CHAPTER

17

Command Reference for Adaptive Server

Anywhere

About this chapter

Contents

This chapter describes the SQL statements used for executing SQL Remote
commands, and the system tables, used for storing information about the
SQL Remote installation and its state.

Topic Page
ALTER PUBLICATION statement 353
ALTER REMOTE MESSAGE TYPE statement 354
CREATE PUBLICATION statement 356
CREATE REMOTE MESSAGE TYPE statement 358
CREATE SUBSCRIPTION statement 360
CREATE TRIGGER statement 361
DROP PUBLICATION statement 364
DROP REMOTE MESSAGE TYPE statement 365
DROP SUBSCRIPTION statement 366
GRANT CONSOLIDATE statement 367
GRANT PUBLISH statement 369
GRANT REMOTE statement 370
GRANT REMOTE DBA statement 372
PASSTHROUGH statement 373
REMOTE RESET statement 374
REVOKE CONSOLIDATE statement 375
REVOKE PUBLISH statement 376
REVOKE REMOTE statement 377
REVOKE REMOTE DBA statement 378
START SUBSCRIPTION statement 379

351

ALTER PUBLICATION statement

STOP SUBSCRIPTION statement 380
SYNCHRONIZE SUBSCRIPTION statement 381
UPDATE statement 382

352

Chapter 17 Command Reference for Adaptive Server Anywhere

ALTER PUBLICATION statement

Function To alter the definition of a SQL Remote publication.

Syntax ALTER PUBLICATION [owner.]publication-name
ADD TABLE article-description
| MODIFY TABLE article-description
| { DELETE | DROP } TABLE [owner.]table-name
| RENAME publication-name

Parameters article-description:
table-name [(column-name, ...)]
[WHERE search-condition]
[SUBSCRIBE BY expression]

Usage Anywhere. This statement is applicable only to SQL Remote.

Permissions Must have DBA authority, or be owner of the publication. Requires
exclusive access to all tables referred to in the statement.

Side effects Automatic commit.

See also "CREATE PUBLICATION statement" on page 356
"DROP PUBLICATION statement" on page 364

Description The ALTER PUBLICATION statement alters a SQL Remote publication in
the database. The contribution to a publication from one table is called an
article. Changes can be made to a publication by adding, modifying, or
deleting articles, or by renaming the publication. If an article is modified, the
entire specification of the modified article must be entered.

Example The following statement adds the customer table to the pub_contact
publication.

ALTER PUBLICATION pub contact (
ADD TABLE customer
)

353

ALTER REMOTE MESSAGE TYPE statement

ALTER REMOTE MESSAGE TYPE statement

Function

Syntax

Parameters

Permissions
Side effects
See also

Description

Example

354

To change the publisher's address for a given message system, for a message
type that has been created.

ALTER REMOTE MESSAGE TYPE message-system
ADDRESS address-string

Parameter Description

message-system | One of the message systems supported by SQL Remote. It
must be one of the following values:

¢ FILE
¢ FTP

¢ MAPI
¢ SMTP
¢ VIM

address-string A string containing a valid address for the specified message
system.

Must have DBA authority.

Automatic commit.

"CREATE REMOTE MESSAGE TYPE statement" on page 358

The statement changes the publisher's address for a given message type.

The Message Agent sends outgoing messages from a database by one of the
supported message links. The extraction utility uses this address when
executing the GRANT CONSOLIDATE statement in the remote database.

The address is the publisher's address under the specified message system. If
it is an e-mail system, the address string must be a valid e-mail address. If it
is a file-sharing system, the address string is a subdirectory of the directory
specified by the SQLREMOTE environment variable, or of the current
directory if that is not set. You can override this setting on the GRANT
CONSOLIDATE statement at the remote database.

For the FILE link, the ALTER REMOTE MESSAGE TYPE statement also
causes the Message Agent to look for incoming messages in the address
given for each message type.

The following statement changes the publisher's address for the FILE
message link to new_addr.

CREATE REMOTE MESSAGE TYPE file

Chapter 17 Command Reference for Adaptive Server Anywhere

ADDRESS 'new addr'

355

CREATE PUBLICATION statement

CREATE PUBLICATION statement

Function

Syntax

Parameters

Permissions

Side effects

See also

Description

Example

356

To create a publication for replication with SQL Remote.

CREATE PUBLICATION [owner.lpublication-name
(TABLE article-description,...)

article-description:
table-name [(column-name, ...)]
[WHERE search-condition]
[SUBSCRIBE BY expression]

Must have DBA authority. Requires exclusive access to all tables referred to
in the statement.

Automatic commit.

"ALTER PUBLICATION statement" on page 353
"DROP PUBLICATION statement" on page 364

The CREATE PUBLICATION statement creates a publication in the
database. A publication can be created for another user by specifying an
owner name.

In SQL Remote, publishing is a two-way operation, as data can be entered at
both consolidated and remote databases. In a SQL Remote installation, any
consolidated database and all remote databases must have the same
publication defined. Running the extraction utility from a consolidated
database automatically executes the correct CREATE PUBLICATION
statement in the remote database.

Article Publications are built from articles. Each article is a table or part of a
table. An article may be a vertical partition of a table (a subset of the table's
columns), a horizontal partition (a subset of the table's rows) or a vertical and
horizontal partition.

SUBSCRIBE BY clause One way of defining a subset of rows of a table to
be included in an article is to use a SUBSCRIBE BY clause. This clause
allows many different subscribers to receive different rows from a table in a
single publication definition.

WHERE clause The WHERE clause is a way of defining the subset of rows
of a table to be included in an article. It is useful if the same subset if to be
received by all subscribers to the publication.

You can combine WHERE and SUBSCRIBE BY clauses in an article
definition.

¢ The following statement creates a simple publication:

CREATE PUBLICATION pub contact (

Chapter 17 Command Reference for Adaptive Server Anywhere

TABLE contact

357

CREATE REMOTE MESSAGE TYPE statement

CREATE REMOTE MESSAGE TYPE statement

Function

Syntax

Parameters

Permissions
Side effects

See also

Description

358

To identify a message-link and return address for outgoing messages from a
database.

CREATE REMOTE MESSAGE TYPE message-system
...ADDRESS address-string

Parameter Description

message-system | One of the message systems supported by SQL Remote. It
must be one of the following values:

¢ FILE
¢ FTP

¢ MAPI
¢ SMTP
¢ VIM

address-string A string containing a valid address for the specified message
system.

Must have DBA authority.
Automatic commit.

"GRANT PUBLISH statement" on page 369
"GRANT REMOTE statement" on page 370
"GRANT CONSOLIDATE statement" on page 367
"Using message types" on page 228

The Message Agent sends outgoing messages from a database using one of
the supported message links. Return messages for users employing the
specified link are sent to the specified address as long as the remote database
is created by the extraction utility. The Message Agent starts links only if it
has remote users for those links.

The address is the publisher's address under the specified message system. If
it is an e-mail system, the address string must be a valid e-mail address. If it
is a file-sharing system, the address string is a subdirectory of the directory
set in the SQLREMOTE environment variable, or of the current directory if
that is not set. You can override this setting on the GRANT CONSOLIDATE
statement at the remote database.

For the FILE link, the CREATE REMOTE MESSAGE TYPE statement also
causes the Message Agent to look for incoming messages in the address
given for each message type.

Chapter 17 Command Reference for Adaptive Server Anywhere

The initialization utility creates message types automatically, without an
address. Unlike other CREATE statements, the CREATE REMOTE
MESSAGE TYPE statement does not give an error if the type exists; instead
it alters the type.

Example ¢ When remote databases are extracted using the extraction utility, the
following statement sets all recipients of FILE messages to send
messages back to the company subdirectory of the SQLREMOTE
environment variable.

The statement also instructs DBREMOTE to look in the company
subdirectory for incoming messages.

CREATE REMOTE MESSAGE TYPE file
ADDRESS 'company'

359

CREATE SUBSCRIPTION statement

CREATE SUBSCRIPTION statement

Function To create a subscription for a user to a publication.

Syntax CREATE SUBSCRIPTION
... TO publication-name [(subscription-value) |
... FOR subscriber-id

Parameters Parameter Description

publication-name The name of the publication to which the user is being
subscribed. This may include the owner of the publication.

subscription-value | A string that is compared to the subscription expression of
the publication. The subscriber receives all rows for which
the subscription expression matches the subscription value.

subscriber-id The user ID of the subscriber to the publication. This user
must have been granted REMOTE permissions.

Permissions Must have DBA authority.
Side effects Automatic commit.
See also "DROP SUBSCRIPTION statement" on page 366

"GRANT REMOTE statement" on page 370
"SYNCHRONIZE SUBSCRIPTION statement" on page 381
"START SUBSCRIPTION statement" on page 379

Description In a SQL Remote installation, data is organized into publications for
replication. In order to receive SQL Remote messages, a subscription must
be created for a user ID with REMOTE permissions.

If a string is supplied in the subscription, it is matched against each
SUBSCRIBE BY expression in the publication. The subscriber receives all
rows for which the value of the expression is equal to the supplied string.

In SQL Remote, publications and subscriptions are two-way relationships. If
you create a subscription for a remote user to a publication on a consolidated
database, you should also create a subscription for the consolidated database
on the remote database. The extraction utility carries this out automatically.

Example ¢ The following statement creates a subscription for the user p_chin to the
publication pub_sales. The subscriber receives all rows for which the
subscription expression has a value of Eastern.

CREATE SUBSCRIPTION
TO pub sales ('Eastern')
FOR p chin

360

Chapter 17 Command Reference for Adaptive Server Anywhere

CREATE TRIGGER statement

Function

Syntax

Parameters

Usage

Permissions

Side effects
See also

Description

To create a new trigger in the database. One form of trigger is designed
specifically for use by SQL Remote.

CREATE TRIGGER trigger-name trigger-time trigger-event
[, trigger-event,..]
... [ORDER integer] ON table-name
... [REFERENCING [OLD AS old-name]
[NEW AS new-name]
[REMOTE AS remote-name]]
... [FOR EACH { ROW | STATEMENT }]
... [WHEN (search-condition')]
... [IF UPDATE (column-name) THEN
..[{ AND | OR } UPDATE (column-name)] ...]
... compound-statement
... [ELSEIF UPDATE (column-name) THEN
..[{ AND | OR } UPDATE (column-name)] ...
... compound-statement
... ENDIF]]

trigger-time:
BEFORE | AFTER | RESOLVE

trigger-event:
DELETE | INSERT | UPDATE | UPDATE OF column-list

Anywhere.

Must have RESOURCE authority and have ALTER permissions on the table,
or must have DBA authority. CREATE TRIGGER puts a table lock on the
table and thus requires exclusive use of the table.

Automatic commit.
"UPDATE statement" on page 382

The CREATE TRIGGER statement creates a trigger associated with a table
in the database and stores the trigger in the database.

Triggers can be triggered by one or more of the following events:

¢ INSERT Invoked whenever a new row is inserted into the table
associated with the trigger.

¢ DELETE Invoked whenever a row of the associated table is deleted.
¢ UPDATE Invoked whenever a row of the associated table is updated.

¢ UPDATE OF column-list Invoked whenever a row of the associated
table is updated and a column in the co/umn-list has been modified.

361

CREATE TRIGGER statement

Row and
statement-level
triggers

Order of firing

Referencing
deleted and
inserted values

362

BEFORE UPDATE triggers fire any time an update occurs on a row,
regardless of whether or not the new value differs from the old value.
AFTER UPDATE triggers will fire only if the new value is different from
the old value.

The trigger is declared as either a row-level trigger, in which case it executes
before or after each row is modified, or as a statement-level trigger, in which
case it executes after the entire triggering statement is completed.

Row-level triggers can be defined to execute BEFORE or AFTER the insert,
update, or delete. Statement-level triggers execute AFTER the statement.
The RESOLVE trigger time is for use with SQL Remote; it fires before row-
level UPDATE or UPDATE OF column-lists only.

To declare a trigger as a row-level trigger, use the FOR EACH ROW clause.
To declare a trigger as a statement-level trigger, you can either use a FOR
EACH STATEMENT clause or omit the FOR EACH clause. For clarity, it is
recommended that you enter the FOR EACH STATEMENT clause if
declaring a statement-level trigger.

Triggers of the same type (insert, update, or delete) that fire at the same time
(before, after, or resolve) can use the ORDER clause to determine the order
that the triggers are fired.

The REFERENCING OLD and REFERENCING NEW clauses allow you to
refer to the deleted and inserted rows. For the purposes of this clause, an
UPDATE is treated as a delete followed by an insert.

The REFERENCING REMOTE clause is for use with SQL Remote. It
allows you to refer to the values in the VERIFY clause of an UPDATE
statement. It should be used only with RESOLVE UPDATE or RESOLVE
UPDATE OF column-list triggers.

The meaning of REFERENCING OLD and REFERENCING NEW differs,
depending on whether the trigger is a row-level or a statement-level trigger.
For row-level triggers, the REFERENCING OLD clause allows you to refer
to the values in a row prior to an update or delete, and the REFERENCING
NEW clause allows you to refer to the inserted or updated values. The OLD
and NEW rows can be referenced in BEFORE and AFTER triggers. The
REFERENCING NEW clause allows you to modify the new row in a
BEFORE trigger before the insert or update operation takes place.

For statement-level triggers, the REFERENCING OLD and
REFERENCING NEW clauses refer to declared temporary tables holding
the old and new values of the rows. The default names for these tables are
deleted and inserted.

The WHEN clause causes the trigger to fire only for rows where the search-
condition evaluates to true.

Chapter 17 Command Reference for Adaptive Server Anywhere

Updating values BEFORE UPDATE triggers fire any time an UPDATE occurs on a row,
with the same whether or not the new value differs from the old value. AFTER UPDATE
value triggers fire only if the new value is different from the old value.

Example ¢ When a new department head is appointed, update the manager_id

column for employees in that department.

CREATE TRIGGER
tr manager BEFORE UPDATE OF dept head id ON
department
REFERENCING OLD AS old dept
NEW AS new dept
FOR EACH ROW
BEGIN
UPDATE employee
SET employee.manager id=new dept.dept head id
WHERE employee.dept id=old dept.dept id
END

363

DROP PUBLICATION statement

DROP PUBLICATION statement

Function To drop a SQL Remote publication.

Syntax DROP PUBLICATION [owner.]publication-name

Usage Anywhere. This statement is applicable only to SQL Remote.

Permissions Must have DBA authority.

Side effects Automatic commit. All subscriptions to the publication are dropped.

See also "CREATE PUBLICATION statement" on page 356

Description The DROP PUBLICATION statement drops an existing publication from the
database.

Publication definitions are held at both consolidated and remote databases in
a SQL Remote installation.

Example DROP PUBLICATION pub contact

364

Chapter 17 Command Reference for Adaptive Server Anywhere

DROP REMOTE MESSAGE TYPE statement

Function To delete a message type definition from a database.
Syntax DROP REMOTE MESSAGE TYPE message-system
Parameters Parameter Description
message-system | One of the message systems supported by SQL Remote. It
must be one of the following values:
¢ FILE
¢ FTP
¢ MAPI
¢ SMTP
¢ VIM
Permissions Must have DBA authority. To be able to drop the type, there must be no user
granted REMOTE or CONSOLIDATE permissions with this type.
Side effects Automatic commit.
See also "CREATE REMOTE MESSAGE TYPE statement" on page 358

"ALTER REMOTE MESSAGE TYPE statement" on page 354
"Using message types" on page 228.

Description The statement removes a message type from a database.

Example The following statement drops the FILE message type from a database.

DROP REMOTE MESSAGE TYPE file

365

DROP SUBSCRIPTION statement

DROP SUBSCRIPTION statement

Function To drop a subscription for a user from a publication.

Syntax DROP SUBSCRIPTION TO publication-name [(subscription-value)]
... FOR subscriber-id, ...

Parameters Parameter Description

publication-name The name of the publication to which the user is being
subscribed. This may include the owner of the publication.

subscription-value | A string that is compared to the subscription expression of
the publication. This value is required because a user may
have more than one subscription to a publication.

subscriber-id The user ID of the subscriber to the publication.
Permissions Must have DBA authority.
Side effects Automatic commit.
See also "CREATE SUBSCRIPTION statement" on page 360
Description Drops a SQL Remote subscription for a user ID to a publication in the

current database. The user ID will no longer receive updates when data in the
publication is changed.

In SQL Remote, publications and subscriptions are two-way relationships. If
you drop a subscription for a remote user to a publication on a consolidated
database, you should also drop the subscription for the consolidated database
on the remote database to prevent updates on the remote database being sent
to the consolidated database.

Example The following statement drops a subscription for the user ID SamS to the
publication pub_contact.

DROP SUBSCRIPTION TO pub contact
FOR SamS

366

Chapter 17 Command Reference for Adaptive Server Anywhere

GRANT CONSOLIDATE statement

Function

Syntax

Parameters

Permissions
Side effects

See also

Description

To identify the database immediately above the current database in a SQL
Remote hierarchy, who will receive messages from the current database.

GRANT CONSOLIDATE
... TO userid, ...
... TYPE message-system, ...
... ADDRESS address-string, ...
... [SEND { EVERY | AT }'hh:mm’']

Parameter Description

userid The user ID for the user to be granted the permission

message-system | One of the message systems supported by SQL Remote. It
must be one of the following values:

FILE

MAPI
SMTP
¢ VIM

¢
¢ FTP
¢
¢

address-string A string containing a valid address for the specified message
system.

Must have DBA authority.
Automatic commit.

"GRANT REMOTE statement" on page 370
"REVOKE CONSOLIDATE statement" on page 375
"GRANT PUBLISH statement" on page 369

In a SQL Remote installation, the database immediately above the current
database in a SQL Remote hierarchy must be granted CONSOLIDATE
permissions. GRANT CONSOLIDATE is issued at a remote database to
identify its consolidated database. Each database can have only one user ID
with CONSOLIDATE permissions: you cannot have a database that is a
remote database for more than one consolidated database.

The consolidated user is identified by a message system, identifying the
method by which messages are sent to and received from the consolidated
user. The address-name must be a valid address for the message-system,
enclosed in single quotes.

367

GRANT CONSOLIDATE statement

For the FILE message type, the address is a subdirectory of the directory
pointed to by the SQLREMOTE environment variable.

The GRANT CONSOLIDATE statement is required for the consolidated
database to receive messages, but does not by itself subscribe the
consolidated database to any data. To subscribe to data, a subscription must
be created for the consolidated user ID to one of the publications in the
current database. Running the database extraction utility at a consolidated
database creates a remote database with the proper GRANT
CONSOLIDATE statement aready issued.

The optional SEND EVERY and SEND AT clauses specify a frequency at
which messages are sent. The string contains a time that is a length of time
between messages (for SEND EVERY) or a time of day at which messages
are sent (for SEND AT). With SEND AT, messages are sent once per day.

If a user has been granted remote permissions without a SEND EVERY or
SEND AT clause, the Message Agent processes messages, and then stops. In
order to run the Message Agent continuously, you must ensure that every
user with REMOTE permission has either a SEND AT or SEND EVERY
frequency specified.

It is anticipated that at many remote databases, the Message Agent will be
run periodically, and that the consolidated database will have no SEND
clause specified.

Example GRANT CONSOLIDATE TO con db
TYPE mapi
ADDRESS 'Consolidated Database'

368

Chapter 17 Command Reference for Adaptive Server Anywhere

GRANT PUBLISH statement

Function
Syntax
Permissions
Side effects

See also

Description

Example

To identify the publisher of the current database.
GRANT PUBLISH TO userid

Must have DBA authority.

Automatic commit.

"GRANT REMOTE statement" on page 370
"GRANT CONSOLIDATE statement" on page 367
"REVOKE PUBLISH statement" on page 376
"CREATE PUBLICATION statement" on page 356
"CREATE SUBSCRIPTION statement" on page 360

Each database in a SQL Remote installation is identified in outgoing
messages by a user ID, called the publisher. The GRANT PUBLISH
statement identifies the publisher user ID associated with these outgoing
messages.

Only one user ID can have PUBLISH authority. The user ID with PUBLISH
authority is identified by the special constant CURRENT PUBLISHER. The
following query identifies the current publisher:

SELECT CURRENT PUBLISHER
If there is no publisher, the special constant is NULL.

The current publisher special constant can be used as a default setting for
columns. It is often useful to have a CURRENT PUBLISHER column as part
of the primary key for replicating tables, as this helps prevent primary key
conflicts due to updates at more than one site.

In order to change the publisher, you must first drop the current publisher
using the REVOKE PUBLISH statement, and then create a new publisher
using the GRANT PUBLISH statement.

GRANT PUBLISH TO publisher ID

369

GRANT REMOTE statement

GRANT REMOTE statement

Function To identify a database immediately below the current database in a SQL
Remote hierarchy, who will receive messages from the current database.
These are called remote users.

Syntax GRANT REMOTE TO userid, ...
TYPE message-system, ...
ADDRESS address-string, ...
[SEND { EVERY | AT } send-time]

Parameters Parameter Description
userid The user ID for the user to be granted the permission
message-system | One of the message systems supported by SQL Remote. It
must be one of the following values:
¢ FILE
¢ FTP
¢ MAPI
¢ SMTP
¢ VIM
address-string A string containing a valid address for the specified message
system.
send-time A string containing a time specification in the form Ah:mm.
Permissions Must have DBA authority.
Side effects Automatic commit.
See also "GRANT CONSOLIDATE statement" on page 367

"REVOKE REMOTE statement" on page 377

"GRANT PUBLISH statement" on page 369

"Granting and revoking REMOTE and CONSOLIDATE permissions" on
page 221,

Description In a SQL Remote installation, each database receiving messages from the
current database must be granted REMOTE permissions.

The single exception is the database immediately above the current database
in a SQL Remote hierarchy, which must be granted CONSOLIDATE
permissions.

370

Chapter 17 Command Reference for Adaptive Server Anywhere

Example

The remote user is identified by a message system, identifying the method by
which messages are sent to and received from the consolidated user. The
address-name must be a valid address for the message-system, enclosed in
single quotes.

For the FILE message type, the address is a subdirectory of the directory
pointed to by the SQLREMOTE environment variable.

The GRANT REMOTE statement is required for the remote database to
receive messages, but does not by itself subscribe the remote user to any
data. To subscribe to data, a subscription must be created for the user ID to
one of the publications in the current database, using the database extraction
utility or the CREATE SUBSCRIPTION statement.

The optional SEND EVERY and SEND AT clauses specify a frequency at
which messages are sent. The string contains a time that is a length of time
between messages (for SEND EVERY) or a time of day at which messages
are sent (for SEND AT). With SEND AT, messages are sent once per day.

If a user has been granted remote permissions without a SEND EVERY or
SEND AT clause, the Message Agent processes messages, and then stops. In
order to run the Message Agent continuously, you must ensure that every
user with REMOTE permission has either a SEND AT or SEND EVERY
frequency specified.

It is anticipated that at many consolidated databases, the Message Agent will
be run continuously, so that all remote databases would have a SEND clause
specified. A typical setup may involve sending messages to laptop users
daily (SEND AT) and to remote servers every hour or two (SEND EVERY).
You should use as few different times as possible, for efficiency.

¢ The following statement grants remote permissions to user SamS, using
a MAPI e-mail system, sending messages to the address Singer, Samuel
once every two hours:

GRANT REMOTE TO SamS
TYPE mapi

ADDRESS 'Singer, Samuel'
SEND EVERY '02:00"'

371

GRANT REMOTE DBA statement

GRANT REMOTE DBA statement

Function

Syntax 1

Permissions
Side effects

See also

Description

372

To provide DBA privileges to a user ID, but only when connected from the
Message Agent.

GRANT REMOTE DBA
TO userid,...
IDENTIFIED BY password

Must have DBA authority.
Automatic commit.

"The Message Agent and replication security" on page 257
"REVOKE REMOTE DBA statement" on page 378

REMOTE DBA authority enables the Message Agent to have full access to
the database in order to make any changes contained in the messages, while
avoiding security problems associated with distributing DBA user IDs
passwords.

REMOTE DBA has the following properties.

¢ No distinct permissions when not connected from the Message Agent. A
user ID granted REMOTE DBA authority has no extra privileges on any
connection apart from the Message Agent. Even if the user ID and
password for a REMOTE DBA user is widely distributed, there is no
security problem. As long as the user ID has no permissions beyond
CONNECT granted on the database, no one can use this user ID to
access data in the database.

¢ Full DBA permissions when connected from the Message Agent.

Chapter 17 Command Reference for Adaptive Server Anywhere

PASSTHROUGH statement

Function

Syntax 1
Syntax 2

Syntax 3

Permissions
Side effects

Description

Example

To start or stop passthrough mode for SQL Remote administration. Forms 1
and 2 start passthrough mode, while form 3 stops passthrough mode.

PASSTHROUGH [ONLY] FOR userid,...

PASSTHROUGH [ONLY] FOR SUBSCRIPTION
... TO [(owner)].publication-name [(constant)]

PASSTHROUGH STOP
Must have DBA authority.
None.

In passthrough mode, any SQL statements are executed by the database
server, and are also placed into the transaction log to be sent in messages to
subscribers. Ifthe ONLY keyword is used to start passthrough mode, the
statements are not executed at the server; they are sent to recipients only. The
recipients of the passthrough SQL statements are either a list of user IDs
(form 1) or all subscribers to a given publication. Passthrough mode may be
used to apply changes to a remote database from the consolidated database or
send statements from a remote database to the consolidated database.

Syntax 2 sends statements to remote databases whose subscriptions are
started, and does not send statements to remote databases whose
subscriptions are created and not started.

PASSTHROUGH FOR rem db ;
(SQL statements to be executed at the remote database)

PASSTHROUGH STOP ;

373

REMOTE RESET statement

REMOTE RESET statement

Function

Syntax
Permissions
Side effects
See also

Description

Example

374

For use in custom database extraction procedures. It starts all subscriptions
for a remote user in a single transaction.

REMOTE RESET userid

Must have DBA authority.

No automatic commit is done by this statement.
"START SUBSCRIPTION statement" on page 379

This command starts all subscriptions for a remote user in a single
transaction. It sets the log_sent and confirm_sent values in
SYSREMOTEUSER table to the current position in the transaction log. It
also sets the created and started values in SYSSUBSCRIPTION to the
current position in the transaction log for all subscriptions for this remote
user. The statement does not do a commit. You must do an explicit commit
after this call.

In order to write an extraction process that is safe on a live database, the data
must be extracted at isolation level 3 in the same transaction as the
subscriptions are started.

This statement is an alternative to start subscription. START
SUBSCRIPTION has an implicit commit as a side effect, so that if a remote
user has several subscriptions, it is impossible to start them all in one
transaction using START SUBSCRIPTION.

¢ The following statement resets the subscriptions for remote user SamS:

REMOTE RESET 'SamS'

Chapter 17 Command Reference for Adaptive Server Anywhere

REVOKE CONSOLIDATE statement

Function To stop a consolidated database from receiving SQL Remote messages from
this database.

Syntax REVOKE CONSOLIDATE FROM userid,...

Permissions Must have DBA authority.

Side effects Automatic commit. Drops all subscriptions for the user.

See also "GRANT CONSOLIDATE statement" on page 367

Description CONSOLIDATE permissions must be granted at a remote database for the

user ID representing the consolidated database. The REVOKE
CONSOLIDATE statement removes the consolidated database user ID from
the list of users receiving messages from the current database.

Example ¢ The following statement revokes consolidated status from the user ID
condb:

REVOKE CONSOLIDATE FROM condb

375

REVOKE PUBLISH statement

REVOKE PUBLISH statement

Function

Syntax
Permissions
Side effects

See also

Description

Example

376

To terminate the identification of the named user ID as the CURRENT
publisher.

REVOKE PUBLISH FROM userid
Must have DBA authority.
Automatic commit.

"GRANT PUBLISH statement" on page 369
"REVOKE REMOTE statement" on page 377
"CREATE PUBLICATION statement" on page 356
"CREATE SUBSCRIPTION statement" on page 360

Each database in a SQL Remote installation is identified in outgoing
messages by a publisher user ID. The current publisher user ID can be found
using the CURRENT PUBLISHER special constant. The following query
identifies the current publisher:

SELECT CURRENT PUBLISHER

The REVOKE PUBLISH statement ends the identification of the named user
ID as the publisher.

You should not REVOKE PUBLISH from a database while the database has
active SQL Remote publications or subscriptions.

Issuing a REVOKE PUBLISH statement at a database has several
consequences for a SQL Remote installation:

¢ You will not be able to insert data into any tables with a CURRENT
PUBLISHER column as part of the primary key. Any outgoing
messages will not be identified with a publisher user ID, and so will not
be accepted by recipient databases.

If you change the publisher user ID at any consolidated or remote database in
a SQL Remote installation, you must ensure that the new publisher user ID is
granted REMOTE permissions on all databases receiving messages from the
database. This will generally require all subscriptions to be dropped and
recreated.

REVOKE PUBLISH FROM publisher ID

Chapter 17 Command Reference for Adaptive Server Anywhere

REVOKE REMOTE statement

Function To stop a user from being able to receive SQL Remote messages from this
database.

Syntax REVOKE REMOTE FROM userid,...

Permissions Must have DBA authority.

Side effects Automatic commit. Drops all subscriptions for the user.

Description REMOTE permissions are required for a user ID to receive messages in a

SQL Remote replication installation. The REVOKE REMOTE statement
removes a user ID from the list of users receiving messages from the current
database.

Example REVOKE REMOTE FROM SamS

377

REVOKE REMOTE DBA statement

REVOKE REMOTE DBA statement

Function

Syntax 1

Permissions
Side effects

See also

Description

378

To provide DBA privileges to a user ID, but only when connected from the
Message Agent.

REVOKE REMOTE DBA
FROM userid,...

Must have DBA authority.
Automatic commit.

"The Message Agent and replication security" on page 257
"GRANT REMOTE DBA statement" on page 372

REMOTE DBA authority enables the Message Agent to have full access to
the database in order to make any changes contained in the messages, while
avoiding security problems associated with distributing DBA user IDs
passwords.

This statement revokes REMOTE DBA authority from a user ID.

Chapter 17 Command Reference for Adaptive Server Anywhere

START SUBSCRIPTION statement

Function

Syntax

Parameters

Permissions
Side effects

See also

Description

Example

To start a subscription for a user to a publication.

START SUBSCRIPTION
... TO publication-name [(subscription-value)]
... FOR subscriber-id,...

Parameter Description

publication-name The name of the publication to which the user is being
subscribed. This may include the owner of the publication.

subscription-value | A string that is compared to the subscription expression of
the publication. The value is required here because each
subscriber may have more than one subscription to a
publication.

subscriber-id The user ID of the subscriber to the publication. This user
must have a subscription to the publication.

Must have DBA authority.
Automatic commit.

"CREATE SUBSCRIPTION statement" on page 360
"REMOTE RESET statement" on page 374
"SYNCHRONIZE SUBSCRIPTION statement" on page 381

A SQL Remote subscription is said to be started when publication updates
are being sent from the consolidated database to the remote database.

The START SUBSCRIPTION statement is one of a set of statements that
manage subscriptions. The CREATE SUBSCRIPTION statement defines the
data that the subscriber is to receive. The SYNCHRONIZE
SUBSCRIPTION statement ensures that the consolidated and remote
databases are consistent with each other. The START SUBSCRIPTION
statement is required to start messages being sent to the subscriber.

Data at each end of the subscription must be consistent before a subscription
is started. It is recommended that you use the database extraction utility to
manage the creation, synchronization, and starting of subscriptions. If you
use the database extraction utility, you do not need to execute an explicit
START SUBSCRIPTION statement. Also, the Message Agent starts
subscriptions once they are synchronized.

The following statement starts the subscription of user SamS to the
pub_contact publication.

START SUBSCRIPTION TO pub contact
FOR SamS

379

STOP SUBSCRIPTION statement

STOP SUBSCRIPTION statement

Function

Syntax

Parameters

Permissions
Side effects

See also

Description

Example

380

To stop a subscription for a user to a publication.

STOP SUBSCRIPTION
... TO publication-name [(subscription-value)]
... FOR subscriber-id,...

Parameter Description

publication-name The name of the publication to which the user is being
subscribed. This may include the owner of the publication.

subscription-value | A string that is compared to the subscription expression of
the publication. The value is required here because each
subscriber may have more than one subscription to a
publication.

subscriber-id The user ID of the subscriber to the publication. This user
must have a subscription to the publication.

Must have DBA authority.
Automatic commit.

"CREATE SUBSCRIPTION statement" on page 360
"SYNCHRONIZE SUBSCRIPTION statement" on page 381

A SQL Remote subscription is said to be started when publication updates
are being sent from the consolidated database to the remote database.

The STOP SUBSCRIPTION statement prevents any further messages being
sent to the subscriber. The START SUBSCRIPTION statement is required to
restart messages being sent to the subscriber. However, you should ensure
that the subscription is properly synchronized before restarting: that no
messages have been missed.

The following statement starts the subscription of user SamsS to the
pub_contact publication.

STOP SUBSCRIPTION TO pub contact
FOR SamS

Chapter 17 Command Reference for Adaptive Server Anywhere

SYNCHRONIZE SUBSCRIPTION statement

Function

Syntax

Parameters

Permissions
Side effects

See also

Description

Example

To synchronize a subscription for a user to a publication.

SYNCHRONIZE SUBSCRIPTION
... TO publication-name [(subscription-value)]
... FOR remote-user,...

Parameter Description

publication-name The name of the publication to which the user is being
subscribed. This may include the owner of the publication.

subscription-value | A string that is compared to the subscription expression of
the publication. The value is required here because each
subscriber may have more than one subscription to a
publication.

remote-user The user ID of the subscriber to the publication. This user
must have a subscription to the publication.

Must have DBA authority.
Automatic commit.

"CREATE SUBSCRIPTION statement" on page 360
"START SUBSCRIPTION statement" on page 379

A SQL Remote subscription is said to be synchronized when the data in the
remote database is consistent with that in the consolidated database, so that
publication updates sent from the consolidated database to the remote
database will not result in conflicts and errors.

To synchronize a subscription, a copy of the data in the publication at the
consolidated database is sent to the remote database. The SYNCHRONIZE
SUBSCRIPTION statement does this through the message system. It is
recommended that where possible you use the database extraction utility
instead to synchronize subscriptions without using a message system.

The following statement synchronizes the subscription of user Sams to the
pub_contact publication.

SYNCHRONIZE SUBSCRIPTION TO pub contact
FOR SamS

381

UPDATE statement

UPDATE statement

Function

Syntax 1

Syntax 2

Syntax 3

Usage

Permissions
Side effects

See also
Description

382

To modify data in the database.

UPDATE table-list
SET column-name = expression, ...
[FROM table-list]
[WHERE search-condition]
[ORDER BY expression [ASC | DESC],...]

UPDATE (able-list
SET column-name = expression, ...
[VERIFY (column-name, ...) VALUES (expression, ...)]
[WHERE search-condition]
[ORDER BY expression [ASC | DESC],...]

UPDATE {able
...PUBLICATION publication
...{ SUBSCRIBE BY expression |
OLD SUBSCRIBE BY expression
NEW SUBSCRIBE BY expression

. .%NHERE search-condition
expression: value | subquery
Syntax 1 can be used anywhere.
Syntax 2 and Syntax 3 are applicable only to SQL Remote.

Syntax 3 with no OLD and NEW SUBSCRIBE BY expressions must be
used in a BEFORE trigger.

Syntax 3 with OLD and NEW SUBSCRIBE BY expressions can be used
anywhere.

Must have UPDATE permission for the columns being modified.

None.
"CREATE TRIGGER statement" on page 361

The UPDATE statement is used to modify rows of one or more tables. Each
named column is set to the value of the expression on the right hand side of
the equal sign. There are no restrictions on the expression. Even column-
name can be used in the expression—the old value will be used.

If no WHERE clause is specified, every row will be updated. If a WHERE
clause is specified, then only those rows which satisfy the search condition
will be updated.

Chapter 17 Command Reference for Adaptive Server Anywhere

Updates based on
joins

SQL Remote
updates

Normally, the order that rows are updated doesn't matter. However, in
conjunction with the NUMBER(*) function, an ordering can be useful to get
increasing numbers added to the rows in some specified order. Also, if you
wish to do something like add 1 to the primary key values of a table, it is
necessary to do this in descending order by primary key, so that you do not
get duplicate primary keys during the operation.

Views can be updated provided the SELECT statement defining the view
does not contain a GROUP BY clause, an aggregate function, or involve a
UNION operation.

Character strings inserted into tables are always stored in the case they are
entered, regardless of whether the database is case sensitive or not. Thus a
character data type column updated with a string Value is always held in the
database with an upper-case V and the remainder of the letters lower case.
SELECT statements return the string as Value. If the database is not case-
sensitive, however, all comparisons make Value the same as value,
VALUE, and so on. Further, if a single-column primary key already contains
an entry Value, an INSERT of value is rejected, as it would make the
primary key not unique.

The optional FROM clause allows tables to be updated based on joins. If the
FROM clause is present, the WHERE clause qualifies the rows of the FROM
clause. Data is updated only in the table list immediately following the
UPDATE keyword.

If a FROM clause is used, it is important to qualify the table name that is
being updated the same way in both parts of the statement. If a correlation
name is used in one place, the same correlation name must be used in the
other. Otherwise, an error is generated.

Syntax 2 is intended for use with SQL Remote only, in single-row updates
executed by the Message Agent. The VERIFY clause contains a set of values
that are expected to be present in the row being updated. If the values do not
match, any RESOLVE UPDATE triggers are fired before the UPDATE
proceeds. The UPDATE does not fail if the VERIFY clause fails to match.

Syntax 3 is intended for use with SQL Remote only. If no OLD and NEW
expressions are used, it must be used inside a BEFORE trigger so that it has
access to the relevant values. The purpose is to provide a full list of subscribe
by values any time the list changes. It is placed in SQL Remote triggers so
that the database server can compute the current list of SUBSCRIBE BY
values. Both lists are placed in the transaction log.

The Message Agent uses the two lists to make sure that the row moves to any
remote database that did not have the row and now needs it. The Message
Agent also removes the row from any remote database that has the row and
no longer needs it. A remote database that has the row and still needs it is not
be affected by the UPDATE statement.

383

UPDATE statement

Performance tip

Using UPDATE to
maintain
subscriptions

Examples

384

Syntax 3 of the UPDATE statement allows the old SUBSCRIBE BY list and
the new SUBSCRIBE BY list to be explicitly specified, which can make
SQL Remote triggers more efficient. In the absence of these lists, the
database server computes the old SUBSCRIBE BY list from the publication
definition. Since the new SUBSCRIBE BY list is commonly only slightly
different from the old SUBSCRIBE BY list, the work to compute the old list
may be done twice. By specifying both the old and new lists, this extra work
can be avoided.

The OLD and NEW SUBSCRIBE BY syntax is especially useful when many
tables are being updated in the same trigger with the same subscribe by
expressions. This can dramatically increase performance.

The SUBSCRIBE BY expression is either a value or a subquery.

Syntax 3 of the UPDATE statement is used to implement a specific SQL
Remote feature, and is to be used inside a BEFORE trigger.

For publications created using a subquery in a subscription expression, you
must write a trigger containing syntax 3 of the UPDATE statement in order
to ensure that the rows are kept in their proper subscriptions.

& For a full description of this feature, see "Territory realignment in the
Contact example" on page 128.

Syntax 3 of the UPDATE statement makes an entry in the transaction log,
but does not change the database table.

¢ Transfer employee Philip Chin (employee 129) from the sales
department to the marketing department.

UPDATE employee
SET dept id = 400
WHERE emp id = 129 ;

