rows affected by the operation.

¢ SQL/92 Intermediate level feature.

¢ Sybase Supported in Open Client/Open Server.

¢ Execute a DELETE.

EXEC SQL EXECUTE IMMEDIATE
'DELETE FROM employee WHERE emp id = 105';

¢ Execute a prepared DELETE statement.

EXEC SQL PREPARE del stmt FROM
'DELETE FROM employee WHERE emp id = :a';
EXEC SQL EXECUTE del stmt USING :employee number;

¢ Execute a prepared query.

EXEC SQL PREPARE sell FROM

'SELECT emp lname FROM employee WHERE emp id = :a';
EXEC SQL EXECUTE sell USING :employee number INTO
remp lname;

461

EXECUTE statement [T-SQL]

EXECUTE statement [T-SQL]

Function To invoke a procedure, as an Adaptive Server Enterprise-compatible
alternative to the CALL statement.

Syntax EXECUTE [@return_status =] [creator.Jprocedure_name
| [@parameter-name =] expression,
| [@parameter-name =] @variable [outpuf] |, ...

Authorization Must be the owner of the procedure, have EXECUTE permission for the
procedure, or have DBA authority.

Side effects None.

See also "CALL statement" on page 367

Description The EXECUTE statement executes a stored procedure, optionally supplying
procedure parameters and retrieving output values and return status
information.

The EXECUTE statement is implemented for Transact-SQL compatibility,
but can be used in either Transact-SQL or Watcom-SQL batches and

procedures.
Example ¢ The following demonstration procedure is used to illustrate the
EXECUTE statement.
CREATE PROCEDURE pl(@var INTEGER = 54)
AS

PRINT 'on input @var = %1.', @var
DECLARE (@intvar integer

SELECT @intvar=123

SELECT @var=@intvar

PRINT 'on exit @var = %1.', @var

¢ The following statement executes the procedure, supplying the input
value of 23 for the parameter. If you are connected from an Open Client
application, the PRINT messages are displayed on the client window. If
you are connected from an ODBC or Embedded SQL application, the
messages are displayed on the database server window.

EXECUTE pl 23

¢ The following is an alternative way of executing the procedure, which is
useful if there are several parameters.

EXECUTE pl @var = 23

¢ The following statement executes the procedure, using the default value
for the parameter

EXECUTE pl

462

Chapter 9 SQL Statements

¢ The following statement executes the procedure, and stores the return
value in a variable for checking return status.

EXECUTE @status = pl 23

463

EXECUTE IMMEDIATE statement [ESQL] [SP]

EXECUTE IMMEDIATE statement [ESQL] [SP]

Function

Syntax 1
Syntax 2

Permissions

Side effects

See also

Description

Standards and
compatibility

Example

464

To enable dynamically constructed statements to be executed from within a
procedure.

EXECUTE IMMEDIATE string-expression
EXECUTE (string-expression)

None. The statement is executed with the permissions of the owner of the
procedure, not with the permissions of the user who calls the procedure.

None. However, if the statement is a data definition statement with an
automatic commit as a side effect, that commit does take place.

"CREATE PROCEDURE statement" on page 403
"BEGIN... END statement" on page 361

The EXECUTE IMMEDIATE statement extends the range of statements that
can be executed from within procedures and triggers. It lets you execute
dynamically prepared statements, such as statements that are constructed
using the parameters passed in to a procedure.

Literal strings in the statement must be enclosed in single quotes, and the
statement must be on a single line.

¢ SQL/92 Intermediate level feature.

¢ Sybase Supported in Open Client/Open Server.

The following procedure creates a table, where the table name is supplied as
a parameter to the procedure. The EXECUTE IMMEDIATE statement must
all be on a single line.

CREATE PROCEDURE CreateTableProc (
IN tablename char (30)
)

BEGIN

EXECUTE IMMEDIATE 'CREATE TABLE ' || tablename ||
' (columnl INT PRIMARY KEY)'
END

To call the procedure and create a table mytable:

CALL CreateTableProc('mytable')

Chapter 9 SQL Statements

EXIT statement [ISQL]

Function

Syntax
Permissions

Side effects

See also

Description

Standards and
compatibility

To leave Interactive SQL.
EXIT | QUIT | BYE
None.

Will do a commit if option COMMIT _ON_EXIT is ON (default); otherwise
will do a rollback.

"SET OPTION statement" on page 553

Leave the Interactive SQL environment and return to the operating system.
This will close your connection with the database. Before doing so,
Interactive SQL will perform a COMMIT operation if the

COMMIT _ON_EXIT option is ON. If the option is OFF, Interactive SQL
will perform a ROLLBACK. The default action is to COMMIT any changes
you have made to the database.

¢ SQL/92 Vendor extension
¢ Sybase Not applicable in Adaptive Server Enterprise.

465

EXPLAIN statement [ESQL]

EXPLAIN statement [ESQL]

Function

Syntax

Parameters

Permissions
Side effects

See also

Description

466

To retrieve a text specification of the optimization strategy used for a
particular cursor.

EXPLAIN PLAN FOR CURSOR cursor-name INTO host-variable
INTO host-variable
| USING DESCRIPTOR sqlda-name

cursor-name: identifier or host-variable
sqlda-name: identifier

Must have opened the named cursor.
None.

"DECLARE CURSOR statement" on page 436

"PREPARE statement" on page 519

"FETCH statement" on page 468

"CLOSE statement" on page 373

"OPEN statement" on page 511

"Cursors in Embedded SQL" on page 33 of the book Adaptive Server
Anywhere Programming Interfaces Guide

"The SQL Communication Area" on page 27 of the book Adaptive Server
Anywhere Programming Interfaces Guide

The EXPLAIN statement retrieves a text representation of the optimization
strategy for the named cursor. The cursor must be previously declared and
opened.

The host-variable or SQLDA variable must be of string type. The
optimization string specifies in what order the tables are searched, and also
which indexes are being used for the searches if any. This string can be quite
long, but most optimization strings will fit into 300 characters.

The format of this string is, in general:

table (index), table (index),

If a table has been given a correlation name, the correlation name will appear
instead of the table name. The order that the table names appear in the list is
the order in which they will be accessed by the database server. After each
table is a parenthesized index name. This is the index that will be used to
access the table. If no index will be used (the table will be scanned
sequentially) the letters "seq" will appear for the index name. If a particular
SQL SELECT statement involves subqueries, a colon (:) will separate each
subquery's optimization string. These subquery sections will appear in the
order that the database server executes the queries.

Chapter 9 SQL Statements

Standards and
compatibility

Example

After successful execution of the EXPLAIN statement, the sqlerrd[3] field
of the SQLCA (SQLIOESTIMATE) will be filled in with an estimate of the
number of input/output operations required to fetch all rows of the query.

A discussion with quite a few examples of the optimization string can be
found in "Monitoring and Improving Performance" on page 623 of the book
Adaptive Server Anywhere User's Guide.

¢ SQL/92 Vendor extension.

¢ Sybase Not supported in Adaptive Server Enterprise.

¢ The following example illustrates use of EXPLAIN:

EXEC SQL BEGIN DECLARE SECTION;
char plan[300];
EXEC SQL END DECLARE SECTION;
EXEC SQL DECLARE employee cursor CURSOR FOR
SELECT empnum, empname
FROM employee
WHERE name like :pattern;
EXEC SQL OPEN employee cursor;
EXEC SQL EXPLAIN PLAN FOR CURSOR employee cursor
INTO :plan;
printf("Optimization Strategy: '$s'.n", plan);

467

FETCH statement [ESQL] [SP]

FETCH statement [ESQL] [SP]

Function

Syntax

Parameters

Permissions

Side effects

See also

Description

468

To reposition a cursor, and then get data from it.

FETCH

NEXT
| PRIOR
| FIRST
| LAST
| ABSOLUTE row-count
| RELATIVE row-count

}

... cursor-name
... [| INTO host-variable-list |]
| USING DESCRIPTOR sqlda-name|
| INTO variable-list|
[PURGE][BLOCK n]
[FOR UPDATE] [ARRAY fetch-count]
INTO variable-list [FOR UPDATE]

row-count: number or host variable
cursor-name: identifier or host-variable
host-variable-list. may contain indicator variables
sqlda-name: identifier

fetch-count: integer or host variable

The cursor must be opened, and the user must have SELECT permission on
the tables referenced in the declaration of the cursor.

None.

"DECLARE CURSOR statement" on page 436

"PREPARE statement" on page 519

"OPEN statement" on page 511

"Cursors in Embedded SQL" on page 33 of the book Adaptive Server
Anywhere Programming Interfaces Guide

"Using cursors in procedures and triggers" on page 251 of the book Adaptive
Server Anywhere User's Guide

FETCH in PowerScript Reference

The FETCH statement retrieves one row from the named cursor.

The ARRAY clause allows so-called wide fetches, which retrieve more than
one row at a time, and which may improve performance.

The cursor must have been previously opened.

Chapter 9 SQL Statements

One row from the result of the SELECT statement is put into the variables in
the variable list. The correspondence is one-to-one from the select list to the
host variable list.

One or more rows from the result of the SELECT statement are put into
either the variables in the variable list or the program data areas described by
the named SQLDA. In either case, the correspondence is one-to-one from the
select list to either the host variable list or the SQLDA descriptor array.

The INTO clause is optional. If it is not specified, the FETCH statement
positions the cursor only (see the following paragraphs).

An optional positional parameter allows the cursor to be moved before a row
is fetched. The default is NEXT, which causes the cursor to be advanced one
row before the row is fetched. PRIOR causes the cursor to be backed up one
row before fetching.

RELATIVE positioning is used to move the cursor by a specified number of
rows in either direction before fetching. A positive number indicates moving
forward and a negative number indicates moving backwards. Thus, a NEXT
is equivalent to RELATIVE 1 and PRIOR is equivalent to RELATIVE -1.
RELATIVE 0 retrieves the same row as the last fetch statement on this
cursor.

The ABSOLUTE positioning parameter is used to go to a particular row. A
zero indicates the position before the first row (see "Using cursors in
procedures and triggers" on page 251 of the book Adaptive Server Anywhere
User's Guide).

A one (1) indicates the first row, and so on. Negative numbers are used to
specify an absolute position from the end of the cursor. A negative one (-1)
indicates the last row of the cursor. FIRST is a short form for ABSOLUTE 1.
LAST is a short form for ABSOLUTE -1.

The OPEN statement initially positions the cursor before the first row.

If the fetch includes a positioning parameter and the position is outside the
allowable cursor positions, the SQLE NOTFOUND warning is issued.

469

FETCH statement [ESQL] [SP]

Using the FETCH
statement in
Embedded SQL

470

Cursor positioning problems

Inserts and some updates to DYNAMIC SCROLL cursors can cause
problems with cursor positioning. The database server will not put
inserted rows at a predictable position within a cursor unless there is an
ORDER BY clause on the SELECT statement. In some cases, the inserted
row will not appear at all until the cursor is closed and opened again.

This occurs if a temporary table had to be created to open the cursor (see
"Temporary tables used in query processing" on page 640 of the book
Adaptive Server Anywhere User's Guide for a description).

The UPDATE statement may cause a row to move in the cursor. This will
happen if the cursor has an ORDER BY that uses an existing index (a
temporary table is not created).

The FOR UPDATE clause indicates that the fetched row will subsequently
be updated with an UPDATE WHERE CURRENT OF CURSOR statement.
This clause causes the database server to put a write lock on the row. The
lock will be held until the end of the current transaction. See "How locking
works" on page 382 of the book Adaptive Server Anywhere User's Guide.

The following clauses are for use in Embedded SQL only:
¢ USING DESCRIPTOR sqlda-name
¢ INTO host-variable-list

¢+ PURGE

¢ BLOCKn

¢ ARRAY fetch-count

¢

Use of host-variable in cursor-name and row-count.

The DECLARE CURSOR statement must appear before the FETCH
statement in the C source code, and the OPEN statement must be executed
before the FETCH statement. If a host variable is being used for the cursor
name, the DECLARE statement actually generates code and thus must be
executed before the FETCH statement.

In the multi-user environment, rows may be fetched by the client more than
one at a time. Note that in UNIX, the client is linked into the application so
this will always happen by default. This is referred to as block fetching or
multi-row fetching. The first fetch causes several rows to be sent back from
the server. The client buffers these rows, and subsequent fetches are retrieved
from these buffers without a new request to the server.

Chapter 9 SQL Statements

Standards and
compatibility

Example

The BLOCK clause gives the client and server a hint as to how many rows
may be fetched by the application. The special value of 0 means the request
will be sent to the server and a single row will be returned (no row blocking).

The PURGE clause causes the client to flush its buffers of all rows, and then
send the fetch request to the server. Note that this fetch request may return a
block of rows.

If the SQLSTATE _NOTFOUND warning is returned on the fetch, the
sqlerrd[2] field of the SQLCA (SQLCOUNT) will contain the number of
rows by which the attempted fetch exceeded the allowable cursor positions.
(A cursor can be on a row, before the first row or after the last row.) The
value is 0 if the row was not found but the position is valid, for example,
executing FETCH RELATIVE 1 when positioned on the last row of a cursor.
The value will be positive if the attempted fetch was further beyond the end
of the cursor, and negative if the attempted fetch was further before the
beginning of the cursor.

After successful execution of the fetch statement, the sqlerrd/1] field of the
SQLCA (SQLIOCOUNT) will be incremented by the number of input/output
operations required to perform the fetch. This field is actually incremented
on every database statement.

To use wide fetches in Embedded SQL, include the fetch statement in your
code as follows:

EXEC SQL FETCH . . . ARRAY nnn

where ARRAY nnn is the last item of the FETCH statement. The fetch count
nnn can be a host variable. The SQLDA must contain nnn * (columns per
row) variables. The first row is placed in SQLDA variables 0 to (columns
per row)-1, and so on.

The server returns in SQLCOUNT the number of records fetched, and
always returns a SQLCOUNT greater than zero unless there is an error.
Older versions of the only server return a single row and set the SQLCOUNT
to zero. A SQLCOUNT of zero with no error condition indicates that one
valid row has been fetched.

¢ SQL/92 Entry level feature. Use in procedures is a Persistent Stored
Module feature.

¢ Sybase Supported in Adaptive Server Enterprise.

¢ The following is an Embedded SQL example.

EXEC SQL DECLARE cur employee CURSOR FOR
SELECT emp id, emp lname FROM employee ;
EXEC SQL OPEN cur employee;

EXEC SQL FETCH cur employee

INTO :emp number, :emp name:indicator;

471

FETCH statement [ESQL] [SP]

For a detailed example of using wide fetches, see the section "Fetching
more than one row at a time" on page 41 of the book Adaptive Server

Anywhere Programming Interfaces Guide.
¢ The following is a procedure example:

BEGIN
DECLARE cur employee CURSOR FOR

SELECT emp lname

FROM employee ;
DECLARE name CHAR(40) ;
OPEN cur employee;

LOOP
FETCH NEXT cur_ employee into name ;

END LOOP
CLOSE cur employee;
END

472

Chapter 9 SQL Statements

FOR statement

Function

Syntax

Permissions
Side effects

See also

Description

Standards and
compatibility

Example

Repeat the execution of a statement list once for each row in a cursor.

[statement-label :]
.. .FOR for-loop-name AS cursor-name
... CURSOR FOR statement
...[|FOR UPDATE | FOR READ ONLY]
... DO statement-list
... END FOR [statement-label]

None.
None.

"DECLARE CURSOR statement" on page 436
"FETCH statement" on page 468

"LEAVE statement" on page 502

"LOOP statement" on page 508

The FOR statement is a control statement that allows you to execute a list of
SQL statements once for each row in a cursor. The FOR statement is
equivalent to a compound statement with a DECLARE for the cursor and a
DECLARE of a variable for each column in the result set of the cursor
followed by a loop that fetches one row from the cursor into the local
variables and executes statement-list once for each row in the cursor.

The name and data type of each local variables is derived from the statement
used in the cursor. With a SELECT statement, the data types will be the data
types of the expressions in the select list. The names will be the select list
item aliases, if they exist; otherwise, they will be the name of the columns.
Any select list item that is not a simple column reference must have an alias.
With a CALL statement, the names and data types will be taken from the
RESULT clause in the procedure definition.

The LEAVE statement can be used to resume execution at the first statement
after the END FOR. If the ending statement-label is specified, it must match
the beginning statement-label.

¢ SQL/92 Persistent Stored Module feature.

¢ Sybase Not supported by Adaptive Server Enterprise.

¢ The following fragment illustrates the use of the FOR loop.

FOR names AS curs CURSOR FOR
SELECT emp lname
FROM employee
DO
CALL search for name(emp lname);
END FOR;

473

FORWARD TO statement

FORWARD TO statement

Function
Syntax 1
Syntax 2
Permissions

Side effects

Description

Standards and
compatibility

Example

474

To send native syntax to a remote server.
FORWARD TO server-name { sql-statement }
FORWARD TO [server-name]

None

The remote connection is set to AUTOCOMMIT (unchained) mode for the
duration of the FORWARD TO session. Any work that was pending prior to
the FORWARD TO statement is automatically committed.

The FORWARD TO statement enables users to specify the server to which a
passthrough connection is required. The statement can be used in two ways:

¢ To send a statement to a remote server (syntax 1)

¢ To place Adaptive Server Anywhere into passthrough mode for sending
a series of statements to a remote server (syntax 2)

When establishing a connection to server-name on behalf of the user, the
server uses:

¢ A remote login alias set using CREATE EXTERNLOGIN, or

¢ Ifaremote login alias is not set up, the name and password used to
communicate with the Adaptive Server Anywhere

If the connection cannot be made to the server specified, the reason is
contained in a message returned to the user.

After statements are passed to the requested server, any results are converted
into a form that can be recognized by the client program.

server-name is the name of the remote server.

sql-statement is a command in the remote server's native syntax. The
command or group of commands is enclosed in curly brackets ({}).

When you specify a server_name, but do not specify a statement in the
FORWARD TO query, your session enters passthrough mode, and all
subsequent queries are passed directly to the remote server. To turn
passthrough mode off, issue FORWARD TO without a server name
specification.

¢ SQL/92 Entry-level feature.
¢ Sybase Supported by Open Client/Open Server.

¢ The following example shows a passthrough session with the remote
server ase_prod:

Chapter 9 SQL Statements

FORWARD TO aseprod
SELECT * from titles
SELECT * from authors
FORWARD TO

475

FROM clause

FROM clause

Function

Syntax

Parameters

Permissions
Side effects

See also

Description

476

To specify the database tables or views involved in a SELECT or UPDATE
statement.

... FROM table-expression, ...

table-expression:
table-spec
| table-expression join-type table-spec [ON condition]
| (table-expression, ...)

table-spec:

[userid.Jtable-name [[AS] correlation-name]

| select-statement [AS correlation-name (column-name, ...) 1
join-type:

CROSS JOIN

| [NATURAL | KEY] JOIN

| [NATURAL | KEY] INNER JOIN

| [NATURAL | KEY] LEFT OUTER JOIN

| [NATURAL | KEY] RIGHT OUTER JOIN

Must be connected to the database.
None.

"SELECT statement" on page 542

"UPDATE statement" on page 572

"Joins: Retrieving Data from Several Tables" on page 129 of the book
Adaptive Server Anywhere User's Guide

The SELECT and UPDATE statements require a table list, to specify which
tables will be used by the statement.

Views
Although this description refers to tables, it applies to views unless
otherwise noted.

The FROM table list creates a result set consisting of all the columns from
all the tables specified. Initially, all combinations of rows in the component
tables are in the result set, and the number of combinations is usually
reduced by join conditions and/or WHERE conditions.

Tables owned by a different user can be qualified by specifying the user ID.
Tables owned by groups to which the current user belongs will be found by
default without specifying the user ID (see "Referring to tables owned by
groups" on page 588 of the book Adaptive Server Anywhere User's Guide).

Chapter 9 SQL Statements

Standards and
compatibility

Examples

The correlation name is used to give a temporary name to the table for this
SQL statement only. This is useful when referencing columns from a table
with a long name. The correlation name is also necessary to distinguish
between table instances if you reference the same table more than once in the
same query. If no correlation name is specified, the table name is used as the
correlation name for the current statement.

If the same correlation name is used twice for the same table in a table
expression, that table is treated as if it were listed only once. For example, in:

SELECT *

FROM sales order

KEY JOIN sales order items,
sales order

KEY JOIN employee

the two instances of the sales_order table are treated as one instance, this is
equivalent to:

SELECT *

FROM sales order items
KEY JOIN sales order
KEY JOIN employee

Whereas:

SELECT *
FROM Person HUSBAND, Person WIFE

would be treated as two instances of the Person table, with different
correlation names HUSBAND and WIFE.

You can supply SELECT statements instead of table or view names in the
FROM clause. This allows you to use groups on groups, or joins with
groups, without creating a view. The tables that you create in this way are
derived tables.

¢ SQL/92 Entry level feature.

¢ Sybase The JOIN clause is not supported in Adaptive Server
Enterprise. Instead, you must use the WHERE clause to build joins.

¢ The following are valid FROM clauses:

FROM employee
FROM employee NATURAL JOIN department

FROM customer

477

FROM clause

KEY JOIN sales order
KEY JOIN sales order items
KEY JOIN product

¢ The following query illustrates how to use derived tables in a query:

SELECT lname, fname, number of orders
FROM customer JOIN
(SELECT cust_id, count (*)
FROM sales order
GROUP BY cust id)
AS sales order counts (cust id,
number of orders)
ON (customer.id - sales order counts.cust id)
WHERE number of orders > 3

478

Chapter 9 SQL Statements

GET DATA statement [ESQL]

Function

Syntax

Parameters

Permissions
Side effects

See also

Description

Standards and
compatibility

To get string or binary data for one column on the current row of a cursor.
GET DATA is usually used to fetch LONG BINARY or LONG VARCHAR
fields. See "SET statement" on page 546.

GET DATA cursor-name COLUMN column-num OFFSET start-offset
[WITH TEXTPTR]
USING DESCRIPTOR sql/da-name
| INTO host-variable [, ... 1 |

cursor-name: identifier, or host-variable
column-num: integer or host-variable
start-offset: integer or host-variable
sqlda-name: identifier

The cursor must be opened and positioned on a row, using FETCH.
None.

"FETCH statement" on page 468
"READTEXT statement" on page 528

Get a piece of one column value from the row at the current cursor position.
The value of column-num starts at one, and identifies which column's data is
to be fetched. That column must be of a string or binary type.

The start-offset indicates the number of bytes to skip over in the field value.
Normally, this would be the number of bytes previously fetched. The number
of bytes fetched on this GET DATA statement is determined by the length of
the target host variable.

The indicator value for the target host variable is a short integer, so it cannot
always contain the number of bytes truncated. Instead, it contains a negative
value if the field contains the NULL value, a positive value (NOT
necessarily the number of bytes truncated) if the value is truncated, and zero
if a non-NULL value is not truncated.

If the WITH TEXTPTR clause is given, a text pointer is retrieved into a
second indicator variable or into the second field in the SQLDA. This text
pointer can be used with the Transact-SQL READ TEXT and WRITE TEXT
statements.

The total length of the data is returned in the SQLCOUNT field of the
SQLCA structure.

¢ SQL/92 Vendor extension.

479

GET DATA statement [ESQL]

¢ Sybase Not supported by Open Client/Open Server. An alternative is
the Transact-SQL READTEXT statement.

Example ¢ The following example uses GET DATA to fetch a binary large object
(often called a blob).

EXEC SQL BEGIN DECLARE SECTION;
DECL_BINARY (1000) piece;
short ind;
long offset;
EXEC SQL END DECLARE SECTION;
int size;
/* Open a cursor on a long varchar field */
EXEC SQL DECLARE big cursor CURSOR FOR
SELECT long data FROM some table
WHERE key id = 2;
EXEC SQL OPEN big cursor;
EXEC SQL FETCH big cursor INTO :piece;
for(offset = 0; ; offset += piece.len) {
EXEC SQL GET DATA big cursor COLUMN 1
OFFSET :offset INTO :piece:ind;
/* Done if the NULL value */
if(ind < 0) break;
write out piece(piece);
/* Done when the piece was not truncated */
if(ind == 0) break;
}
EXEC SQL CLOSE big cursor;

480

Chapter 9 SQL Statements

GET DESCRIPTOR statement [ESQL]

Function Retrieves information about a variable within a descriptor area, or retrieves
its value.
Syntax GET DESCRIPTOR descriptor-name

...{ hostvar = COUNT | VALUE n assignment]|,...]}

Parameters assighment:
hostvar={ TYPE | LENGTH | PRECISION | SCALE | DATA |
INDICATOR | NAME | NULLABLE | RETURNED_LENGTH }

Permissions None.
Side effects None.
See also "ALLOCATE DESCRIPTOR statement" on page 342

"DEALLOCATE DESCRIPTOR statement" on page 433

"SET DESCRIPTOR statement" on page 552

"The SQL descriptor area (SQLDA)" on page 45 of the book Adaptive Server
Anywhere Programming Interfaces Guide

Description The GET DESCRIPTOR statement is used to retrieve information about a
variable within a descriptor area, or to retrieve its value.

The value » specifies the variable in the descriptor area about which the
information will be retrieved. Type checking is performed when doing GET
... DATA to ensure that the host variable and the descriptor variable have the
same data type.

If an error occurs, it is returned in the SQLCA.

Standards and ¢ SQL/92 Entry level feature.
compatibility .
¢ Sybase Supported by Open Client/Open Server.
Example ¢ For an example, see "ALLOCATE DESCRIPTOR statement" on page
342.

481

GET OPTION statement [ESQL]

GET OPTION statement [ESQL]

Function

Syntax

Parameters

Permissions
Side effects

See also

Description

Standards and
compatibility

Example

482

To find the current setting of an option. This statement is deprecated in favor
of system functions.

GET OPTION [userid.]option-name
| INTO host-variable
| USING DESCRIPTOR sqlda-name

userid: identifier, string, or host-variable
option-name: identifier, string, or host-variable
host-variable: indicator variable allowed
sqlda-name: identifier

None required.
None.

"SET OPTION statement" on page 553
"System and catalog stored procedures" on page 753

The GET OPTION statement is provided for compatibility with older
versions of the software. The recommended way to get the values of options
is to use the connection_property system function.

The GET OPTION statement gets the option setting of the option option-
name for the user userid or for the connected user if userid is not specified.
This will be either the user's personal setting or the PUBLIC setting if there
is no setting for the connected user. If the option specified is a database
option and the user has a temporary setting for that option, then the
temporary setting is retrieved.

If option-name does not exist, GET OPTION returns the warning
SQLE NOTFOUND.

¢ SQL/92 Vendor extension.
¢ Sybase Not supported by Adaptive Server Enterprise.
¢ The following statement illustrates use of GET OPTION.

EXEC SQL GET OPTION 'date format' INTO :datefmt;

Chapter 9 SQL Statements

GOTO statement [T-SQL]

Function

Syntax

Authorization
Side effects

Description

Standards and
compatibility

Example

To branch to a labeled statement.

label:
GOTO label

None.
None.

Any statement in a Transact-SQL procedure, trigger, or batch can be labeled.
The label name is a valid identifier followed by a colon. In the GOTO
statement, the colon is not used.

¢ SQL/92 Persistent Stored Module feature.
¢ Sybase Adaptive Server Enterprise supports the GOTO statement.

¢ The following Transact-SQL batch prints the message "yes" on the
server window four times:

declare @count smallint
select Qcount =1
restart:
print 'yes'
select @count = @count + 1
while @count <=4
goto restart

483

GRANT statement

GRANT statement

Function
Syntax 1
Syntax 2

Syntax 3

Syntax 4
Syntax 5

Permissions

484

To give permissions to specific users and to create new user IDs.
GRANT CONNECT TO userid,... IDENTIFIED BY password,...

GRANT{
DBA,
GROUP,
MEMBERSHIP IN GROUP userid, ...
[RESOURCE | ALL]

}
... TO userid,...

GRANT {
ALL [PRIVILEGES],
ALTER ,
DELETE |,
INSERT ,
REFERENCES [(column-name,...)],
SELECT [(column-name,...)],
UPDATE [(column-name,...)],

... ON [owner.]table-name
... TO userid, ...
[WITH GRANT OPTION]

GRANT EXECUTE ON [owner.]procedure-name TO userid,...

GRANT INTEGRATED LOGIN TO user_profile_name,... AS USER userid
For Syntax 1 or 2 one of the following conditions must be met.

¢ You are changing your own password using GRANT CONNECT.

¢ You have DBA authority.

If you are changing another user's password (with DBA authority), the other
user must not be connected to the database.

For Syntax 3, one of the following conditions must be met:

¢ You created the table

¢ You have been granted permissions on the table with GRANT OPTION.
¢ You have DBA authority

For Syntax 4, one of the following conditions must be met:

¢ You created the procedure

¢ You have DBA authority

Chapter 9 SQL Statements

Side effects
See also

Description

Special privileges

For Syntax 5, the following condition must be met:

¢ You have DBA authority

Automatic commit.
"REVOKE statement" on page 536

The GRANT statement is used to grant database permissions to individual
user IDs and groups. It is also used to create and delete users and groups.

Syntax 1 and 2 of the GRANT statement are used for granting special
privileges to users as follows:

CONNECT TO userid,... Creates a new user. GRANT CONNECT can
also be used by any user to change their own password. To create a user with
the empty string as the password, type:

GRANT CONNECT TO userid IDENTIFIED BY ""

To create a user with no password, type:

GRANT CONNECT TO userid

A user with no password cannot connect to the database. This is useful if you
are creating a group and do not want anyone to connect to the database using
the group user ID. The password must be a valid identifier, as described in
"Statement elements" on page 180.

DBA Database Administrator authority gives a user permission to do
anything. This is usually reserved for the person in the organization who is
looking after the database.

GROUP Allows the user(s) to have members.

& For more information, see "Managing groups" on page 586 of the book
Adaptive Server Anywhere User's Guide.

MEMBERSHIP IN GROUP This allows the user(s) to inherit table
permissions from a group and to reference tables created by the group
without qualifying the table name.

& For more information, see "Managing groups" on page 586 of the book
Adaptive Server Anywhere User's Guide.

Syntax 3 of the GRANT statement is used to grant permission on individual
tables or views. The table permissions can be specified individually, or by
specifying ALL grants all six permissions at once.

RESOURCE Allows the user to create tables and views. In syntax 2, ALL
is a synonym for RESOURCE that is compatible with Sybase Adaptive
Server Enterprise.

485

GRANT statement

Permissions

Other notes

Standards and
compatibility

486

ALL In Syntax 3, this grants all of the permissions outlined below.

The permissions have the following meaning:

ALTER The users will be allowed to alter this table with the ALTER
TABLE statement. This permission is not allowed for views.

DELETE The users will be allowed to delete rows from this table or view.

INSERT The users will be allowed to insert rows into the named table or
view.

REFERENCES [(column-name,...)] The users will be allowed to create
indexes on the named tables, and foreign keys which reference the named
tables. If column names are specified, the users will be allowed to reference
only those columns. REFERENCES permissions on columns cannot be
granted for views, only for tables.

INDEX is a synonym for REFERENCES.

SELECT [(column-name,...)] The users will be allowed to look at
information in this view or table. If column names are specified, the users
will be allowed to look at only those columns. SELECT permissions on
columns cannot be granted for views, only for tables.

UPDATE [(column-name,...)] The users will be allowed to update rows
in this view or table. If column names are specified, the users will be allowed
to update only those columns. UPDATE permissions on columns cannot be
granted for views, only for tables.

If WITH GRANT OPTION is specified, then the named user ID is also given
permission to GRANT the same permissions to other user IDs.

Syntax 4 of the GRANT statement is used to grant permission to execute a
procedure.

Syntax 5 of the GRANT statement creates an explicit integrated login
mapping between one or more Windows NT user profiles and an existing
database user ID, allowing users who successfully log in to their local
machine to connect to a database without having to provide a user ID or
password.

& For more information on integrated logins see "Using integrated logins"
on page 58 of the book Adaptive Server Anywhere User's Guide.

¢ SQL/92 Syntax 3 is an entry-level feature. Syntax 4 is a Persistent
Stored Module feature. Other syntaxes are vendor extensions.

¢ Sybase Syntaxes 2 and 3 are supported in Adaptive Server Enterprise.
The security model is different in Adaptive Server Enterprise and
Adaptive Server Anywhere, so other syntaxes differ.

Chapter 9 SQL Statements

Examples ¢ Make two new users for the database.

GRANT
CONNECT TO Laurel, Hardy
IDENTIFIED BY Stan, Ollie

¢ Grant permissions on the employee table to user Laurel.

GRANT

SELECT, UPDATE (street)
ON employee

TO Laurel

More than one permission can be granted in a single statement. The
permissions are separated by commas.

¢ Allow the user Hardy to execute the Calculate Report procedure.

GRANT
EXECUTE ON Calculate Report
TO Hardy

487

HELP statement [ISQL]

HELP statement [ISQL]

Function To receive help in the Interactive SQL environment.

Syntax HELP [topic]

Permissions None.

Side effects None.

Description The HELP statement is used to enter the Interactive SQL interactive help

facility. The fopic for help can be optionally specified. If fopic is not
specified, the help system is entered at the index.

Standards and ¢ SQL/92 Vendor extension

compatibilit
P y ¢ Sybase Not applicable

488

Chapter 9 SQL Statements

IF statement

Function Provide conditional execution of SQL statements.

Syntax IF search-condition THEN statement-list
... [ELSEIF search-condition THEN statement-list] ...
... [ELSE statement-list]

...ENDIF
Permissions None.
Side effects None.
See also "BEGIN... END statement" on page 361

"Using Procedures, Triggers, and Batches" on page 221 of the book
Adaptive Server Anywhere User's Guide

Description The IF statement is a control statement that allows you to conditionally
execute the first list of SQL statements whose search-condition evaluates to
TRUE. If no search-condition evaluates to TRUE, and an ELSE clause
exists, the statement-list in the ELSE clause is executed.

Execution resumes at the first statement after the END IF.

IF statement is different from IF expression
Do not confuse the syntax of the IF statement with that of the IF
expression.

& For information on the IF expression, see "IF expressions" on page

188.
Standards and ¢ SQL/92 Persistent Stored Module feature.
compatibilit . .
P y ¢ Sybase The Transact-SQL IF statement has a slightly different syntax.
Example ¢ The following procedure illustrates the use of the IF statement:
CREATE PROCEDURE TopCustomer (OUT TopCompany
CHAR (35), ouT
TopValue INT)
BEGIN

DECLARE err notfound EXCEPTION

FOR SQLSTATE '02000' ;

DECLARE curThisCust CURSOR FOR

SELECT company name, CAST (
sum(sales order items.quantity *
product.unit price) AS INTEGER) VALUE
FROM customer

LEFT OUTER JOIN sales order

LEFT OUTER JOIN sales order items

489

IF statement

490

END

LEFT OUTER JOIN product
GROUP BY company name ;

DECLARE ThisValue INT ;
DECLARE ThisCompany CHAR (35) ;
SET TopValue = 0 ;
OPEN curThisCust ;
CustomerLoop:
LOOP
FETCH NEXT curThisCust
INTO ThisCompany, ThisValue ;
IF SQLSTATE = err notfound THEN
LEAVE CustomerLoop ;
END IF ;
IF ThisValue > TopValue THEN
SET TopValue = ThisValue ;

SET TopCompany = ThisCompany ;

END IF ;
END LOOP CustomerLoop ;
CLOSE curThisCust ;

Chapter 9 SQL Statements

IF statement [T-SQL]

Function To provide conditional execution of a SQL statement, as an alternative to the
Watcom-SQL IF statement.

Syntax IF expression
statement
[ELSE
[IF expression]
statement]
Authorization None.
Side effects None.
Description The Transact-SQL IF conditional and the ELSE conditional each control the

performance of only a single SQL statement or compound statement
(between the keywords BEGIN and END).

In comparison to the Watcom-SQL IF statement, there is no THEN in the
Transact-SQL IF statement. The Transact-SQL version also has no ELSEIF
or END IF keywords.

Standards and ¢ SQL/92 Transact-SQL extension.
compatibility . .
¢ Sybase Adaptive Server Enterprise supports the Transact-SQL IF
statement.
Example ¢ The following example illustrates the use of the Transact-SQL IF
statement:

IF (SELECT max (id) FROM sysobjects) < 100
RETURN
ELSE
BEGIN
PRINT "These are the user-created objects"
SELECT name, type, id
FROM sysobjects
WHERE id < 100
END

¢ The following two statement blocks illustrate Transact-SQL and
Watcom-SQL compatibility:

/* Transact-SQL IF statement */
IF @vl =0
PRINT '0O'
ELSE IF @vl =1
PRINT '1°'
ELSE
PRINT 'other'
/* Watcom-SQL IF statement */

491

IF statement [T-SQL]

492

IF vl = 0 THEN

PRINT 'O'
ELSEIF vl = 1 THEN

PRINT '1'
ELSE

PRINT 'other'
END IF

Chapter 9 SQL Statements

INCLUDE statement [ESQL]

Function

Syntax
Parameters
Permissions
Side effects

Description

Standards and
compatibility

Include a file into a source program to be scanned by the SQL source
language preprocessor.

INCLUDE filename
filename: identifier
None.

None.

The INCLUDE statement is very much like the C preprocessor #include
directive. The SQL preprocessor reads the given file, and inserts its contents
into the output C file. Thus, if an include file contains information that the
SQL preprocessor requires, it should be included with the Embedded SQL
INCLUDE statement.

Two file names are specially recognized: SQLCA and SQLDA. Any C
program using Embedded SQL must contain an

EXEC SQL INCLUDE SQLCA;

statement before any Embedded SQL statements. This statement must appear
at a position in the C program where static variable declarations are allowed.
Many Embedded SQL statements require variables (invisible to the
programmer), which are declared by the SQL preprocessor at the position of
the SQLCA include statement. The SQLDA file must be included if any
SQLDAs are used.

¢ SQL/92 Entry level feature.
¢ Sybase Supported by Open Client/Open Server.

493

INPUT statement [ISQL]

INPUT statement [ISQL]

Function

Syntax

Permissions
Side effects

See also

Description

494

To import data into a database table from an external file or from the
keyboard.

INPUT INTO [owner.]table-name
.. [FROM filename | PROMPT]
... [FORMAT input-format]
... ESCAPE CHARACTER character]
...[BY ORDER | BY NAME]
... [DELIMITED BY string]
... [COLUMN WIDTHS (integer,...)]
...[NOSTRIP]
.. [(column-name, ...)]

Must have INSERT permission on the table or view.
None.

"OUTPUT statement" on page 514
"INSERT statement" on page 498
"UPDATE statement" on page 572
"DELETE statement" on page 442

"SET OPTION statement" on page 553
"LOAD TABLE statement" on page 504

The INPUT statement allows efficient mass insertion into a database table.
Lines of input are read either from the user via an input window (if
PROMPT is specified) or from a file (if FROM filename is specified). If
neither is specified, the input will be read from the command file that
contains the input statement—this can even be directly from the Interactive
SQL editor. In this case, input is ended with a line containing only the string
END.

These lines are inserted into the named table. If a column list is specified, the
data is inserted into the specified columns of the named table.

Normally, the INPUT statement stops when it attempts to insert a row that
causes an error. Errors can be treated in different ways by setting the
ON_ERROR and CONVERSION_ERROR options (see SET OPTION).
Interactive SQL will print a warning in the statistics window if any string
values are truncated on INPUT. Missing values for NOT NULL columns
will be set to zero for numeric types and to the empty string for non-numeric

types.

The default escape character for hexadecimal codes and symbols is a
backslash (\), so \x0A is the linefeed character, for example.

Chapter 9 SQL Statements

The escape character can be changed, using the ESCAPE CHARACTER
clause. For example, to use the exclamation mark as the escape character,
you would enter:

. ESCAPE CHARACTER '!'
Only one single-byte character can be used as an escape character.

The BY clause allows the user to specify whether the columns from the input
file should be matched up with the table columns based on their ordinal
position in the lists (ORDER, the default) or by their names (NAME). Not all
input formats have column name information in the file. NAME is allowed
only for those formats that do. They are the same formats that allow
automatic table creation listed below: DBASEII, DBASEIII, DIF, FOXPRO,
LOTUS, and WATFILE.

The DELIMITED BY clause allows you to specify a string to be used as the
delimiter in ASCII input format.

COLUMN WIDTHS can be specified for FIXED format only. It specifies
the widths of the columns in the input file. [f COLUMN WIDTHS is not
specified, the widths are determined by the database column types.

Normally, for ASCII input format, trailing blanks will be stripped from
unquoted strings before the value is inserted. NOSTRIP can be used to
suppress trailing blank stripping. Trailing blanks are not stripped from
quoted strings, regardless of whether the option is used. Leading blanks are
stripped from unquoted strings, regardless of the NOSTRIP option setting.

If the ASCII file has entries such that a column appears to be null, LOAD
TABLE treats it as null. If the column in that position cannot be null, it
inserts a zero in numeric columns and an empty string in character columns.

Each set of values must occupy one input line and must be in the format
specified by the FORMAT clause, or the format set by the SET

INPUT FORMAT statement if the FORMAT clause is not specified. When
input is entered by the user, an empty screen is provided for the user to enter
one row per line in the input format.

Certain file formats contain information about column names and types.
Using this information, the INPUT statement will create the database table if
it does not already exist. This is a very easy way to load data into the
database. The formats that have enough information to create the table are:
DBASEII, DBASEIII, DIF, FOXPRO, LOTUS, and WATFILE.

Allowable input formats are:

495

INPUT statement [ISQL]

496

ASCIl Input lines are assumed to be ASCII characters, one row per line,
with values separated by commas. Alphabetic strings may be enclosed in
apostrophes (single quotes) or quotation marks (double quotes). Strings
containing commas must be enclosed in either single or double quotes. If the
string itself contains single or double quotes, double the quote character to
use it within the string. Optionally, you can use the DELIMITED BY clause
to specify a different delimiter string than the default, which is a comma.

Three other special sequences are also recognized. The two characters \n
represent a newline character, \\ represents a single (\), and the sequence
\xDD represents the character with hexadecimal code DD.

DBASE The file is in dBASE II or dBASE III format. Interactive SQL will
attempt to determine which format, based on information in the file. If the
table doesn't exist, it will be created.

DBASEIl The file is in dBASE II format. If the table doesn't exist, it will
be created.

DBASEIIl The file is in dBASE III format. If the table doesn't exist, it will
be created.

DIF Input file is in Data Interchange Format. If the table doesn't exist, it
will be created.

FIXED Input lines are in fixed format. The width of the columns can be
specified using the COLUMN WIDTHS clause. If they are not specified,
column widths in the file must be the same as the maximum number of
characters required by any value of the corresponding database column's
type.

The FIXED format cannot be used with binary columns that contain
embedded newline and End of File character sequences.

FOXPRO The file is in FoxPro format (the FoxPro memo field is different
than the dBASE memo field). If the table doesn't exist, it will be created.

LOTUS The file is a Lotus WKS format worksheet. INPUT assumes that
the first row in the Lotus WKS format worksheet is column names. If the
table doesn't exist, it will be created. In this case, the types and sizes of the
columns created may not be correct because the information in the file
pertains to a cell, not to a column.

WATFILE The input is a WATFILE file. If the table doesn't exist, it will be
created.

Input from a command file is terminated by a line containing END. Input
from a file is terminated at the end of the file.

Chapter 9 SQL Statements

Standards and ¢ SQL/92 Vendor extension

compatibility ¢ Sybase Not applicable
Example ¢ The following is an example of an INPUT statement from an ASCII text
file.

INPUT INTO employee
FROM new emp.inp
FORMAT ascii;

497

INSERT statement

INSERT statement

Function To insert a single row (format 1) or a selection of rows from elsewhere in the
database (format 2) into a table.

Syntax 1 INSERT [INTO][owner.]table-name [(column-name, ...)]
... VALUES (expression | DEFAULT, ...)

Syntax 2 INSERT [INTO][owner.]table-name [(column-name, ...)]
... Select-statement

Permissions Must have INSERT permission on the table.

Side effects None.

See also "INPUT statement" on page 494

"UPDATE statement" on page 572
"DELETE statement" on page 442
"PUT statement" on page 524

Description The INSERT statement is used to add new rows to a database table.

Format 1 allows the insertion of a single row, with the specified expression
values. The keyword DEFAULT can be used to cause the default value for
the column to be inserted. If the optional list of column names is given, the
values are inserted one for one into the specified columns. If the list of
column names is not specified, the values are inserted into the table columns
in the order they were created (the same order as retrieved with SELECT *).
The row is inserted into the table at an arbitrary position. (In relational
databases, tables are not ordered.)

Format 2 allows the user to do mass insertion into a table with the results of a
fully general SELECT statement. Insertions are done in an arbitrary order
unless the SELECT statement contains an ORDER BY clause. The columns
from the select list are matched ordinally with the columns specified in the
column list, or sequentially in the order in which the columns were created.

Note
The NUMBER(*) function is useful for generating primary keys with
format 2 of the INSERT statement (see "SQL Functions" on page 267).

Inserts can be done into views, if the SELECT statement defining the view
has only one table in the FROM clause and does not contain a GROUP BY
clause or an aggregate function, or involve a UNION operation.

498

Chapter 9 SQL Statements

Standards and
compatibility

Examples

Character strings inserted into tables are always stored in the same case as
they are entered, regardless of whether the database is case sensitive or not.
Thus a string Value inserted into a table is always held in the database with
an upper-case V and the remainder of the letters lower case. SELECT
statements return the string as Value. If the database is not case-sensitive,
however, all comparisons make Value the same as value, VALUE, and so on.
Further, if a single-column primary key already contains an entry Value, an
INSERT of value is rejected, as it would make the primary key not unique.

Performance hint

To insert many rows into a table, it is more efficient to declare a cursor
and use the PUT statement to insert the rows, where possible, than to
carry out many separate INSERT statements.

¢ SQL/92 Entry level feature.
¢ Sybase Supported by Adaptive Server Enterprise.

¢ Add an Eastern Sales department to the database.

INSERT
INTO department (dept id, dept name)
VALUES (230, 'Eastern Sales')

¢ Fill the table dept_head with the names of department heads and their

departments.
INSERT
INTO dept head (name, dept)
SELECT emp fname || ' ' || emp fname

AS name,
dept name
FROM employee JOIN department
ON emp id = dept head id

499

INSTALL statement

INSTALL statement

Function To make Java classes available for use within a database.

Syntax INSTALL JAVA
[NEW | UPDATE]
[JAR jar-name]
FROM FILE filename

Permissions DBA permissions are required to execute the INSTALL statement.
All installed classes can be referenced in any way by any user.
Not supported on Windows CE.

See also "REMOVE statement" on page 530

Description Install mode If you specify an install mode of NEW, the referenced Java
classes must be new classes, rather than updates of currently installed
classes. An error occurs if a class with the same name exists in the database
and the NEW install mode is used.

If you specify UPDATE, the referenced Java classes may include
replacements for Java classes that are already installed in the given database.

If install-mode is omitted, the default is NEW.

JAR Ifthis is specified, then the filename must designate a jar file. Jar files
typically have extensions of .jar or .zip.

Installed jar and zip files can be compressed or uncompressed. However, jar
files produced by the Sun JDK jar utility are not supported. Files produced
by other zip utilities are supported.

If the JAR option is specified, the jar is retained as a jar after the classes that
it contains have been installed. That jar is the associated jar of each of those
classes. The jars installed in a database with the JAR option are called the
retained jars of the database.

Retained jars are referenced in INSTALL and REMOVE statements.
Retained jars have no effect on other uses of Java-SQL classes. Retained jars
are used by the SQL system for requests by other systems for the class
associated with given data. If a requested class has an associated jar, the SQL
system can supply that jar, rather than the individual class.

The jar-name is a character string value, of up to 255 bytes long. The jar-
name is used to identify the retained jar in subsequent INSTALL UPDATE
and REMOVE statements.

source Specifies the location of the Java class(es) to be installed.

500

Chapter 9 SQL Statements

Class availability

Standards and
compatibility

Examples

The formats supported for file-name include fully qualified file names, such
as 'c:\libs\jarname.jar' and "/usr/u/libs/jarname.jar', and relative file names,
which are relative to the current working directory of the database server.

The filename must identify either a class file, or a jar file.

The class definition for each class is loaded by each connection's VM the
first time that class is used. When you INSTALL a class, the VM on your
connection is implicitly restarted. Therefore, you have immediate access to
the new class, whether the INSTALL has an install-mode of NEW or
UPDATE.

For other connections, the new class is loaded the next time a VM accesses
the class for the first time. If the class is already loaded by a VM, that
connection does not see the new class until the VM is restarted for that
connection (for example, with a STOP JAVA and START JAVA).

¢ SQL/92 Vendor extension.

¢ Sybase Not supported by Adaptive Server Enterprise.

¢ The following statement installs the user-created Java class named
Demo, by providing the filename and location of the class.

INSTALL JAVA NEW
FROM FILE 'D:\JavaClass\Demo.class'

After installation, the class is referenced using its name. Its original file
path location is no longer used. For example, the following statement
uses the class installed in the previous statement.

CREATE VARIABLE d Demo

If the Demo class was a member of the package sybase.work, the fully
qualified name of the class must be used, for example:

CREATE VARIABLE d sybase.work.Demo

¢ The following statement installs all the classes contained in a zip file,
and associates them within the database with a JAR file name.

INSTALL JAVA
JAR 'Widgets'
FROM FILE 'C:\Jars\Widget.zip'

Again, the location of the zip file is not retained and classes must be
referenced using the fully qualified class name (package name and class
name). The zip file must be an uncompressed Jar file.

501

LEAVE statement

LEAVE statement

Function
Syntax
Permissions
Side effects

See also

Description

Standards and
compatibility

Examples

502

Continue execution, by leaving a compound statement or LOOP.
LEAVE statement-label

None.

None.

"LOOP statement" on page 508

"FOR statement" on page 473

"BEGIN... END statement" on page 361

"Using Procedures, Triggers, and Batches" on page 221 of the book Adaptive
Server Anywhere User's Guide

The LEAVE statement is a control statement that allows you to leave a
labeled compound statement or a labeled loop. Execution resumes at the first
statement after the compound statement or loop.

The compound statement that is the body of a procedure or trigger has an
implicit label that is the same as the name of the procedure or trigger.

¢ SQL/92 Persistent Stored Module feature.

¢ Sybase Not supported in Adaptive Server Enterprise. The BREAK
statement provides a similar feature for Transact-SQL compatible
procedures.

¢ The following fragment shows how the LEAVE statement is used to

leave a loop.
SET 1 = 1;
1bl:
LOOP
INSERT

INTO Counters (number)
VALUES (1) ;
IF i >= 10 THEN
LEAVE 1bl ;
END IF ;
SET 1i =1 + 1
END LOOP 1bl

¢ The following example fragment uses LEAVE in a nested loop.

outer loop:

LOOP
SET i = 1;
inner loop:
LOOP

Chapter 9

SQL Statements

SET 1 =1 + 1;
IF i >= 10 THEN
LEAVE outer loop
END IF
END LOOP inner loop
END LOOP outer loop

503

LOAD TABLE statement

LOAD TABLE statement

Function

Syntax

Permissions

Side effects

See also

Description

504

To import data into a database table from an external ASCII-format file.

LOAD [INTO] TABLE [owner].table-name
.. FROM 'filename-string'
... [FORMAT ASCII]
... [DELIMITED BY string]
...[STRIP { ON | OFF }]
... QUOTES {ON | OFF }]
... [ESCAPES {ON | OFF }]
... [ESCAPE CHARACTER character]
.. [WITH CHECKPOINT { ON | OFF }]

Must be the owner of the table or have DBA authority.
Requires an exclusive lock on the table.
The table cannot be a declared local temporary table.

Triggers, including referential integrity actions, are not fired by the LOAD
TABLE statement. A COMMIT is performed at the end of the load.

"UNLOAD TABLE statement" on page 570
"INPUT statement" on page 494

The LOAD TABLE statement allows efficient mass insertion into a database
table from an ASCII file. LOAD TABLE is more efficient than the
Interactive SQL statement INPUT.

Caution
LOAD TABLE is intended solely for fast loading of large amounts of data.
1t is not intended for routine use in applications.

If the WITH CHECKPOINT ON clause is not specified, the file used for
loading must be retained in case recovery is required. If WITH
CHECKPOINT ON is specified, a checkpoint is carried out after loading,
and recovery is guaranteed even if the data file is then removed from the
system.

LOAD TABLE places an exclusive lock on the whole table; it does not fire
any triggers associated with the table.

You can use LOAD TABLE on a global temporary table, but the temporary
table must have been created with the ON COMMIT PRESERVE ROWS
clause, because LOAD TABLE does a COMMIT after the load. LOAD
TABLE cannot be used on declared temporary tables.

Chapter 9 SQL Statements

If the ASCII file has entries such that a column appears to be NULL, LOAD
TABLE treats it as null. If the column in that position cannot be NULL, it
inserts a zero in numeric columns and an empty string in character columns.

The following list describes each of the clauses of the statement.

FROM filename-string The filename-string is passed to the server as a
string. The string is therefore subject to the same formatting requirements as
other SQL strings. In particular:

¢ Toindicate directory paths, the backslash character \ must be
represented by two backslashes. The statement to load data from the file
c:\temp\input.dat into the employee table is:

LOAD TABLE employee
FROM 'c:\\temp\\input.dat'

¢ The pathname is relative to the database server, not to the client
application. If you are running the statement on a database server on
another computer, the directory names refers to directories on the server
machine, not on the client machine.

¢ You can use UNC path names to load data from files on computers other
than the server. For example, on a Windows for Workgroups, Windows
95, or Windows NT network, you may use the following statement to
load data from a file on the client machine:

LOAD TABLE employee
FROM '\\\\client\\temp\\input.dat'

FORMAT option The only file format currently supported is ASCII. Input
lines are assumed to be ASCII characters, one row per line, with values
separated by the column delimiter character.

DELIMITED BY option The default column delimiter character is a
comma. You can specify an alternative column delimiter by providing a
string. Only the first ASCII character of the string is read. The same
formatting requirements apply as to other SQL strings. In particular, to
specify tab-delimited values, the hexadecimal ASCII code of the tab
character (0) is used. The DELIMITED BY clause is as follows:

...DELIMITED BY '\x09'
STRIP option With STRIP turned on (the default), trailing blanks are

stripped from values before they are inserted. To turn the STRIP option off,
the clause is as follows:

...STRIP OFF ...

Trailing blanks are stripped only for non-quoted strings. Quoted strings
retain their trailing blanks. Leading blanks are trimmed, regardless of the
STRIP setting, unless they are enclosed in quotes.

505

LOAD TABLE statement

Standards and
compatibility

506

QUOTES option With QUOTES turned on (the default), the LOAD
statement looks for a quote character. The quote character is either an
apostrophe (single quote) or a quotation mark (double quote). The first such
character encountered in the input file is treated as the quote character for the
input file.

With quotes on, column delimiter characters can be included in column
values. Also, quote characters are assumed not to be part of the value.
Therefore, a line of the form

'123 High Street, Anytown', (715)398-2354

is treated as two values, not three, despite the presence of the comma in the
address. Also, the quotes surrounding the address are not inserted into the
database.

To include a quote character in a value, with QUOTES on, you must use two
quotes. The following line includes a value in the third column that is a
single quote character:

'123 High Street, Anytown','(715)398-2354"',"''"!’

ESCAPES option With ESCAPES turned on (the default), characters
following the backslash character are recognized and interpreted as special
characters by the database server. New line characters can be included as the
combination \n, other characters can be included in data as hexadecimal
ASCII codes, such as \x09 for the tab character. A sequence of two backslash
characters (\\) is interpreted as a single backslash.

ESCAPE CHARACTER option The default escape character for
characters stored as hexadecimal codes and symbols is a backslash (V), so
\X0A is the linefeed character, for example.

This can be changed using the ESCAPE CHARACTER clause. For
example, to use the exclamation mark as the escape character, you would
enter

. ESCAPE CHARACTER '!'

Only one single-byte character can be used as an escape character.

WITH CHECKPOINT option The default setting is OFF. If set to ON, a
checkpoint is issued after successfully completing and logging the statement.

If WITH CHECKPOINT ON is not specified, and recovery is subsequently
required, the data file used to load the table is needed for the recovery to
complete successfully. If WITH CHECKPOINT ON is specified, and
recovery is subsequently required, if will begin after the checkpoint, and the
data file need not be present.

¢ SQL/92 Vendor extension.

Chapter 9 SQL Statements

¢ Sybase Not applicable.

507

LOORP statement

LOOP statement

Function

Syntax

Permissions
Side effects

See also

Description

Standards and
compatibility

Examples

508

Repeat the execution of a statement list.

[statement-label :]

...l WHILE search-condition] LOOP
... Statement-list
...END LOORP [statement-label]

None.

None.

"FOR statement" on page 473
"LEAVE statement" on page 502

The WHILE and LOOP statements are control statements that allow you to
repeatedly execute a list of SQL statements while a search-condition
evaluates to TRUE. The LEAVE statement can be used to resume execution
at the first statement after the END LOOP.

If the ending statement-label is specified, it must match the beginning
statement-label.

¢
¢

SQL/92 Persistent Stored Module feature.

Sybase Not supported in Adaptive Server Enterprise. The WHILE
statement provides looping in Transact-SQL stored procedures.

A While loop in a procedure.

SET i =1 ;

WHILE i <= 10 LOOP
INSERT INTO Counters(number) VALUES (i) ;
SET 1 =1 + 1 ;

END LOOP ;

A labeled loop in a procedure.

SET 1 = 1;

1bl:

LOOP
INSERT

INTO Counters (number)
VALUES (1) ;
IF i >= 10 THEN
LEAVE 1bl ;
END IF ;
SET i =1 + 1 ;
END LOOP 1bl

Chapter 9 SQL Statements

MESSAGE statement

Function To display a message.

Syntax MESSAGE expression, ...
[TYPE {INFO | ACTION | WARNING | STATUS }]
[TO { CLIENT | CONSOLE | LOG }]

Permissions Must be connected to the database.

Side effects None.

See also "CREATE PROCEDURE statement" on page 403

Description The MESSAGE statement displays a message, which can be any expression.

Clauses can specify where the message is displayed.

Valid expressions can include a quoted string or other constant, variable, or
function. However, queries are not permitted in the output of a Message
statement even though the definition of an expression includes queries.

TYPE clause The TYPE clause only has an effect if the message is sent to
the client. The client application must decide how to handle the message.
Interactive SQL displays messages in the following locations:

¢ INFO The Message window.

¢ ACTION A Message box with an OK button.

¢ WARNING A Message box with an OK button.
¢ STATUS The Message window.

TO clause This clause specifies the destination of a message:
¢ The default is CONSOLE, which means the database server window.

¢ A destination of LOG sends messages to the server log file specified by
the —o command-line option.

¢ A destination of CLIENT sends messages to the client application. Your
application must decide how to handle the message, and you can use the
TYPE as information on which to base that decision.

Standards and ¢ SQL/92 Vendor extension.

compatibilit .
P y ¢ Sybase Not supported in Adaptive Server Enterprise. The Transact-

SQL PRINT statement provides a similar feature, and is also available in
Adaptive Server Anywhere.

Example ¢ The following procedure displays a message on the server message
window:

509

MESSAGE statement

CREATE PROCEDURE message test ()

BEGIN

MESSAGE 'The current date and time: ', Now();
END

¢ The statement:

CALL message test()

displays the string The current date and time, and the current date and
time, on the database server message window.

510

Chapter 9 SQL Statements

OPEN statement [ESQL] [SP]

Function To open a previously declared cursor to access information from the
database.

Syntax OPEN cursor-name
... [USING [DESCRIPTOR sqlda-name | host-variable, ...] 1
... [WITH HOLD]
... [ISOLATION LEVEL n]
...[BLOCKn]

Parameters cursor-name: identifier or host-variable
sqlda-name: identifier

Permissions Must have SELECT permission on all tables in a SELECT statement, or
EXECUTE permission on the procedure in a CALL statement.

When the cursor is on a CALL statement, OPEN causes the procedure to
execute until the first result set (SELECT statement with no INTO clause) is
encountered. If the procedure completes and no result set is found, the
SQLSTATE PROCEDURE COMPLETE warning is set.

Side effects None.

See also "DECLARE CURSOR statement" on page 436
"RESUME statement" on page 533
"PREPARE statement" on page 519
"FETCH statement" on page 468
"RESUME statement" on page 533
"CLOSE statement" on page 373

Description The OPEN statement opens the named cursor. The cursor must be previously
declared.

By default, all cursors are automatically closed at the end of the current
transaction (COMMIT or ROLLBACK). The optional WITH HOLD clause
keeps the cursor open for subsequent transactions. It will remain open until
the end of the current connection or until an explicit CLOSE statement is
executed. Cursors are automatically closed when a connection is terminated.

The ISOLATION LEVEL clause allows this cursor to be opened at an
isolation level different from the current setting of the ISOLATION LEVEL
option. All operations on this cursor will be performed at the specified
isolation level regardless of the option setting. If this clause is not specified,
then the cursor's isolation level for the entire time the cursor is open is the
value of the ISOLATION_ LEVEL option when the cursor is opened. See
"How locking works" on page 382 of the book Adaptive Server Anywhere
User's Guide.

511

OPEN statement [ESQL] [SP]

Embedded SQL

Standards and
compatibility

Examples

512

The cursor is positioned before the first row (see "Cursors in Embedded
SQL" on page 33 of the book Adaptive Server Anywhere Programming
Interfaces Guide or "Using cursors in procedures and triggers" on page 251
of the book Adaptive Server Anywhere User's Guide).

The USING DESCRIPTOR sqlda-name, host-variable and BLOCK n
formats are for Embedded SQL only.

If the cursor name is specified by an identifier or string, the corresponding
DECLARE CURSOR must appear prior to the OPEN in the C program; if
the cursor name is specified by a host variable, the DECLARE CURSOR
statement must execute before the OPEN statement.

The optional USING clause specifies the host variables that will be bound to
the place-holder bind variables in the SELECT statement for which the
cursor has been declared.

The multiuser support fetches rows in blocks (more than 1 at a time). By
default, the number of rows in a block is determined dynamically based on
the size of the rows and how long it takes the database server to fetch each
row. The application can specify a maximum number of rows that should be
contained in a block by specifying the BLOCK clause. For example, if you
are fetching and displaying 5 rows at a time, use BLOCK 5. Specifying
BLOCK 0 will cause one row at a time to be fetched, and also cause a
FETCH RELATIVE 0 to always fetch the row again.

After successful execution of the OPEN statement, the sqlerrd/3] field of the
SQLCA (SQLIOESTIMATE) will be filled in with an estimate of the
number of input/output operations required to fetch all rows of the query.
Also, the sqlerrd[2] field of the SQLCA (SQLCOUNT) will be filled in with
either the actual number of rows in the cursor (a value greater than or equal
to 0), or an estimate thereof (a negative number whose absolute value is the
estimate). It will be the actual number of rows if the database server can
compute it without counting the rows. The database can also be configured to
always return the actual number of rows (see the ROW_COUNTS option in
"SET OPTION statement" on page 553.), but this can be expensive.

¢ SQL/M92 Embedded SQL use is an entry-level feature. Procedures use
is a Persistent Stored Modules feature.

¢ Sybase The simple OPEN cursor-name syntax is supported by
Adaptive Server Enterprise. None of the other clauses are supported in
Adaptive Server Enterprise stored procedures. Open Client/Open Server
supports the USING descriptor or host variable syntax.

¢ The following examples show the use of OPEN in Embedded SQL.
1. EXEC SQL OPEN employee_cursor;

2. EXEC SQL PREPARE emp stat FROM

Chapter 9 SQL Statements

'SELECT empnum, empname FROM employee WHERE name
like 2';

EXEC SQL DECLARE employee cursor CURSOR FOR

emp stat;

EXEC SQL OPEN employee cursor USING :pattern;

¢ The following example is from a procedure or trigger.

BEGIN

DECLARE cur employee CURSOR FOR
SELECT emp lname
FROM employee ;

DECLARE name CHAR (40) ;

OPEN cur employee;

LOOP

FETCH NEXT cur employee into name ;

END LOOP

CLOSE cur_ employee;

END

513

OUTPUT statement [ISQL]

OUTPUT statement [ISQL]

Function

Syntax

Permissions

Side effects

See also

Description

514

To output the current query results to a file.

OUTPUT TO filename
... [FORMAT output_format]
... ESCAPE CHARACTER character]
... [DELIMITED BY string]
... [QUOTE string [ALL]]
.. [COLUMN WIDTHS (integer,...)]

None.

The current query results that are displayed in the Interactive SQL data
window are repositioned to the top.

"SELECT statement" on page 542
"INPUT statement" on page 494

The OUTPUT statement copies the information retrieved by the current
query to a file. The output format can be specified with the optional
FORMAT clause. If no FORMAT clause is specified, the

OUTPUT _FORMAT option setting is used (see "SET OPTION statement"
on page 553).

The current query is the SELECT or INPUT statement which generated the
information displayed in the Interactive SQL data window. The OUTPUT
statement will report an error if there is no current query.

The default escape character for characters stored as hexadecimal codes and
symbols is a backslash (), so \x0A is the linefeed character, for example.

This can be changed using the ESCAPE CHARACTER clause. For
example, to use the exclamation mark as the escape character, you would
enter

. ESCAPE CHARACTER '!'

The DELIMITED BY and QUOTE clauses are for the ASCII output format
only. The delimiter string will be placed between columns (default comma)
and the quote string will be placed around string values (default '—single
quote). If ALL is specified in the QUOTE clause, the quote string will be
placed around all values, not just strings.

The COLUMN WIDTH clause is used to specify the column widths for the
FIXED format output.

Allowable output formats are:

Chapter 9 SQL Statements

ASCIl The output is an ASCII format file with one row per line in the file.
All values are separated by commas, and strings are enclosed in apostrophes
(single quotes). The delimiter and quote strings can be changed using the
DELIMITED BY and QUOTE clauses. If ALL is specified in the QUOTE
clause, all values (not just strings) will be quoted.

Three other special sequences are also used. The two characters \n represent
a newline character, \\ represents a single \, and the sequence \xDD
represents the character with hexadecimal code DD. This is the default
output format.

If you are exporting Java methods that have string return values, you must
use the HEXADECIMAL OFF clause.

DBASEIl The output is a dBASE II format file with the column definitions
at the top of the file. Note that a maximum of 32 columns can be output.
Also, note that columns longer than 255 characters will be truncated in the
file.

DBASEIIl The output is a dBASE III format file with the column
definitions at the top of the file. Note that a maximum of 128 columns can be
output. Also, note that columns longer than 255 characters will be truncated
in the file.

DIF The output is a file in the standard Data Interchange Format.

FIXED The output is fixed format with each column having a fixed width.
The width for each column can be specified using the COLUMN WIDTH
clause. No column headings are output in this format.

If the COLUMN WIDTH clause is omitted, the width for each column is
computed from the data type for the column, and is large enough to hold any
value of that data type. The exception is that LONG VARCHAR and LONG
BINARY data defaults to 32 Kb.

FOXPRO The output is a FoxPro format file (the FoxPro memo field is
different than the dBASE memo field) with the column definitions at the top
of the file. Note that a maximum of 128 columns can be output. Also, note
that columns longer than 255 characters will be truncated in the file.

LOTUS The output is a Lotus WKS format worksheet. Column names will
be put as the first row in the worksheet. Note that there are certain
restrictions on the maximum size of Lotus WKS format worksheets that
other software (such as Lotus 1-2-3) can load. There is no limit to the size of
file Interactive SQL can produce.

SQL The output is a Interactive SQL INPUT statement required to recreate
the information in the table.

515

OUTPUT statement [ISQL]

Exporting Java
data

Standards and
compatibility

Examples

516

TEXT The output is a TEXT format file which prints the results in columns
with the column names at the top and vertical lines separating the columns.
This format is similar to that used to display data in the Interactive SQL data
window.

WATFILE The output is a WATFILE format file with the column
definitions at the top of the file.

When exporting Java data, you may wish to export objects as binary, or you
may want to export them as strings using the toString () method. You
can control which way Java data is exported using the
DESCRIBE JAVA FORMAT Interactive SQL option.

For example, consider the following script:

CREATE VARIABLE JavaString java.lang.String;
SET JavaString = NEW java.lang.String('TestVar');
SELECT JavaString FROM dummy;

If you set describe java format to Varchar:

¢ The following command gives the hexadecimal representation of
TestVar in the output file.

OUTPUT TO filename

¢ The following command gives a text representation of TestVar in the
output file (possibly escaped).

OUTPUT TO filename HEXADECIMAL OFF
If you set describe java format to binary:

¢ The following command gives the hexadecimal representation of
JavaString in the output file.

OUTPUT TO filename

¢ The following command gives the actual JavaString object in the output
file (with escape sequences).

OUTPUT TO filename HEXADECIMAL OFF

& For more information, see "DESCRIBE JAVA FORMAT option" on
page 154.

¢ SQL/92 Vendor extension
¢ Sybase Not applicable

¢ Place the contents of the employee table in a file, in ASCII format.

SELECT *
FROM employee ;
OUTPUT TO employee.txt

Chapter 9 SQL Statements

FORMAT ASCII

¢ Output the contents of the toString () method of the JProd column
to file:
SELECT JProd>>toString ()
FROM jdba.product;

OUTPUT TO d:\temp\temp.txt
FORMAT ASCII HEXADECIMAL OFF

517

PARAMETERS statement [ISQL]

PARAMETERS statement [ISQL]

Function To specify parameters to a Interactive SQL command file.
Syntax PARAMETERS parameter1, parameter2, ...
Permissions None.
Side effects None.
See also "READ statement" on page 527
"Running command files" on page 80 of the book First Guide to SOL
Anywhere Studio
Description The PARAMETERS statement names the parameters for a command file, so

that they can be referenced later in the command file.
Parameters are referenced by putting:
{parameterl}

into the file where you wish the named parameter to be substituted. There
must be no spaces between the braces and the parameter name.

If a command file is invoked with fewer than the required number of
parameters, Interactive SQL prompts for values of the missing parameters.

Standards and ¢ SQL/92 Vendor extension
compatibilit
patibriity ¢ Sybase Not applicable.

Example ¢ The following Interactive SQL command file takes two parameters.

PARAMETERS department id, file ;
SELECT emp lname

FROM employee

WHERE dept id = {department id}
>#{file}.dat;

518

Chapter 9 SQL Statements

PREPARE statement [ESQL]

Function

Syntax

Parameters

Permissions
Side effects

See also

Description

To prepare a statement to be executed later or used for a cursor.

PREPARE statement-name
FROM statement
...l DESCRIBE describe-type INTO [[SQL] DESCRIPTOR] descriptor]
...l WITH EXECUTE]

statement-name: identifier or host-variable
statement : string or host-variable

describe-type:
{ALL | BIND VARIABLES | INPUT | OUTPUT | SELECT LIST }

LONG NAMES [[OWNER. [TABLE. |JCOLUMN]
| WITH VARIABLE RESULT

]

None.
Any statement previously prepared with the same name is lost.

"DECLARE CURSOR statement" on page 436
"DESCRIBE statement" on page 446

"OPEN statement" on page 511

"EXECUTE statement" on page 460

"DROP STATEMENT statement" on page 458

The PREPARE statement prepares a SQL statement from the statement and
associates the prepared statement with statement-name. This statement
name is referenced to execute the statement, or to open a cursor if the
statement is a SELECT statement. Statement-name may be a host variable
of type a_sql_statement_number defined in the sqlca.h header file that is
automatically included. If an identifier is used for the statement-name, only
one statement per module may be prepared with this statement-name.

If a host variable is used for statement-name, it must have the type short
int. There is a typedef for this type in sqlca.h called
a_sql_statement_number. This type is recognized by the SQL preprocessor
and can be used in a DECLARE section. The host variable is filled in by the
database during the PREPARE statement, and need not be initialized by the
programmer.

If the DESCRIBE INTO DESCRIPTOR clause is used, the prepared
statement is described into the specified descriptor. The describe type may be
any of the describe types allowed in the DESCRIBE statement.

519

PREPARE statement [ESQL]

Describing variable
result sets

Statements that
can be prepared

520

If the WITH EXECUTE clause is used, the statement is executed if and only
if it is not a CALL or SELECT statement, and it has no host variables. The
statement is immediately dropped after a successful execution. If the
PREPARE and the DESCRIBE (if any) are successful but the statement
cannot be executed, a warning SQLCODE 111, SQLSTATE 01WO0S8 is set,
and the statement is not dropped.

The DESRIBE INTO DESCRIPTOR and WITH EXECUTE clauses may
improve performance, because they cut down on the required client/server
communication.

The WITH VARIABLE RESULT clause is used to describe procedures that
may have more than one result set, with different numbers or types of
columns.

If WITH VARIABLE RESULT is used, the database server sets the
SQLCOUNT value after the describe to one of the following values:

¢ 0 The result set may change: The procedure call should be described
again following each OPEN statement.

¢ 1 Theresult set is fixed. No redescribing is required.

The following is a list of statements that can be PREPARED.
ALTER

CALL

COMMENT ON
CREATE

DELETE

DROP

GRANT

INSERT

REVOKE

SELECT

SET OPTION
UPDATE
VALIDATE TABLE

* € & 6 & O ¢ O O o o o o

Chapter 9 SQL Statements

Standards and
compatibility

Example

Compatibility issue

For compatibility reasons, preparing COMMIT, PREPARE TO
COMMIT, and ROLLBACK statements is still supported. However, we
recommend that you do all transaction management operations with static
Embedded SQL because certain application environments may require it.
Also, other Embedded SQL systems do not support dynamic transaction
management operations.

Drop statement after use
You should make sure that you DROP the statement after use. If you do
not, the memory associated with the statement is not reclaimed.

SQL/92 Entry level feature
Sybase Supported by Open Client/Open Server.

The following statement prepares a simple query:

EXEC SQL PREPARE employee statement FROM
'SELECT emp lname FROM employee';

521

PREPARE TO COMMIT statement

PREPARE TO COMMIT statement

Function To check whether a COMMIT can be performed.
Syntax PREPARE TO COMMIT

Permissions None.

Side effects None.

See also "COMMIT statement" on page 377

"ROLLBACK statement" on page 538

Description The PREPARE TO COMMIT statement tests whether a COMMIT can be
performed successfully. The statement will cause an error if a COMMIT is
not possible without violating the integrity of the database.

Standards and ¢ SQL/92 Vendor extension.

compatibilit
patibriity ¢ Sybase Not supported in Adaptive Server Enterprise.

Examples ¢ The following sequence of statements leads to an error because of
foreign key checking on the employee table.

EXECUTE IMMEDIATE
"SET OPTION wait for commit = 'on'";

EXECUTE IMMEDIATE "DELETE FROM employee
WHERE emp id = 160";

EXECUTE IMMEDIATE "PREPARE TO COMMIT";

¢ The following sequence of statements allows the delete to take place,
even though it causes integrity violations. The PREPARE TO COMMIT
statement returns an error.

SET OPTION wait for commit= 'ON' ;
DELETE

FROM department

WHERE dept id = 100 ;

PREPARE TO COMMIT ;

522

Chapter 9 SQL Statements

PRINT statement [T-SQL]

Function To display a message on the message window of the database server or
return a message to the client window.

Syntax PRINT format-string [, arg-list]

Authorization Must be connected to the database.

Side effects None.

See also "MESSAGE statement" on page 509

Description The PRINT statement returns a message to the client window if you are

connected from an Open Client application or JDBC application. If you are
connected from an Embedded SQL or ODBC application, the message is
displayed on the database server window.

The format string can contain placeholders for the arguments in the optional
argument list. These placeholders are of the form %nn!, where nn is an
integer between 1 and 20.

Standards and ¢ SQL/92 Transact-SQL extension.
compatibilit
P y ¢ Sybase Supported by Adaptive Server Enterprise.
Examples ¢ The following procedure displays a message on the server message
window:

CREATE PROCEDURE print test
AS
PRINT 'Procedure called successfully'

The statement
EXECUTE print test
returns the string Procedure called successfully to the client.

¢ The following statement illustrates the use of placeholders in the PRINT
statement:

DECLARE @varl INT, @var2 INT
SELECT @varl = 3, Qvar2 =5

PRINT 'Variable 1 = %1!, Variable 2 = %2!', @Qvarl,
@var2

523

PUT statement [ESQL] [SP]

PUT statement [ESQL] [SP]

Function

Syntax

Parameters

Permissions
Side effects

See also

Description

524

To insert a row into the table(s) specified by the cursor. See "SET statement"
on page 546 for putting LONG VARCHAR or LONG BINARY values into
the database.

PUT cursor-name
[USING DESCRIPTOR sqlda-name
| FROM host-variable-list]

[INTO DESCRIPTOR into-sqlda-name
| INTO into-host-variable-list]

[ARRAY :nnn]
cursor-name: identifier or host-variable
sqlda-name: identifier
host-variable-list. may contain indicator variables
Must have INSERT permission.
None.

"UPDATE statement" on page 572

"UPDATE (positioned) statement" on page 575
"DELETE statement" on page 442

"DELETE (positioned) statement" on page 444
"INSERT statement" on page 498

Inserts a row into the named cursor. Values for the columns are taken from
the SQLDA or the host variable list, in a one-to-one correspondence with the
columns in the INSERT statement (for an INSERT cursor) or the columns in
the select list (for a SELECT cursor).

If the sqldata pointer in the SQLDA is the null pointer, no value is specified
for that column. If the column has a DEFAULT VALUE associated with it,
that will be used; otherwise, a NULL value will be used. If no values are
specified for any of the columns of one particular table involved in the
cursor, no row will be inserted into that table.

The second SQLDA or host variable list contains the results of the PUT
statement.

The optional ARRAY clause can be used to carry out wide puts, which insert
more than one row at a time and which may improve performance. The value
nnn is the number of rows to be inserted. The SQLDA must contain nnn *
(columns per row) variables. The first row is placed in SQLDA variables 0
to (columns per row)-1, and so on.

Chapter 9 SQL Statements

One table only
Values can be specified for columns of one table only. Inserting into two
different tables through a cursor is not supported.

Inserting into a cursor

When inserting into a cursor, the position of the inserted row is
unpredictable. If the cursor involves a temporary table, the inserted record
will not show up in the current cursor at all.

Standards and ¢ SQL/92 Entry level feature.
compatibility .
¢ Sybase Supported by Open Client/Open Server.

Example ¢ The following statement illustrates the use of PUT in Embedded SQL.:

EXEC SQL PUT cur employee FROM :emp id, :emp lname;

525

RAISERROR statement [T-SQL]

RAISERROR statement [T-SQL]

Function

Syntax

Authorization
Side effects
See also

Description

Standards and
compatibility

Example

526

To signal an error, and send a message to the client.
RAISERROR error-number [format-string] [, arg-list]
Must be connected to the database.

None.

"CREATE TRIGGER statement" on page 427

The RAISERROR statement allows user-defined errors to be signaled, and
sends a message on the client.

The error-number is a five-digit integer greater than 17000.

If format-string is not supplied or is empty, the error number is used to locate
an error message in the system tables. Adaptive Server Enterprise obtains
messages 17000-19999 from the SYSMESSAGES table. In Adaptive Server
Anywhere this table is an empty view, so errors in this range should provide
a format string. Messages for error numbers of 20000 or greater are obtained
from the SYS.SYSUSERMESSAGES table. The error number is stored in
the global variable @@error.

The format-string is a maximum of 70 bytes long. In Adaptive Server,
Anywhere the format-string length can be up to 255 bytes.

The extended values supported by the Adaptive Server Enterprise
RAISERROR statement are not supported in Adaptive Server Anywhere.

The format string can contain placeholders for the arguments in the optional
argument list. These placeholders are of the form %mnn!/, where nn is an
integer between 1 and 20.

¢ SQL/92 Transact-SQL extension.
¢ Sybase Supported by Adaptive Server Enterprise.

¢ The following statement raises error 99999, which is in the range for
user-defined errors, and sends a message to the client.

RAISERROR 99999 'Invalid entry for this column:
$1!', @val

There is no comma between the error-number and the format-string
parameters. The first item following a comma is interpreted as the first
item in the argument list.

Chapter 9 SQL Statements

READ statement [ISQL]

Function
Syntax
Permissions
Side effects
See also

Description

Standards and
compatibility

Examples

To read Interactive SQL statements from a file.
READ filename [parameters]

None.

None.

"PARAMETERS statement" on page 518

The READ statement reads a sequence of Interactive SQL statements from
the named file. This file can contain any valid Interactive SQL statement
including other READ statements. READ statements can be nested to any
depth. To find the command file, Interactive SQL will first search the current
directory, then the directories specified in the environment variable
SQLPATH, then the directories specified in the environment variable
PATH. If the named file has no file extension, Interactive SQL searches
each directory for the same file name with the extension sq/.

Parameters can be listed after the name of the command file. These
parameters correspond to the parameters named on the PARAMETERS
statement at the beginning of the statement file (see "PARAMETERS
statement” on page 518). Interactive SQL will then substitute the
corresponding parameter wherever the source file contains

{ parameter-name }
where parameter-name is the name of the appropriate parameter.

The parameters passed to a command file can be identifiers, numbers, quoted
identifiers, or strings. When quotes are used around a parameter, the quotes
are put into the text during the substitution. Parameters which are not
identifiers, numbers, or strings (contain spaces or tabs) must be enclosed in
square brackets ([]). This allows for arbitrary textual substitution in the
command file.

If not enough parameters are passed to the command file, Interactive SQL
prompts for values for the missing parameters.

¢ SQL/92 Vendor extension.
¢ Sybase Not applicable.

¢ The following are examples of the READ statement.
READ status.rpt '160'

READ birthday.sgl [>= '1988-1-1"'] [<= '1988-1-30"']

527

READTEXT statement [T-SQL]

READTEXT statement [T-SQL]

Function

Syntax

Authorization
Side effects
See also

Description

Standards and
compatibility

528

Reads text and image values, starting from a specified offset and reading a
specified number of bytes.

READTEXT table-name.column-name
... text-pointer offset size
... [HOLDLOCK]

Select permissions on the table.
None.
"WRITETEXT statement" on page 580

READTEXT is used to read image and text values from the database. You
cannot perform READTEXT operations on views.

¢ SQL/92 Transact-SQL extension.
¢ Sybase Supported by Adaptive Server Enterprise.

Adaptive Server Enterprise supports the following clause, which is not
supported by Adaptive Server Anywhere:

USING { BYTES | CHARS | CHARACTERS }

These options are identical for all single-byte character sets. Adaptive
Server Anywhere uses bytes only, which is the Adaptive Server
Enterprise default setting.

Adaptive Server Enterprise also provides isolation level control in the
READTEXT statement. This is not supported in Adaptive Server
Anywhere.

Chapter 9 SQL Statements

RELEASE SAVEPOINT statement

Function
Syntax

Permissions

Side effects

See also

Description

Standards and
compatibility

Release a savepoint within the current transaction.
RELEASE SAVEPOINT [savepoint-name]

There must have been a corresponding SAVEPOINT within the current
transaction.

None.

"SAVEPOINT statement" on page 541
"ROLLBACK TO SAVEPOINT statement" on page 539

Release a savepoint. The savepoint-name is an identifier specified on a
SAVEPOINT statement within the current transaction. If savepoint-name is
omitted, the most recent savepoint is released.

For a description of savepoints, see "Savepoints within transactions" on page
418 of the book Adaptive Server Anywhere User's Guide. Releasing a
savepoint does not do any type of COMMIT. It simply removes the
savepoint from the list of currently active savepoints.

¢ SQL/92 Vendor extension.

¢ Sybase Not supported by Adaptive Server Enterprise. A similar
feature is available in an Adaptive Server Enterprise-compatible manner
using nested transactions.

529

REMOVE statement

REMOVE statement

Function

Syntax

Parameters

Permissions

Description

Standards and
compatibility

Examples

530

This statement removes a class, a package, or a jar file from a database.
When a class is removed it is no longer available for use as a column or
variable type.

The class, package, or jar must already be installed.
REMOVE JAVA classes_to_remove

classes_to_remove:
CLASS java_class_name [, java_class_name,...]
| PACKAGE java_package_name [, java_package_name,...]
| JAR jar_name [, jar_name,...] [RETAIN CLASSES]

jar_name:
character_string_expression

Must have DBA authority.
Not supported on Windows CE.

java_class_name The name of one or more Java class to be removed.
These classes must be installed classes in the current database.

java_package_name The name of one or more Java packages to be
removed. These packages must be in the current database.

jar_name A character string value of maximum length 255.

Each jar name must be equal to the jar name of a retained jar in the current
database. Equality of jar name is determined by the character string
comparison rules of the SQL system.

If JAR...RETAIN CLASSES is specified, the specified jars are no longer
retained in the database, and the retained classes have no associated jar. If
RETAIN CLASSES is specified, this is the only action of the REMOVE
statement.

¢ SQL/92 Vendor extension.

¢ Sybase Not supported by Adaptive Server Enterprise. A similar
feature is available in an Adaptive Server Enterprise-compatible manner
using nested transactions.

¢ The following statement removes a Java class named Demo from the
current database.

REMOVE JAVA CLASS Demo

Chapter 9 SQL Statements

RESIGNAL statement

Function Resignal an exception condition.
Syntax RESIGNAL [exception-name]
Permissions None.

Side effects None.

See also "SIGNAL statement" on page 560

"BEGIN... END statement" on page 361

"Using exception handlers in procedures and triggers" on page 261 of the
book Adaptive Server Anywhere User's Guide

"RAISERROR statement" on page 526

Description Within an exception handler, RESIGNAL allows you to quit the compound
statement with the exception still active, or to quit reporting another named
exception. The exception will be handled by another exception handler or
returned to the application. Any actions by the exception handler before the

RESIGNAL are undone.
Standards and ¢ SQL/92 Persistent stored module feature.
compatibility
¢ Sybase Not supported in Adaptive Server Enterprise. Error handling
in Transact-SQL procedures is carried out using the RAISERROR
statement.
Example ¢ The following fragment returns all exceptions except Column Not

Found to the application.

DECLARE COLUMN NOT FOUND EXCEPTION
FOR SQLSTATE '52003';

EXCEPTION

WHEN COLUMN NOT FOUND THEN

SET message='Column not found' ;

WHEN OTHERS THEN
RESIGNAL ;

531

RESTORE statement

RESTORE statement

Function Restore a backed up database from an archive.

Syntax RESTORE DATABASE database_location
FROM archive_root
[[RENAME dbspace_name TO new_dbspace_path] ...]

Permissions Must be connected to the utility database.

Side effects None.

See also "BACKUP statement" on page 359

Description database_location Specifies the location for the main database file.

Each RESTORE operation updates a history file called backup.syb, which is
held in the same directory as your database server executable file.

Archive backups are only supported on NT and Unix platforms.
Standards and ¢ SQL/92 Vendor extension.

compatibility . . .
¢ Sybase Not supported in Adaptive Server Enterprise.

532

Chapter 9 SQL Statements

RESUME statement

Function
Syntax 1
Syntax 2

Parameters

Permissions
Side effects

See also

Description

Standards and
compatibility

Examples

To resume a procedure following a query.
RESUME cursor-name

RESUME [ALL]

cursor-name: identifier

cursor-name: identifier or host-variable
The cursor must have been previously opened.
None.

"DECLARE CURSOR statement" on page 436
"Returning results from procedures" on page 246 of the book Adaptive
Server Anywhere User's Guide

This statement resumes execution of a procedure that returns result sets. The
procedure executes until the next result set (SELECT statement with no
INTO clause) is encountered. If the procedure completes and no result set is
found, the SQLSTATE PROCEDURE COMPLETE warning is set. This
warning is also set when you RESUME a cursor for a SELECT statement.

The Interactive SQL RESUME statement (Format 2) resumes the current
procedure. If ALL is not specified, executing RESUME displays the next
result set or, if no more result sets are returned, completes the procedure.

The Interactive SQL RESUME ALL statement cycles through all result sets
in a procedure, without displaying them, and completes the procedure. This
is useful mainly in testing procedures.

¢ SQL/92 Vendor extension.
¢ Sybase Not supported by Adaptive Server Enterprise.

¢ Embedded SQL example
1. EXEC SQL RESUME cur employee;
2. EXEC SQL RESUME :cursor var;
¢ Interactive SQL examples
CALL sample proc() ;

RESUME ALL;

533

RETURN statement

RETURN statement

Function To exit from a function or procedure unconditionally, optionally providing a
return value. Statements following RETURN are not executed.

Syntax RETURN [(expression)]

Permissions None.

Side effects None.

See also "CREATE FUNCTION statement" on page 397

"CREATE PROCEDURE statement" on page 403
"BEGIN... END statement" on page 361

Description A RETURN statement causes an immediate exit from the function or
procedure. If expression is supplied, the value of expression is returned as
the value of the function or procedure.

Within a function, the expression should be of the same data type as the
function's RETURNS data type.

RETURN is used in procedures for Transact-SQL-compatibility, and is used
to return an integer error code.

Standards and ¢ SQL/92 Persistent stored module feature.
compatibility
¢ Sybase Transact-SQL procedures use the RETURN statement to
return an integer error code.

Example ¢ The following function returns the product of three numbers:

CREATE FUNCTION product (a numeric,
b numeric ,
c numeric)
RETURNS numeric
BEGIN
RETURN (a * b * c) ;
END

¢ Calculate the product of three numbers:

SELECT product (2, 3, 4)

product(2, 3, 4)

24

¢ The following procedure uses the RETURN statement to avoid
executing a complex query if it is meaningless:

CREATE PROCEDURE customer products

534

Chapter 9 SQL Statements

(in customer id integer DEFAULT NULL)
RESULT (id integer, quantity ordered integer)
BEGIN
IF customer id NOT IN (SELECT id FROM customer)
OR customer id IS NULL THEN
RETURN
ELSE
SELECT product.id, sum/(
sales order items.quantity)
FROM product,
sales_order items,
sales order
WHERE sales order.cust id=customer id
AND sales order.id=sales order items.id
AND sales order items.prod id=product.id
GROUP BY product.id
END IF
END

535

REVOKE statement

REVOKE statement

Function To remove permissions for specified user(s).
Syntax 1 REVOKE
{ CONNECT
| DBA
| INTEGRATED LOGIN
| GROUP
| MEMBERSHIP IN GROUP userid, ...
| RESOURCE
}
... FROM userid,...
Syntax 2 REVOKE
{ ALL [PRIVILEGES]
| ALTER
| DELETE
| INSERT

| REFERENCES [(column-name,...)]
| SELECT [(column-name,...)]
| UPDATE [(column-name,...)]

}
... ON [owner.]table-name FROM userid,...
Syntax 3 REVOKE EXECUTE ON [owner.]procedure-name FROM userid, ...
Permissions Must be the grantor of the permissions that are being revoked or have DBA
authority.

If you are revoking CONNECT permissions or table permissions from
another user, the other user must not be connected to the database.

Side effects Automatic commit.
See also "GRANT statement" on page 484
Description The REVOKE statement is used to remove permissions that were given

using the GRANT statement. Form 1 is used to revoke special user
permissions. Form 2 is used to revoke table permissions. Form 3 is used to
revoke permission to execute a procedure. REVOKE CONNECT is used to
remove a user ID from a database. REVOKE GROUP will automatically
REVOKE MEMBERSHIP from all members of the group.

Standards and ¢ SQL/92 Syntax 1 is a vendor extension. Syntax 2 is an entry-level
compatibility feature. Syntax 3 is a Persistent Stored Module feature.

536

Chapter 9 SQL Statements

Examples

Sybase Syntax 2 and 3 are supported by Adaptive Server Enterprise.
Syntax 1 is not supported by Adaptive Server Enterprise. User
management and security models are different for Adaptive Server
Anywhere and Adaptive Server Enterprise.
Prevent user Dave from updating the employee table.

REVOKE UPDATE ON employee FROM dave ;
Revoke resource permissions from user Jim.

REVOKE RESOURCE FROM Jim ;
Revoke integrated login mapping from user profile name Administrator

REVOKE INTEGRATED LOGIN FROM Administrator ;

Disallow the Finance group from executing the procedure
sp_customer _list.

REVOKE EXECUTE ON sp customer list
FROM finance ;

Drop user ID FranW from the database.

REVOKE CONNECT FROM FranW

537

ROLLBACK statement

ROLLBACK statement

Function To undo any changes made since the last COMMIT or ROLLBACK.
Syntax ROLLBACK [WORK]]

Permissions Must be connected to the database.

Side effects Closes all cursors not opened WITH HOLD.

See also "COMMIT statement" on page 377

"ROLLBACK TO SAVEPOINT statement" on page 539

Description The ROLLBACK statement ends a logical unit of work (transaction) and
undoes all changes made to the database during this transaction. A
transaction is the database work done between COMMIT or ROLLBACK
statements on one database connection.

Standards and ¢ SQL/92 Entry level feature.

compatibilit
P y ¢ Sybase Supported by Adaptive Server Enterprise.

538

Chapter 9 SQL Statements

ROLLBACK TO SAVEPOINT statement

Function
Syntax

Permissions

Side effects

See also

Description

Standards and
compatibility

To cancel any changes made since a SAVEPOINT.
ROLLBACK TO SAVEPOINT [savepoint-name]

There must have been a corresponding SAVEPOINT within the current
transaction.

None.

"SAVEPOINT statement" on page 541
"RELEASE SAVEPOINT statement" on page 529
"ROLLBACK statement" on page 538

The ROLLBACK TO SAVEPOINT statement will undo any changes that
have been made since the SAVEPOINT was established. Changes made
prior to the SAVEPOINT are not undone; they are still pending. For a
description of savepoints, see "Savepoints within transactions" on page 418
of the book Adaptive Server Anywhere User's Guide.

The savepoint-name is an identifier that was specified on a SAVEPOINT
statement within the current transaction. If savepoint-name is omitted, the
most recent savepoint is used. Any savepoints since the named savepoint are
automatically released.

¢ SQL/92 Vendor extension.

¢ Sybase Savepoints are not supported by Adaptive Server Enterprise.
To implement similar features in an Adaptive Server Enterprise-
compatible manner, you can use nested transactions.

539

ROLLBACK TRIGGER statement

ROLLBACK TRIGGER statement

Function
Syntax
Permissions
Side effects

See also

Description

Standards and
compatibility

540

To undo any changes made in a trigger.
ROLLBACK TRIGGER [WITH raiserror-statement]
Must be connected to the database.

None

"CREATE TRIGGER statement" on page 424
"ROLLBACK statement" on page 538

"ROLLBACK TO SAVEPOINT statement" on page 539
"RAISERROR statement" on page 526

The ROLLBACK TRIGGER statement rolls back the work done in a trigger,
including the data modification that caused the trigger to fire.

Optionally, a RAISERROR statement can be issued. If a RAISERROR
statement is issued, an error is returned to the application. If no
RAISERROR statement is issued, no error is returned.

If a ROLLBACK TRIGGER statement is used within a nested trigger and
without a RAISERROR statement, only the innermost trigger and the
statement which caused it to fire are undone.

¢ SQL/92 Transact-SQL extension.
¢ Sybase Supported by Adaptive Server Enterprise.

Chapter 9 SQL Statements

SAVEPOINT statement

Function
Syntax
Permissions
Side effects

See also

Description

Standards and
compatibility

To establish a savepoint within the current transaction.
SAVEPOINT [savepoint-name]

None.

None.

"RELEASE SAVEPOINT statement" on page 529
"ROLLBACK TO SAVEPOINT statement" on page 539

Establish a savepoint within the current transaction. The savepoint-name is
an identifier that can be used in an RELEASE SAVEPOINT or ROLLBACK
TO SAVEPOINT statement. All savepoints are automatically released when
a transaction ends. See "Savepoints within transactions" on page 418 of the
book Adaptive Server Anywhere User's Guide.

Savepoints that are established while a trigger or atomic compound statement
is executing are automatically released when the atomic operation ends.

¢ SQL/92 Vendor extension.

¢ Sybase Not supported in Adaptive Server Enterprise. To implement
similar features in an Adaptive Server Enterprise-compatible manner,
you can use nested transactions.

541

SELECT statement

SELECT statement

Function

Syntax

Parameters

Permissions
Side effects

See also

Description

542

To retrieve information from the database.

SELECT [ALL | DISTINCT] [FIRST | TOP n] select-list
...[INTO { host-variable-list | variable-list}]
...l FROM ftable-list]
...l WHERE search-condition]
...l GROUP BY column-name | alias | function ...]
...l HAVING search-condition]
...l ORDER BY { expression | integer} [ASC | DESC], ...]

select-list.
table-name
| expression [[AS] alias-name]

Must have SELECT permission on the named tables and views.

None.

"CREATE VIEW statement" on page 430
"DECLARE CURSOR statement" on page 436
"Expressions" on page 183

"FETCH statement" on page 468

"FROM clause" on page 476

"OPEN statement" on page 511

"Search conditions" on page 194

"UNION operation" on page 569

The SELECT statement is used for retrieving results from the database.

A SELECT statement can be used in Interactive SQL to browse data in the
database, or to export data from the database to an external file.

A SELECT statement can also be used in procedures and triggers or in
Embedded SQL. The SELECT statement with an INTO clause is used for
retrieving results from the database when the SELECT statement only
returns one row. For multiple row queries, you must use cursors.

The INTO clause with host-variable-list is used in Embedded SQL only.
The INTO clause with variable-list is used in procedures and triggers only.

A SELECT statement can also be used to return a result set from a
procedure. The various parts of the SELECT statement are described below:

Chapter 9 SQL Statements

ALL or DISTINCT All (the default) returns all rows that satisfy the clauses
of the SELECT statement. If DISTINCT is specified, duplicate output rows
are eliminated. This is called the projection of the result of the statement.
Because many, statements take significantly longer to execute when
DISTINCT is specified, You should reserve DISTINCT for cases where it is
necessary.

If DISTINCT is used, the statement cannot contain an aggregate function
with a DISTINCT parameter.

FIRST or TOP These keywords are principally for use with ORDER BY
queries. You can explicitly retrieve only the first row of a query or the first »
rows of a query.

The FIRST and TOP keywords cannot be used in a derived table query. You
should not use the keywords in view definitions.

select list The select list is a list of expressions, separated by commas,
specifying what will be retrieved from the database. Asterisk (*) means to
select all columns of all tables in the FROM clause (if you specify a table-
name, all comlumns of the specifed table are selected).

Aggregate functions are allowed in the select list (see "SQL Functions" on
page 267). Subqueries are also allowed in the select list (see "Expressions"
on page 183). Each subquery must be within parentheses.

Alias-names can be used throughout the query to represent the aliased
expression.

Alias names are also displayed by Interactive SQL at the top of each column
of output from the SELECT statement. If the optional alias name is not
specified after an expression, Interactive SQL will display the expression
itself.

INTO host-variable-list This clause is used in Embedded SQL only. It
specifies where the results of the SELECT statement will go. There must be
one host-variable item for each item in the select list. Select list items are put
into the host variables in order. An indicator host variable is also allowed
with each host-variable, so the program can tell if the select list item was
NULL.

INTO variable-list This clause is used in procedures and triggers only. It
specifies where the results of the SELECT statement will go. There must be
one variable for each item in the select list. Select list items are put into the
variables in order.

543

SELECT statement

544

FROM table-list Rows are retrieved from the tables and views specified in
the table list. Joins can be specified using join operators. For more
information, see "FROM clause" on page 476. A SELECT statement with no
FROM clause can be used to display the values of expressions not derived
from tables. For example:

SELECT @Q@version
displays the value of the global variable @@version. This is equivalent to:

SELECT @@version
FROM DUMMY

WHERE search-condition This clause specifies which rows will be
selected from the tables named in the FROM clause. It is also used to do
joins between multiple tables. This is accomplished by putting a condition in
the WHERE clause that relates a column or group of columns from one table
with a column or group of columns from another table. Both tables must be
listed in the FROM clause.

& For more information, see "Search conditions" on page 194.

GROUP BY { column-name | alias | function },... You can group by
columns, or alias names, or functions. GROUP BY expressions must also
appear in the select list. The result of the query contains one row for each
distinct set of values in the named columns, aliases, or functions. The
resulting rows are often referred to as groups since there is one row in the
result for each group of rows from the table list. For the sake of GROUP BY,
all NULL values are treated as identical. Aggregate functions can then be
applied to these groups to get meaningful results.

When GROUP BY is used, the select list, HAVING clause, and ORDER BY
clause cannot reference any identifiers except those named in the GROUP
BY clause. The exception is that the select list and HAVING clause may
contain aggregate functions.

HAVING search-condition This clause selects rows based on the group
values and not on the individual row values. The HAVING clause can only
be used if either the statement has a GROUP BY clause or the select list
consists solely of aggregate functions. Any column names referenced in the
HAVING clause must either be in the GROUP BY clause or be used as a
parameter to an aggregate function in the HAVING clause.

ORDER BY expression, ... This clause sorts the results of a query. Each
item in the ORDER BY list can be labeled as ASC for ascending order (the
default) or DESC for descending order. If the expression is an integer n, then
the query results will be sorted by the n'th item in the select list.

Chapter 9 SQL Statements

In Embedded SQL, the SELECT statement is used for retrieving results from
the database and placing the values into host variables via the INTO clause.
The SELECT statement must return only one row. For multiple row queries,
you must use cursors.

Standards and ¢ SQL/92 Entry level feature. check clauses.
compatibility . . .
¢ Sybase Supported by Adaptive Server Enterprise, with some
differences in syntax.

Examples ¢ List all the tables and views in the system catalog.

SELECT tname
FROM SYS.SYSCATALOG
WHERE tname LIKE 'SYS%' ;

¢ List all customers and the total value of their orders.

SELECT company name,
CAST (sum(sales order items.quantity *
product.unit price) AS INTEGER) VALUE
FROM customer
LEFT OUTER JOIN sales order
LEFT OUTER JOIN sales order items
LEFT OUTER JOIN product
GROUP BY company name
ORDER BY VALUE DESC

¢ How many employees are there?

SELECT count (*)
FROM Employee ;

¢ The following statement shows an Embedded SQL SELECT statement:

SELECT count (*) INTO :size FROM employee

545

SET statement

SET statement

Function To assign a value to a SQL variable.

Syntax SET identifier = expression

Permissions None.

Side effects None.

See also "CREATE VARIABLE statement" on page 428

"DROP VARIABLE statement" on page 459
"Expressions" on page 183

Description The SET statement assigns a new value to a variable that was previously
created using the CREATE VARIABLE statement.

A variable can be used in a SQL statement anywhere a column name is
allowed. If there is no column name that matches the identifier, the database
server checks to see if there is a variable that matches and uses its value.

Variables are local to the current connection, and disappear when you
disconnect from the database or use the DROP VARIABLE statement. They
are not affected by COMMIT or ROLLBACK statements.

Variables are necessary for creating large text or binary objects for INSERT
or UPDATE statements from Embedded SQL programs, because Embedded
SQL host variables are limited to 32,767 bytes.

Standards and ¢ SQL/92 Persistent stored module feature.
compatibility . . .
¢ Sybase Not supported. In Adaptive Server Enterprise, variables are

assigned using the SELECT statement with no table, a Transact-SQL
syntax that is also supported by Adaptive Server Anywhere. The SET
statement is used to set database options in Adaptive Server Enterprise.

Example ¢ The following code fragment could be used to insert a large text value
into the database.

EXEC SQL BEGIN DECLARE SECTION;
char buffer[50017];
EXEC SQL END DECLARE SECTION;

EXEC SQL CREATE VARIABLE hold_text LONG VARCHAR;
EXEC SQL SET hold text = '';
for(;;) {

/* read some data into buffer ... */

size = fread(buffer, 1, 5000, fp);

if(size <= 0) break;

/* buffer must be null-terminated */

546

Chapter 9 SQL Statements

buffer([size] = "\0';
/* add data to blob using concatenation */
EXEC SQL SET hold text = hold text || :buffer;

}
EXEC SQL INSERT INTO some table VALUES (1, hold text);
EXEC SQL DROP VARIABLE hold text;

The following code fragment could be used to insert a large binary value
into the database.

EXEC SQL BEGIN DECLARE SECTION;
DECL _BINARY (5000) buffer;
EXEC SQL END DECLARE SECTION;
EXEC SQL CREATE VARIABLE hold_blob LONG BINARY;
EXEC SQL SET hold blob = '';
for(;;) {
/* read some data into buffer ... */
size = fread(& (buffer.array), 1, 5000, fp);
if(size <= 0) break;
buffer.len = size;

/* add data to blob using concatenation
Note that concatenation works for
binary data too! */
EXEC SQL SET hold blob = hold blob || :buffer;
}
EXEC SQL INSERT INTO some table VALUES (1, hold blob);
EXEC SQL DROP VARIABLE hold_blob;

547

SET statement [T-SQL]

SET statement [T-SQL]

Function

Syntax
Permissions
Side effects
See also

Description

To set database options for the current connection, in an Adaptive Server

Enterprise-compatible manner.

SET option-name option-value

None.

None.

"SET OPTION statement" on page 553

The available options are as follows:

Option name

Option value

548

ANSINULL

ANSI_PERMISSIONS
CLOSE_ON_ENDTRANS
QUOTED_IDENTIFIER

ROWCOUNT

SELF_RECURSION
STRING_RTRUNCATION

TEXTSIZE
TRANSACTION_ISOLATION_LEVEL

Database options in Adaptive Server Anywhere are set using the SET
OPTION statement. However, Adaptive Server Anywhere also provides
support for the Adaptive Server Enterprise SET statement for options that are

particularly useful for compatibility.

The SET statement sets the option for the duration of the current connection

ON | OFF
ON | OFF
ON | OFF
ON | OFF
integer

ON | OFF
ON | OFF
integer

01213

only. It is equivalent to SET TEMPORARY OPTION.

The following options can be set using the Transact-SQL SET statement in
Adaptive Server Anywhere as well as in Adaptive Server Enterprise:

¢ SET ANSINULL {ON | OFF } The default behavior for comparing
values to NULL in Adaptive Server Anywhere and Adaptive Server
Enterprise is different. Setting ANSINULL to OFF provides Transact-

SQL compatible comparisons with NULL.

Chapter 9 SQL Statements

SET ANSI_PERMISSIONS { ON | OFF } The default behavior in
Adaptive Server Anywhere and Adaptive Server Enterprise regarding
permissions required to carry out an UPDATE or DELETE containing a
column reference is different. Setting ANSI PERMISSIONS to OFF
provides Transact-SQL-compatible permissions on UPDATE and
DELETE.

SET CLOSE_ON_ENDTRANS { ON | OFF } The default behavior in
Adaptive Server Anywhere and Adaptive Server Enterprise for closing
cursors at the end of a transaction is different. Setting
CLOSE_ON_ENDTRANS to OFF provides Transact-SQL compatible
behavior.

SET QUOTED_IDENTIFIER { ON | OFF } Controls whether strings
enclosed in double quotes are interpreted as identifiers (ON) or as literal
strings (OFF). For information about this option, see "Setting options for
Transact-SQL compatibility" on page 794 of the book Adaptive Server
Anywhere User's Guide.

SET ROWCOUNT infeger The Transact-SQL ROWCOUNT option
limits the number of rows fetched for any cursor to the specified integer.
This includes rows fetched by re-positioning the cursor. Any fetches
beyond this maximum return a warning. The option setting is considered
when returning the estimate of the number of rows for a cursor on an
OPEN request.

SET ROWCOUNT also limits the number of rows affected by a
searched UPDATE or DELETE statement to infeger. This might be
used, for example, to allow COMMIT statements to be performed at
regular intervals to limit the size of the rollback log and lock table. The
application (or procedure) would need to provide a loop to cause the
update/delete to be re-issued for rows that are not affected by the first
operation. A simple example is given below:

begin
declare @count integer

set rowcount 20

while (1=1) begin
update employee set emp lname='new name'
where emp lname <> 'old name'

/* Stop when no rows changed */
select @count = @Q@rowcount
if @count = 0 break
print string('Updated ',
@count, ' rows; repeating...')
commit
end

549

SET statement [T-SQL]

Standards and
compatibility

550

set rowcount O
end

In Adaptive Server Anywhere, if the ROWCOUNT setting is greater
than the number of rows that Interactive SQL can display, Interactive
SQL may do some extra fetches to reposition the cursor. Thus, the
number of rows actually displayed may be less than the number
requested. Also, if any rows are re-fetched due to truncation warnings,
the count may be inaccurate.

A value of zero resets the option to get all rows.

SET SELF_RECURSION { ON | OFF } The self recursion option is
used within triggers to enable (ON) or prevent (OFF) operations on the
table associated with the trigger from firing other triggers.

SET STRING_RTRUNCATION { ON | OFF } The default behavior in
Adaptive Server Anywhere and Adaptive Server Enterprise when non-
space characters are truncated on assigning SQL string data is different.
Setting STRING_ RTRUNCATION to ON provides Transact-SQL-
compatible string comparisons.

SET TEXTSIZE Specifies the maximum size (in bytes) of text or image
type data to be returned with a select statement. The @@textsize global
variable stores the current setting. To reset to the default size (32K),
which is also the maximum setting, use the command:

set textsize 0

SET TRANSACTION-ISOLATION-LEVEL {0]1]2]3} Sets the
locking isolation level for the current connection, as described in
"Isolation levels and consistency" on page 386 of the book Adaptive
Server Anywhere User's Guide. For Adaptive Server Enterprise, only 1
and 3 are valid options. For Adaptive Server Anywhere, any of 0, 1, 2,
or 3 is a valid option.

In addition, the following SET statement is allowed by Adaptive Server
Anywhere for compatibility, but has no effect:

¢

¢
¢

SET PREFETCH {ON | OFF}

SQL/92 Transact-SQL extension

Sybase Adaptive Server Anywhere supports a subset of the Adaptive
Server Enterprise database options.

Chapter 9 SQL Statements

SET CONNECTION statement [ISQL][ESQL]

Function
Syntax

Parameters

Permissions
Side effects

See also

Description

Standards and
compatibility

Example

To change the active database connection.
SET CONNECTION [connection-name]
connection-name:

identifier, string, or host-variable
None.
None.

"CONNECT statement" on page 381
"DISCONNECT statement" on page 450

The SET CONNECTION statement changes the active database connection
to connection-name. The current connection state is saved, and will be
resumed when it again becomes the active connection. If connection-name
is omitted and there is a connection that was not named, that connection
becomes the active connection.

Cursors and connections

When cursors are opened in Embedded SQL, they are associated with the
current connection. When the connection is changed, the cursor names
will not be accessible. The cursors remain active and in position, and will
become accessible when the associated connection becomes active again.

¢ SQL/92 Interactive SQL use is a vendor extension. Embedded SQL is
a Full level feature.

¢ Sybase Supported by Open Client/Open Server.
¢ The following example is in Embedded SQL.
EXEC SQL SET CONNECTION :conn name;

¢ From Interactive SQL, set the current connection to the connection
named connl.

SET CONNECTION connl ;

551

SET DESCRIPTOR statement [ESQL]

SET DESCRIPTOR statement [ESQL]

Function Describes the variables in a SQL descriptor area, and places data into the
descriptor area.
Syntax SET DESCRIPTOR descriptor-name

...{ COUNT = { integer | hostvar} | VALUE n assignment]|,...]1}

Parameters assignment:
{TYPE | SCALE | PRECISION | LENGTH | INDICATOR }
... = {integer | hostvar}
| DATA = hostvar

Permissions None.
Side effects None.
See also "ALLOCATE DESCRIPTOR statement" on page 342

"DEALLOCATE DESCRIPTOR statement" on page 433
"The SQL descriptor area (SQLDA)" on page 45 of the book Adaptive Server
Anywhere Programming Interfaces Guide

Description The SET DESCRIPTOR statement is used to describe the variables in a
descriptor area, and to place data into the descriptor area.

The SET ... COUNT statement sets the number of described variables within
the descriptor area. The value for count must not exceed the number of
variables specified when the descriptor area was allocated.

The value » specifies the variable in the descriptor area upon which the
assignment(s) will be performed.

Type checking is performed when doing SET ... DATA, to ensure that the
variable in the descriptor area has the same type as the host variable.

If an error occurs, the code is returned in the SQLCA.

Standards and ¢ SQL/92 Intermediate level feature.
compatibility .
¢ Sybase Supported by Open Client/Open Server.
Example ¢ For an example, see "ALLOCATE DESCRIPTOR statement" on page
342.

552

Chapter 9 SQL Statements

SET OPTION statement

Function

Syntax

Parameters

Permissions

Side effects

See also

Description

Scope of database
options

To change database options.

SET [TEMPORARY] OPTION
... [userid.| PUBLIC]Joption-name = [option-value]

userid: { identifier | string | host-variable }
option-name: { identifier | string | host-variable }
option-value: { host-variable (indicator allowed)

| string

| identifier

| number}

None required to set your own options.

DBA authority is required to set database options for another user or
PUBLIC.

If TEMPORARY is not specified, an automatic commit is performed.

"General database options" on page 132
"Transact-SQLcompatibility options" on page 134
"Replication options" on page 137

"SET OPTION statement " on page 556

The SET OPTION statement is used to change options that affect the
behavior of the database server. Setting the value of an option can change the
behavior for all users or only for an individual user. The scope of the change
can be either temporary or permanent.

The classes of options are:
¢ General database options
¢ Transact-SQL compatibility

¢ Replication database options

& For a listing and description of all available options, see "Database
Options" on page 127.

If you specify a user ID, the option value applies to that user (or, for a group
user ID, the members of that group). If you specify PUBLIC, the option
value applies to all users who don't have an individual setting for the option.
By default, the option value applies to the currently logged on user ID that
issued the SET OPTION statement..

For example, the following statement applies an option change to the user
DBA, if DBA is the user issuing the SQL statement:

553

SET OPTION statement

Temporary
changes

Deleting options

554

SET OPTION login mode = mixed

However the following statement applies the change to the PUBLIC user ID,
a user group to which all users belong.

SET OPTION Public.login mode = standard

Only users with DBA privileges have the authority to set an option for the
PUBLIC user ID.

In Embedded SQL, database options can be set only temporarily.

Changing the value of an option for the PUBLIC user ID sets the value of
the option for any user which has not SET their own value. Option values
cannot be set for an individual user ID unless there is already a PUBLIC
user ID setting for that option.

Users can use the SET OPTION statement to change the values for their own
user ID. Setting the value of an option for a user id other then your own is
permitted only if you have DBA authority.

Adding the TEMPORARY keyword to the SET OPTION statement changes
the duration that the change takes effect. By default, the option value is
permanent: it will not change until it is explicitly changed using the SET
OPTION statement.

When the SET TEMPORARY OPTION statement is applied using an
individual user ID, the new option value is in effect as long as that user is
logged in to the database.

When the SET TEMPORARY OPTION is used with the PUBLIC user 1D,
the change is in place for as long as the database is running. When the
database is shut down, TEMPORARY options for the PUBLIC user ID
revert back to their permanent value.

Setting an option for the PUBLIC user ID temporarily as opposed to
permanently, offers a security advantage. For example, when the
LOGIN_MODE option is enabled, the database relies on the log in security
of the system on which it is running. Enabling it temporarily means that a
database relying on the security of a Windows NT domain will not be
compromised if the database is shut down and copied to a local machine. In
that case, the temporary enabling of the LOGIN MODE option will revert to
its permanent value, which could be Standard, a mode where integrated
logins are not permitted.

If option-value is omitted, the specified option setting will be deleted from
the database. If it was a personal option setting, the value will revert back to
the PUBLIC setting. [f a TEMPORARY option is deleted, the option setting
will revert back to the permanent setting.

Chapter 9 SQL Statements

Standards and
compatibility

Examples

Embedded SQL
Examples

Caution

Changing option settings while fetching rows from a cursor is not
supported, as it can lead to ill-defined behavior. For example, changing
the DATE _FORMAT setting while fetching from a cursor would lead to
different date formats among the rows in the result set. Do not change
option settings while fetching rows.

SQL/92 Vendor extension.
Sybase Not supported by Adaptive Server Enterprise. Adaptive

Server Anywhere does support some Adaptive Server Enterprise options
using the SET statement.
Set the date format option.
SET OPTION public.date format = 'Mmm dd yyyy' 7
Set the 'wait for commit' option to on.
SET OPTION waitefor commit = 'on' ;
1. EXEC SQL SET OPTION :user.:option name = :value;

2. EXEC SQL SET TEMPORARY OPTION Date_format =
'mm/dd/yyyy'i

555

SET OPTION statement [ISQL]

SET OPTION statement [ISQL]

Function

Syntax 1

Syntax 2
Syntax 3

Parameters

See Also

Description

556

To change Interactive SQL options.

SET [TEMPORARY] OPTION
... [userid. | PUBLIC. Joption-name = [option-value]

SET PERMANENT

SET

userid: identifier, string or host-variable

option-name: identifier, string or host-variable

option-value: host-variable (indicator allowed), string, identifier, or
number

"Interactive SQL options" on page 138

SET PERMANENT (syntax 2) stores all current Interactive SQL options in
the SYSOPTIONS system table. These settings are automatically established
every time Interactive SQL is started for the current user ID.

Syntax 3 displays all of the current option settings. If there are temporary
options set for Interactive SQL or the database server, these will be
displayed; otherwise, the permanent option settings are displayed.

Chapter 9 SQL Statements

SET SQLCA statement [ESQL]

Function

Syntax
Parameters
Permissions
Side effects

See also

Description

Standards and
compatibility

Example

To tell the SQL preprocessor to use a SQLCA other than the default global
sqlca.

SET SQLCA sqlca

sqlca: identifier or string
None.

None.

"SQLCA management for multi-threaded or reentrant code" on page 29 of
the book Adaptive Server Anywhere Programming Interfaces Guide

The SET SQLCA statement tells the SQL preprocessor to use a SQLCA
other than the default global sg/ca. The sqlca must be an identifier or string
that is a C language reference to a SQLCA pointer.

The current SQLCA pointer is implicitly passed to the database interface
library on every Embedded SQL statement. All Embedded SQL statements
that follow this statement in the C source file will use the new SQLCA.

This statement is necessary only when you are writing code that is reentrant
(see "SQLCA management for multi-threaded or reentrant code" on page 29
of the book Adaptive Server Anywhere Programming Interfaces Guide). The
sqlca should reference a local variable. Any global or module static variable
is subject to being modified by another thread.

¢ SQL/92 Vendor extension.

¢ Sybase Not supported by Open Client/Open Server.

¢ The owing function could be found in a Windows DLL. Each
application that uses the DLL has its own SQLCA.

an_sql code FAR PASCAL ExecuteSQL(an application
*app, char *com)
{
EXEC SQL BEGIN DECLARE SECTION;
char *sglcommand;
EXEC SQL END DECLARE SECTION;
EXEC SQL SET SQLCA "&app->.sqlca";
sglcommand = com;
EXEC SQL WHENEVER SQLERROR CONTINUE;
EXEC SQL EXECUTE IMMEDIATE :sglcommand;
return(SQLCODE) ;
}

557

SETUSER statement

SETUSER statement

Function To allow a database administrator to impersonate another user, and to enable
connection pooling.
Syntax { SET SESSION AUTHORIZATION | SETUSER}
[[WITH OPTIONS] userid |
Parameters userid: The user ID to be impersonated
Permissions Must have DBA authority.
See also "EXECUTE IMMEDIATE statement" on page 464

"GRANT statement" on page 484
"REVOKE statement" on page 536
"SET OPTION statement" on page 553

Description The SETUSER statement is provided to make database administration easier.
It enables a user with DBA authority to impersonate another user of the
database.

Also, you can use SETUSER from an application server to take advantage of
connection pooling. This cuts down the number of distinct connections that
need to be made, and so helps performance.

If WITH OPTIONS is specified, the database options in effect are changed to
the current database options of userid. By default, only permissions
(including group membership) are altered.

SETUSER with no user ID undoes all earlier SETUSER statements. It
returns the active user ID to that of the original connection.

There are several uses for the SETUSER statement, including the following:

¢ Creating objects You can use SETUSER to create a database object
that is to be owned by another user.

¢ Permissions checking By acting as another user, with their
permissions and group memberships, a DBA can test the permissions
and name resolution of queries, procedures, views, and so on.

¢ Providing a safer environment for administrators The DBA has
permission to carry out any action in the database. If you wish to ensure
that you do not accidentally carry out an unintended action, you can use
SETUSER to switch to a different user ID with fewer permissions.

Standards and ¢ SQL/92 SET SESSION AUTHORIZATION is SQL 92 compliant.
compatibility SETUSER is a vendor extension.

¢ Sybase Adaptive Server Enterprise supports SETUSER, but not the
WITH OPTIONS keywords.

558

Chapter 9 SQL Statements

Examples ¢ The following statements, executed by a user named DBA, change the
user ID to be Joe, then Jane, and then DBA

SETUSER 'Joe'

// ... operations...
SETUSER 'Jane'

// ... operations...
SETUSER

559

SIGNAL statement

SIGNAL statement

Function Signal an exception condition.
Syntax SIGNAL exception-name
Permissions None.

Side effects None.

See also "RESIGNAL statement" on page 531

"BEGIN... END statement" on page 361
"Using exception handlers in procedures and triggers" on page 261 of the
book Adaptive Server Anywhere User's Guide

Description SIGNAL allows you to raise an exception. See "Using exception handlers in
procedures and triggers" on page 261 of the book Adaptive Server Anywhere
User's Guide for a description of how exceptions are handled.

Standards and ¢ SQL/92 Persistent Stored Module feature.

compatibilit
P y ¢ Sybase SIGNAL is not supported by Adaptive Server Enterprise.

560

Chapter 9 SQL Statements

START DATABASE statement [ISQL]

Function

Syntax

Permissions

Side effects

See also

Description

Standards and
compatibility

Example

To start a database on the specified database server

START DATABASE database-file
... [AS database-name]
... [ON engine-name]
... [AUTOSTOP { YES | NO }]

The required permissions are specified by the database server —gd
command-line option. This option defaults to none on the personal database
server, and dba on the network server.

None

"STOP DATABASE statement" on page 564
"CONNECT statement" on page 381

The START DATABASE statement starts a specified database on a
specified database server. The database server must be running. The full path
must be specified for the database-file, unless the file is located in the same
directory.

The START DATABASE statement does not connect Interactive SQL to the
specified database: a CONNECT statement needs to be issued in order to
make a connection.

If database-name is not specified, a default name is assigned to the database.
This default name is the root of the database file. For example, a database in
file c:\asa6\asademo.db would be given the default name of asademo.

If engine-name is not specified, the default database is the first started server
among those currently running.

The default setting for the AUTOSTOP clause is YES. With AUTOSTOP set
to YES, the database is unloaded when the last connection to it is dropped. If
AUTOSTORP is set to NO, the database is not unloaded.

¢ SQL/92 Vendor extension.

¢ Sybase Not applicable.

¢ Start the database file c:\asa6\sample 2.db on the current server.
START DATABASE 'c:\asa6\sample 2.db'

¢ Start the database file c:\asa6\sample 2.db as sam2 on the server named
sample.

START DATABASE 'c:\asa6\sample 2.db'
AS sam2
ON sample ;

561

START ENGINE statement [ISQL]

START ENGINE statement [ISQL]

Function
Syntax

Permissions

Side effects

See also

Description

Standards and
compatibility

Example

562

To start a database server.
START ENGINE AS engine-name [STARTLINE command-string]

The required permissions are specified by the database server —gk
command-line option. This option defaults to none on the personal database
server, and dba on the network server.

None

"STOP ENGINE statement" on page 565
"The database server" on page 12

The START ENGINE statement starts a database server. If you wish to
specify a set of options for the server, use the STARTLINE keyword
together with a command string. Valid command strings are those that
conform to the database server command-line description in "The database
server" on page 12.

¢ SQL/92 Vendor extension.
¢ Sybase Not applicable.

¢ Start a database server, named sample, without starting any databases on
it.

START ENGINE AS sample ;

¢ Start a Windows 3.x personal server with a maximum cache size of 4
megabytes, loading the sample database.

START ENGINE AS sample
STARTLINE 'dbeng6w —-c 4096 path\asademo.db'

¢ The following example shows the use of a STARTLINE clause.

START ENGINE AS engl STARTLINE 'dbeng6é -c 8096'

Chapter 9 SQL Statements

START JAVA statement

Function
Syntax
Permissions
Side effects
See also

Description

Standards and
compatibility

Example

To start the Java VM.

START JAVA

DBA authority

None

"STOP JAVA statement" on page 566

The START JAVA statement starts the Java VM. The main use is to load the
VM at a convenient time so that when the user starts to use Java functionality
there is no initial pause while the VM is loaded.

¢ SQL/92 Vendor extension.
¢ Sybase Not applicable.

¢ Start the Java VM.

START JAVA

563

STOP DATABASE statement [ISQL]

STOP DATABASE statement [ISQL]

Function To stop a database on the specified database server.
Syntax STOP DATABASE database-name
[ON engine-name]
[UNCONDITIONALLY]
Permissions The required permissions are specified by the database server ~gd

command-line option. This option defaults to none on the personal database
server, and dba on the network server.

Side effects None

See also "START DATABASE statement" on page 561
"DISCONNECT statement" on page 450

Description The STOP DATABASE statement stops a specified database on a specified
database server. If engine-name is not specified, all running engines will be
searched for a database of the specified name.

If the UNCONDITIONALLY keyword is supplied, the database will be
stopped even if there are connections to the database. By default, the
database will not be stopped if there are connections to it.

Standards and ¢ SQL/92 Vendor extension.

compatibilit
P y ¢ Sybase Not applicable.

Examples ¢ Stop the database named sample on the default server.

STOP DATABASE sample ;

564

Chapter 9 SQL Statements

STOP ENGINE statement [ISQL]

Function
Syntax
Permissions
Side effects
See also

Description

Standards and
compatibility

Example

To stop a database server.

STOP ENGINE engine-name [UNCONDITIONALLY]
None

None

"START ENGINE statement" on page 562

The STOP ENGINE statement stops the specified database server. If the
UNCONDITIONALLY keyword is supplied, the database server is stopped
even if there are connections to the server. By default, the database server
will not be stopped if there are connections to it.

¢ SQL/92 Vendor extension.
¢ Sybase Not applicable.

¢ Stop the database server named sample.

STOP ENGINE sample

565

STOP JAVA statement

STOP JAVA statement

Function To stop the Java VM.
Syntax STOP JAVA
Permissions DBA authority
Side effects None
See also "START JAVA statement" on page 563
Description The STOP JAVA statement unloads the Java VM when it is not in use. The
main use is to economize on the use of system resources.
Standards and ¢ SQL/92 Vendor extension.
compatibility .
¢ Sybase Not applicable.
Example ¢ Stop the Java VM.
STOP JAVA

566

Chapter 9 SQL Statements

SYSTEM statement [ISQL]

Function
Syntax
Permissions
Side effects

See also

Description

Standards and
compatibility

Example

To execute an operating system command from within Interactive SQL.

SYSTEM [operating-system-command]

None.

None.

"COMMIT statement" on page 377
"CONNECT statement" on page 381

Executes the specified operating system command. If no command is
specified, the DOS command interpreter or UNIX shell is started. You can
return to Interactive SQL by using the system exit command or by pressing
CTRL+D in UNIX.

¢
¢

¢

The SYSTEM statement must be entirely contained on one line.

Comments are not allowed at the end of a SYSTEM statement.

SQL/92 Vendor extension.
Sybase Not applicable.

The following statement executes the system command date.

SYSTEM date

567

TRUNCATE TABLE statement

TRUNCATE TABLE statement

Function
Syntax

Permissions

Side effects
See also

Description

Standards and
compatibility

Example

568

To delete all rows from a table, without deleting the table definition.
TRUNCATE TABLE [owner.Jtable-name

Must be the table owner, or have DBA authority, or have ALTER
permissions on the table.

For base tables, the TRUNCATE TABLE statement requires exclusive
access to the table, as the operation is atomic (either all rows are deleted, or
none are).

For temporary tables, each user has their own copy of the data, and exclusive
access is not required.

Delete triggers are not fired by the TRUNCATE TABLE statement.
"DELETE statement" on page 442

The TRUNCATE TABLE statement deletes all rows from a table. It is
equivalent to a DELETE statement without a WHERE clause, except that no
triggers are fired as a result of the TRUNCATE TABLE statement and each
individual row deletion is not entered into the transaction log.

After a TRUNCATE TABLE statement, the table structure and all of the
indexes continue to exist until you issue a DROP TABLE statement. The
column definitions and constraints remain intact, and triggers and
permissions remain in effect.

The TRUNCATE TABLE statement is entered into the transaction log as a
single statement, like data definition statements. Each deleted row is not
entered into the transaction log.

¢ SQL/92 Transact-SQL extension.
¢ Sybase Supported by Adaptive Server Enterprise.

¢ Delete all rows from the department table.

TRUNCATE TABLE department

Chapter 9 SQL Statements

UNION operation

Function

Syntax

Permissions

Side effects
See also

Description

Standards and
compatibility

Examples

To combine the results of two or more select statements.

select-without-order-by
UNION [ALL] select-without-order-by
... [UNION [ALL] select-without-order-by] ...
... [ORDER BY integer[ASC | DESC], ...]

Must have SELECT permission for each of the component SELECT
statements.

None.
"SELECT statement" on page 542

The results of several SELECT statements can be combined into a larger
result using UNION. The component SELECT statements must each have
the same number of items in the select list, and cannot contain an ORDER
BY clause.

The results of UNION ALL are the combined results of the component
SELECT statements. The results of UNION are the same as UNION ALL
except that duplicate rows are eliminated. Eliminating duplicates requires
extra processing, so UNION ALL should be used instead of UNION where
possible.

If corresponding items in two select lists have different data types, Adaptive
Server Anywhere will choose a data type for the corresponding column in
the result and automatically convert the columns in each component
SELECT statement appropriately.

If ORDER BY is used, only integers are allowed in the order by list. These
integers specify the position of the columns to be sorted.

The column names displayed are the same column names which would be
displayed for the first SELECT statement.

¢ SQL/92 Entry level.

¢ Sybase Supported by Adaptive Server Enterprise, which also supports
a COMPUTE clause.

¢ List all distinct surnames of employees and customers.

SELECT emp lname
FROM Employee
UNION

SELECT lname
FROM Customer

569

UNLOAD TABLE statement

UNLOAD TABLE statement

Function

Syntax

Permissions
Side effects

See also

Description

Standards and
compatibility

570

To export data from a database table into an external ASCII-format file.

UNLOAD [FROM] TABLE [owner. Jtable-name
. TO 'filename-string'
...[FORMAT ASCII]
... [DELIMITED BY string]
... QUOTES ON | OFF] [ESCAPES ON | OFF]
... | ORDER ON | OFF]
.. [ESCAPE CHARACTER character]

Must have SELECT permission on the table.
None.

"LOAD TABLE statement" on page 504
"OUTPUT statement" on page 514

The UNLOAD TABLE statement allows efficient mass exporting from a
database table into an ASCII file. UNLOAD TABLE is more efficient than
the Interactive SQL statement OUTPUT, and can be called from any client
application.

UNLOAD TABLE places an exclusive lock on the whole table.

When unloading columns with binary data types, UNLOAD TABLE writes
hexadecimal strings, of the form \xnnnn where n is a hexadecimal digit.

For descriptions of the FORMAT, DELIMITED BY, and ESCAPE
CHARACTER options, see "LOAD TABLE statement" on page 504. The
other options are as follows:

QUOTES option With QUOTES turned on (the default), single quotes are
placed around all exported strings.

ESCAPES option With ESCAPES on (the default), backslash-character
combinations are used to identify special characters where necessary on
export.

ORDER option With ORDER on (the default), the data is exported
ordered by primary key values. With ORDER off, the data is exported in the
same order you see when selecting from the table without an ORDER BY
clause.

Exporting is slower with ORDER on. However, reloading using the LOAD
TABLE statement is quicker because of the simplicity of the indexing step.

¢ SQL/92 Vendor extension.

Chapter 9 SQL Statements

¢ Sybase UNLOAD TABLE is not supported by Adaptive Server
Enterprise. Similar functionality is provided by the Adaptive Server
Enterprise bulk copy utility (bep).

571

UPDATE statement

UPDATE statement

Function To modify existing rows in database tables.

Syntax 1 UPDATE table-list
... SET column-namel.field-name] = expression, ...
... [FROM table-list]
... [WHERE search-condition]
... [ORDER BY expression [ASC | DESC],...]

Syntax 2 UPDATE table-list
... SET column-name [.field-name] = expression, ...
... [VERIFY (column-name, ...) VALUES (expression, ...)]
... [WHERE search-condition]
... [ORDER BY expression [ASC | DESC],...]

Syntax 3 UPDATE table
...PUBLICATION publication
...{ SUBSCRIBE BY expression
| OLD SUBSCRIBE BY expression NEW SUBSCRIBE BY
expression

}
...WHERE search-condition

Permissions Must have UPDATE permission for the columns being modified.
Side effects None.
See also "DELETE statement" on page 442

"INSERT statement" on page 498
"FROM clause" on page 476

Description The UPDATE statement modifies values in rows of one or more tables. Each
named column is set to the value of the expression on the right hand side of
the equal sign. There are no restrictions on the expression. Even column-
name can be used in the expression—the old value will be used. For a
description of the table list and how to do joins, see "Joins: Retrieving Data
from Several Tables" on page 129 of the book Adaptive Server Anywhere
User's Guide.

The field-name is for use with Java columns, to update the value of a public
field in the column.

Syntax 2 and Syntax 3 are applicable only to SQL Remote.

If no WHERE clause is specified, every row is updated. If a WHERE clause
is specified, only rows satisfying the search condition are updated.

572

Chapter 9 SQL Statements

Updates based on
joins

SQL Remote
updates

Normally, the order that rows are updated doesn't matter. However, in
conjunction with the NUMBER(*) function, an ordering can be useful to get
increasing numbers added to the rows in some specified order. Also, if you
wish to do something like add 1 to a set of sequential primary key, it is
necessary to do this in descending order by primary key, so that you do not
get duplicate primary keys during the operation.

Views can be updated unless the SELECT statement defining the contains a
GROUP BY clause or aggregate function, or involves a UNION operation.

Character strings inserted into tables are always stored in the same case as
they are entered, regardless of whether the database is case sensitive or not.
Thus, a character data type column updated with a string Value is always
held in the database with an upper-case V and the remainder of the letters
lower case. SELECT statements return the string as Value. If the database is
not case-sensitive, however, all comparisons make Value the same as value,
VALUE, and so on. Further, if a single-column primary key already contains
an entry Value, an INSERT of value is rejected, as it would make the
primary key not unique.

The optional FROM clause allows tables to be updated based on joins. If the
FROM clause is present, the WHERE clause qualifies the rows of the FROM
clause. Data is updated only in the table list immediately following the
UPDATE keyword.

If a FROM clause is used, it is important to qualify the table name that is
being updated the same way in both parts of the statement. If a correlation
name is used in one place, the same correlation name must be used in the
other. Otherwise, an error is generated.

& For a full description of joins, see "Joins: Retrieving Data from Several
Tables" on page 129 of the book Adaptive Server Anywhere User's Guide.

Syntax 2 is intended for use with SQL Remote only, in single-row updates
executed by the Message Agent. The VERIFY clause contains a set of values
that are expected to be present in the row being updated. If the values do not
match, any RESOLVE UPDATE triggers are fired before the UPDATE
proceeds. The UPDATE does not fail simply because the VERIFY clause
fails to match.

Syntax 3 is intended for use with SQL Remote only, inside a BEFORE
trigger. The purpose is to provide a full list of subscribe by values any time
the list changes. It is placed in SQL Remote triggers so that the database
server can compute the current list of SUBSCRIBE BY values. Both lists are
placed in the transaction log.

573

UPDATE statement

Using UPDATE to
maintain
subscriptions

Standards and
compatibility

Examples

574

The Message Agent uses the two lists to make sure that the row moves to any
remote database that did not have the row and now needs it. The Message
Agent also removes the row from any remote database that has the row and
no longer needs it. A remote database that has the row and still needs it is not
be affected by the UPDATE statement.

Syntax 3 of the UPDATE statement allows the old SUBSCRIBE BY list and
the new SUBSCRIBE BY list to be explicitly specified, which can make
SQL Remote triggers more efficient. In the absence of these lists, the
database server computes the old SUBSCRIBE BY list from the publication
definition. Since the new SUBSCRIBE BY list is commonly only slightly
different from the old SUBSCRIBE BY list, the work to compute the old list
may be done twice. By specifying both the old and new lists, you can avoid
this extra work.

The SUBSCRIBE BY expression is either a value or a subquery.

Syntax 3 of the UPDATE statement is used to implement a specific SQL
Remote feature, and is to be used inside a BEFORE trigger.

For publications created using a subquery in a SUBSCRIBE BY clause, you
must write a trigger containing syntax 3 of the UPDATE statement in order
to ensure that the rows are kept in their proper subscriptions.

Syntax 3 of the UPDATE statement makes an entry in the transaction log,
but does not change the database table.

¢ SQL/92 Syntax I is an entry-level feature. Syntax 2 and 3 are vendor
extensions for use only with SQL Remote.

¢ Sybase Subject to the expressions being compatible, the syntax of the
UPDATE statement (syntax 1) is compatible between Adaptive Server
Enterprise and Adaptive Server Anywhere. Syntax 2 and 3 are not
supported.

¢ Transfer employee Philip Chin (employee 129) from the sales
department to the marketing department.

UPDATE employee
SET dept id = 400
WHERE emp id = 129 ;

¢ Sales orders currently start at ID 2001. Renumber all existing sales
orders by subtracting 2000 from the ID.

UPDATE sales order items AS items ,
sales order AS orders

SET items.id = items.id - 2000,
orders.id = orders.id - 2000 ;

Chapter 9 SQL Statements

UPDATE (positioned) statement

Function

Syntax 1

Syntax 2

Parameters

Permissions
Side effects

See also

Description

Updating views

Standards and
compatibility

Example

To modify the data at the current location of a cursor.

UPDATE WHERE CURRENT OF cursor-name
... { USING DESCRIPTOR sqlda-name | FROM host-variable-list }

UPDATE table-list
... SET column-name = expression, ...
... WHERE CURRENT OF cursor-name

host-variable-list: indicator variables allowed

sqlda-name: identifier

Must have UPDATE permission on the columns being modified.
None.

"DELETE statement" on page 442
"UPDATE statement" on page 572

This form of the UPDATE statement updates the current row of the specified
cursor. The current row is defined to be the last row FETCHed from the
cursor and the last operation on the cursor must not have been a DELETE
(positioned).

For syntax 1, columns from the SQLDA or values from the host variable list
correspond one-to-one with the select list items of the specified cursor. If the
sqldata pointer in the SQLDA is the null pointer, the corresponding select
list item is not updated.

In syntax 2, the requested columns are set to the specified values for the row
at the current row of the specified query. The columns do not need to be in
the select list of the specified open cursor. This format can be prepared.

The USING DESCRIPTOR, FROM host-variable-list, and host-variable
formats are for Embedded SQL only.

Updates are not allowed on cursors on views that have more than one table in
the FROM clause.

¢ SQL/92 Entry level feature.

¢ Sybase Embedded SQL use is supported by Open Client/Open Server,
and procedure and trigger use is supported in Adaptive Server
Anywhere.

¢ The following is an example of an UPDATE statement WHERE
CURRENT OF cursor:

UPDATE Employee

575

UPDATE (positioned) statement

SET emp lname = 'Jones'
WHERE CURRENT OF emp cursor ;

576

Chapter 9 SQL Statements

VALIDATE TABLE statement

Function

Syntax

Permissions

Side effects
See also

Description

Standards and
compatibility

To validate a table in the database.

VALIDATE TABLE [owner.]table-name

Must be the owner of the table, have DBA authority, or have REMOTE DBA
authority (SQL Remote).

None.
"The Validation utility" on page 119

The VALIDATE TABLE statement will scan every row of a table, and look
up each row in each index on the table. If the database file is corrupt, an error
will be reported. This should not happen. However, because DOS and
Windows are unprotected operating environments, other software can corrupt
memory used by the database server. This problem may be detected through
software errors or crashes, or the corrupt memory could get written to the
database, creating a corrupt database file. Also, in any operating system,
hardware problems with the disk could cause the database file to get
corrupted.

If you do have errors reported, you can drop all of the indexes and keys on a
table and recreate them. Any foreign keys to the table will also need to be
recreated. Another solution to errors reported by VALIDATE TABLE is to
unload and reload your entire database. You should use the —u option of
DBUNLOAD so that it will not try to use a possibly corrupt index to order
the data.

¢ SQL/92 Vendor extension

¢ Sybase VALIDATE TABLE is not supported in Adaptive Server
Enterprise. The procedure dbcc checktable provides a similar function.

577

WHENEVER statement [ESQL]

WHENEVER statement [ESQL]

Function

Syntax

Parameters
Permissions
Side effects

Description

Standards and
compatibility

Examples

578

To specify error handling in an Embedded SQL program.

WHENEVER { SQLERROR | SQLWARNING | NOTFOUND }
... GOTO label | STOP | CONTINUE | { C code; }

label: identifier
None.
None.

The WHENEVER statement is used to trap errors, warnings and exceptional
conditions encountered by the database when processing SQL statements.
The statement can be put anywhere in an Embedded SQL C program and
does not generate any code. The preprocessor will generate code following
each successive SQL statement. The error action remains in effect for all
Embedded SQL statements from the source line of the WHENEVER
statement until the next WHENEVER statement with the same error
condition, or the end of the source file.

Errors based on source position
The error conditions are in effect based on positioning in the C language
source file, not based on when the statements are executed.

The default action is CONTINUE.

Note that this statement is provided for convenience in simple programs.
Most of the time, checking the sqlcode field of the SQLCA (SQLCODE)
directly is the easiest way to check error conditions. In this case, the
WHENEVER statement would not be used. If fact, all the WHENEVER
statement does is cause the preprocessor to generate an if (SOLCODE) test
after each statement.

¢ SQL/92 Entry-level feature.
¢ Sybase Supported by Open Client/Open Server.

¢ The following are examples of the WHENEVER statement:
EXEC SQL WHENEVER NOTFOUND GOTO done;

EXEC SQL WHENEVER SQLERROR
{
PrintError(&sqglca);
return(FALSE);
bi

Chapter 9 SQL Statements

WHILE statement [T-SQL]

Function

Syntax

Authorization
Side effects
See also

Description

Standards and
compatibility

Example

To provide repeated execution of a statement or compound statement.

WHILE expression
statement

None.
None.
"LOOP statement" on page 508

The WHILE conditional affects the performance of only a single SQL
statement, unless statements are grouped into a compound statement between
the keywords BEGIN and END.

The BREAK statement and CONTINUE statement can be used to control
execution of the statements in the compound statement. The BREAK
statement terminates the loop, and execution resumes after the END keyword
marking the end of the loop. The CONTINUE statement causes the WHILE
loop to restart, skipping any statements after the CONTINUE.

¢ SQL/92 Transact-SQL extension.
¢ Sybase Supported by Adaptive Server Enterprise.

¢ The following illustrates the use of WHILE:

WHILE (SELECT AVG(unit price) FROM product) < $30
BEGIN
UPDATE product
SET unit price = unit price + 2
IF (SELECT MAX (unit price) FROM product) > $50
BREAK
END

The BREAK statement breaks the WHILE loop if the most expensive
product has a price above $50. Otherwise, the loop continues until the
average price is greater than or equal to $30.

579

WRITETEXT statement [T-SQL]

WRITETEXT statement [T-SQL]

Function

Syntax

Authorization

Side effects

Description

Standards and

compatibility

Example

580

Permits non-logged, interactive updating of an existing text or image
column.

WRITETEXT table-name.column-name
text_pointer [WITH LOG] data

None.

WRITETEXT does not fire triggers, and by default WRITETEXT operations
are not recorded in the transaction log.

Updates an existing text or image value. The update is not recorded in the
transaction log, unless the WITH LOG option is supplied. You cannot carry
out WRITETEXT operations on views.

¢ SQL/92 Transact-SQL extension.
¢ Sybase Supported by Adaptive Server Enterprise.

¢ The following code fragment illustrates the use of the WRITETEXT
statement. The SELECT statement in this example returns a single row.
The example replaces the contents of the column_name column on the
specified row with the value newdata.

EXEC SQL create variable textpointer binary(16);
EXEC SQL set textpointer =
(select textptr(column name)
from table name where ...) ;
EXEC SQL writetext table name.column name
textpointer 'newdata' ;

