CHAPTER 6

Principles of SQL Remote Design

About this chapter This chapter describes general issues and principles for designing a SQL
Remote installation.

& For system-specific details, see the chapters "SQL Remote Design for
Adaptive Server Enterprise" on page 159 and "SQL Remote Design for
Adaptive Server Anywhere" on page 113.

Contents Topic Page
Design overview 96
How statements are replicated 100
Who gets what? 107
Replication errors and conflicts 109

95

Design overview

Design overview

This chapter describes general publication design issues that you must
address when designing a SQL Remote installation. It also describes how
SQL Remote replicates data. SQL Remote is software for performing a
complex task.

Design at the Like all SQL Remote administrative tasks, design is carried out by a database
consolidated administrator or system administrator at the consolidated database.
database

The Adaptive Server Enterprise System Administrator or database
administrator should perform all SQL Remote configuration tasks.

Ensuring compatible databases

You should ensure that all databases participating in a SQL Remote
installation are compatible in terms of sort orders, character sets, and
database option settings.

If your installation includes both Adaptive Server Enterprise and Adaptive
Server Anywhere databases, you should ensure your Adaptive Server
Anywhere databases are created in an Adaptive Server Enterprise-compatible
fashion.

& For a full description of how to create Enterprise-compatible Adaptive
Server Anywhere databases, see "Creating a Transact-SQL-compatible
database", in the chapter "Using Transact-SQL with Adaptive Server
Anywhere", in the Adaptive Server Anywhere User's Guide. This section
provides a brief description only.

+ To create an Enterprise-compatible Adaptive Server Anywhere
database using Sybase Central:

¢ The Create Database wizard provides an button that sets each of the
available choices to emulate Adaptive Server Enterprise. This is the
simplest way to create a Transact-SQL-compatible database.

% To create an Enterprise-compatible Adaptive Server Anywhere
database from the command line:

1 Ensure trailing blanks are ignored You can do this using the dbinit -
b command-line switch.

96

Chapter 6 Principles of SQL Remote Design

2 Ensure the dbo user ID is set If you have a database that already has
a user ID named dbo, then you can transfer the ownership of the
Adaptive Server Anywhere Transact-SQL system views to another user
ID. You can do this using the dbinit —~g command-line switch.

3 Remove historical system views You can do this with the dbinit -k
command-line switch.

4 Make the database case sensitive You can do this with the dbinit -c
command-line switch.

The following command creates a case-sensitive database named zest.db in
the current directory, using the current dbo user, ignoring trailing blanks, and
removing historical system views:

dbinit -b -c -k test.db

Using compatible sort orders and character sets

Character sets in
Adaptive Server
Anywhere
installations

Character sets in
Adaptive Server
Enterprise
installations

Character sets in
mixed installations

The SQL Remote Message Agent does not perform any character set
conversions.

For an Adaptive Server Anywhere installation, the character set and collation
used by the consolidated database must be the same as the remote databases.
For information about supported character sets, see "Database Collations and
International Languages" on page 289 of the book Adaptive Server Anywhere
User's Guide.

The Open Client/Open Server libraries perform character set conversions
between SSREMOTE and Adaptive Server Enterprise whenever the
LOCALES.DAT character set is different from the Adaptive Server
Enterprise character set. Both character sets must be installed on the
Adaptive Server Enterprise server and conversion must be supported.

The locales.dat settings (which are used by all Open Client applications)
must match the remote Adaptive Server Anywhere settings.

The following table provides recommended matches between Adaptive
Server Enterprise and Adaptive Server Anywhere character sets. The
matches are not all complete.

97

Design overview

98

Adaptive Open Client/ | Open Client/ Open Client /
Server Open Server | Open Server case- | Open Server
Anywhere name sensitive sort case-
collation order insensitive
name sort order
default cp850 dictionary cp850 nocase_cp850
850 cp850 dictionary cp850 nocase_cp850
437 cp437 dictionary cp437 nocase_cp437
852 cp852 bin_cp852 bin_cp852
860 cp860 bin_cp860 bin_cp860
437LATINI cp437 dictionary cp437 nocase_cp437
437ESP cp437 espdict_cp437 espnocs_cp437
437SVE cp437 bin_cp437 bin_cp437
819CYR iso_1 bin_iso 1 bin_iso 1
819DAN iso_1 bin_iso 1 bin_iso 1
819ELL iso_1 bin_iso 1 bin_iso 1
819ESP iso_1 espdict_iso_1 espnocs_iso_1
819ISL iso_1 bin_iso 1 bin_iso_1
819LATINI iso_1 dictionary iso 1 nocase_iso_1
819LATIN2 iso_1 bin_iso 1 bin_iso 1
8§19NOR iso_1 bin_iso 1 bin_iso 1
819RUS iso_1 bin_iso 1 bin_iso 1
819SVE iso_1 bin_iso 1 bin_iso 1
819TRK iso_1 bin_iso 1 bin_iso 1
850CYR cp850 bin_cp850 bin_cp850
850DAN cp850 scandict_cp850 scannocp_cp85
0
850ELL cp850 bin_cp850 bin_cp850
850ESP cp850 espdict_cp850 espnocs_cp850
850ISL cp850 scandict_cp850 scannocp_cp85
0
850LATINI cp850 dictionary cp850 nocase_cp850
850LATIN2 cp850 bin_cp850 bin_cp850
850NOR cp850 scandict_cp850 scannocp_cp85

Chapter 6 Principles of SQL Remote Design

Adaptive Open Client/ | Open Client/ Open Client /
Server Open Server | Open Server case- | Open Server
Anywhere name sensitive sort case-
collation order insensitive
name sort order
0
850RUS cp850 bin_cp850 bin_cp850
850SVE cp850 scandict_cp850 scannocp_cp85
0
850TRK cp850 bin_cp850 bin_cp850
852LATIN2 cp852 bin_cp852 bin_cp852
852CYR cp852 bin_cp852 bin_cp852
855CYR cp855 cyrdict_cp855 cynocs_cp855
857TRK cp857 bin_cp857 bin_cp857
860LATINI cp860 bin_cp860 bin_cp860
866RUS cp866 rusdict_cp866 rusnocs_cp866
869ELL cp869 bin_cp869 bin_cp869
SJIS sjis bin_sjis bin_sjis
SJIS2 sjis bin_sjis bin_sjis
EUC _JAPAN eucjis bin_eucjis bin_eucjis
EUC_CHINA eucgb bin_eucgb bin_eucgb
EUC_TAIWAN | eucb5 bin_big5 bin_big5
EUC_KOREA eucksc bin_eucksc bin_eucksc
UTF8 utf8 bin_utf8 bin_utf8

99

How statements are replicated

How statements are replicated

Only committed
transactions are
replicated

Primary keys

An UPDATE is not
always an
UPDATE

SQL Remote replication is based on the transaction log, enabling it to
replicate only changes to data, rather than all data, in each update. When we
say that SQL Remote replicates data, we really mean that SQL Remote
replicates SQL statements that modify data.

SQL Remote replicates only statements in committed transactions, to ensure
proper transaction atomicity throughout the replication setup and maintain a
consistency among the databases involved in the replication, albeit with
some time lag while the data is replicated.

When an UPDATE or a DELETE is replicated, SQL Remote uses the
primary key columns to uniquely identify the row being updated or deleted.
All tables being replicated should have a declared primary key or uniqueness
constraint. A unique index is not sufficient. The columns of the primary key
are used in the WHERE clause of replicated updates and deletes. If a table
has no primary key, the WHERE clause refers to all columns in the table.

When a simple INSERT statement is entered at one database, it is sent to
other databases in the SQL Remote setup as an INSERT statement. However,
not all statements are replicated exactly as they are entered by the client
application. This section describes how SQL Remote replicates SQL
statements. It is important to understand this material if you are to design a
robust SQL Remote installation.

The Message Agent is the component that carries out the replication of
statements.

Replication of inserts and deletes

100

INSERT and DELETE statements are the simplest replication case. SQL
Remote takes each INSERT or DELETE operation from the transaction log,
and sends it to all sites that subscribe to the row being inserted or deleted.

If only a subset of the columns in the table is subscribed to, the INSERT
statements sent to subscribers contains only those columns.

The Message Agent ensures that statements are not replicated to the user that
initially entered them.

Chapter 6 Principles of SQL Remote Design

Replication of updates

UPDATE
statements
replicated as
INSERTS or
DELETES

UPDATE conflict
detection

UPDATE statements are not replicated exactly as the client application
enters them. This section describes two ways in which the replicated
UPDATE statement may differ from the entered UPDATE statement.

If an UPDATE statement has the effect of removing a row from a given
remote user's subscription, it is sent to that user as a DELETE statement. If
an UPDATE statement has the effect of adding a row to a given remote
user's subscription, it is sent to that user as an INSERT statement.

The figure illustrates a publication, where each subscriber subscribes by their
name:

Consolidated Ann Marc
ID | Rep | Dept ID Rep ID | Rep
1 Ann | 101 1 | Ann 2 Marc
2 |Marc| 101 3 | Marc
3 | Marc| 101
Consolidated Ann Marc
ID | Rep | Dept ID | Rep ID | Rep
1 Ann | 101 1 Ann 2 Marc

2 Marc| 101 | > 3 Ann —3— |-Mare
3 | Ann| 101

An UPDATE that changes the Rep value of a row from Marc to Ann is
replicated to Marc as a DELETE statement, and to Ann as an INSERT
statement.

This reassignment of rows among subscribers is sometimes called territory
realignment, because it is a common feature of sales force automation
applications, where customers are periodically reassigned among
representatives.

An UPDATE statement changes the value of one or more rows from some
existing value to a new value. The rows altered depend on the WHERE
clause of the UPDATE statement.

When SQL Remote replicates an UPDATE statement, it does so as a set of
single-row updates. These single-row statements can fail for one of the
following reasons:

101

How statements are replicated

¢ The row to be updated does not exist Each row is identified by its

primary key values, and if a primary key has been altered by some other
user, the row to be updated is not found.

In this case, the UPDATE does not update anything.

¢ The row to be updated differs in one or more of its columns If one
of the values expected to be present has been changed by some other
user, an update conflict occurs.

At remote databases, the update takes place regardless of the values in
the row.

At the consolidated database, SQL Remote allows conflict resolution
operations to take place. Conflict resolution operations are held in a
trigger or stored procedure, and run automatically when a conflict is
detected.

In Adaptive Server Anywhere, the conflict resolution trigger runs before
the update, and the update .proceeds when the trigger is finished. In
Adaptive Server Enterprise, the conflict resolution procedure runs after
the update has been applied.

¢ A table without a primary key or uniqueness constraint refers to all
columns in the WHERE clause of replicated updates When two
users update the same row, replicated updates will not update anything
and databases will become inconsistent. All replicated tables should
have a primary key or uniqueness constraint and the columns in the
constraint should never be updated.

Replication of procedures

102

Any replication system is faced with a choice between two options when
replicating a stored procedure call:

¢ Replicate the procedure call A corresponding procedure is executed
at the replicate site, or

¢ Replicate the procedure actions The individual actions (INSERTS,
UPDATESs, DELETEs and so on) of the procedure are replicated.

SQOL Remote replicates procedures by replicating the actions of a procedure.
The procedure call is not replicated.

Chapter 6 Principles of SQL Remote Design

Replication of triggers

Trigger replication
from Adaptive
Server Enterprise

Trigger replication
from Adaptive
Server Anywhere

An option to
replicate trigger
actions

Trigger replication in SQL Remote is different for the Adaptive Server
Enterprise Message Agent and the Adaptive Server Anywhere Message
Agent.

From Adaptive Server Enterprise, trigger actions are replicated. For this
reason, care must be taken in the remote Adaptive Server Anywhere
databases to be sure that triggers are not fired when operations are being
applied by the Message Agent, or they are written so that the replicated
trigger actions from the Adaptive Server Enterprise server do not cause a
problem.

The FIRE_TRIGGERS Adaptive Server Anywhere database option prevents
triggers from being fired. You can set this option for the user ID used by the
Message Agent, but be careful to not use this user ID for other purposes.
Alternatively, you can use CURRENT REMOTE USER in your triggers
make some trigger code not execute when it is NULL when operations are
being applied by the Message Agent.

By default, the Message Agent for Adaptive Server Anywhere does not
replicate actions performed by triggers; it is assumed that the trigger is
defined remotely. This avoids permissions issues and the possibility of each
action occurring twice. There are some exceptions to this rule:

¢ Conflict resolution trigger actions The actions carried out by
conflict resolution, or RESOLVE UPDATE, triggers are replicated from
a consolidated database to all remote databases, including the one that
sent the message causing the conflict.

¢ Replication of BEFORE triggers Some BEFORE triggers can
produce undesirable results when using SQL Remote, and so BEFORE
trigger actions that modify the row being updated are replicated, before
UPDATE actions.

You must be aware of this behavior when designing your installation.
For example, a BEFORE UPDATE that bumps a counter column in the
row to keep track of the number of times a row is updated would double
count if replicated, as the BEFORE UPDATE trigger will fire when the
UPDATE is replicated. To prevent this problem, you must ensure that, at
the subscriber database, the trigger is not present or does not carry out
the replicated action. Also, a BEFORE UPDATE that sets a column to
the time of the last update will get the time the UPDATE is replicated as
well.

The Adaptive Server Anywhere Message Agent has a command-line switch
that causes it to replicate all trigger actions when sending messages. This is
the dbremote -t switch.

103

How statements are replicated

If you use this switch, you must ensure that the trigger actions are not carried
out twice at remote databases, once by the trigger being fired at the remote
site, and once by the explicit application of the replicated actions from the
consolidated database.

To ensure that trigger actions are not carried out twice, you can wrap an [F
CURRENT REMOTE USER IS NULL ... END IF statement around the
body of the triggers or you can set the Adaptive Server Anywhere

Fire triggers option to OFF for the Message Agent user ID.

Replication of data definition statements

Data definition statements (CREATE, ALTER, DROP, and others that
modify database objects) are not replicated by SQL Remote unless they are
entered while in passthrough mode.

& For information about passthrough mode for Adaptive Server
Anywhere, see "Using passthrough mode" on page 273.

Replication of blobs

Adaptive Server
Anywhere
replication

Adaptive Server
Enterprise
replication

104

Blobs are LONG VARCHAR, LONG BINARY, TEXT, and IMAGE data
types: values that are longer than 256 characters.

SQL Remote includes a special method for replicating blobs between
Adaptive Server Anywhere databases.

The Message Agent uses a variable in place of the value in the INSERT or
UPDATE statement that is being replicated. The value of the variable is built
up by a sequence of statements of the form

SET vble = vble || 'more stuff'

This makes the size of the SQL statements involving long values smaller, so
that they fit within a single message. The SET statements are separate SQL
statements, so that the blob is effectively split over several SQL Remote
messages.

Some blobs can be replicated in SQL Remote installations including an
Adaptive Server Enterprise, but there are limitations on the size of object that
can be replicated. The objects being replicated must fit into half the
maximum size of a single message.

Chapter 6 Principles of SQL Remote Design

« To replicate blobs in a SQL Remote setup with Adaptive Server
Enterprise:

1 Ensure that all Message Agents in the system (both dbremote and
ssremote) are running with a maximum message size greater than twice
the size of the maximum blob size. You can configure the maximum
message size using the -1 command-line option.

If the maximum blob size is 100 Kb, run the Message Agents with -I
220k.

& For information on Message Agent command lines, see "The
Message Agent" on page 306.

2 Set the BLOB_THRESHOLD database option to a value larger the
largest blob.

For example, with a maximum blob size of 100Kb, you could set
BLOB THRESHOLD to 110k. If you have SQL Anywhere 5.5.04 or
earlier in your system, it will complain about BLOB_THRESHOLD
being an unknown option: you can ignore this error.

& For information about setting options, see "SQL Remote options"
on page 323.

Sybase Open Client CTLIB applications that manipulate the CS_IODESC
structure must not set the log_on_update member to FALSE.

The Message Agent for Adaptive Server Anywhere may be slow when
applying the messages with large blobs.

Using the The Verify_threshold database option can prevent long values from being
Verify_threshold verified (in the VERIFY clause of a replicated UPDATE). The default value
option to minimize for the option is 1000. If the data type of a column is longer than the
message size threshold, old values for the column are not verified when an UPDATE is

replicated. This keeps the size of SQL Remote messages down, but has the
disadvantage that conflicting updates of long values are not detected.

There is a technique allowing detection of conflicts when Verify_threshold
is being used to reduce the size of messages. Whenever a "blob" is updated, a
last_modified column in the same table should also be updated. Conflicts
can then be detected because the old value of the last_modified column is

verified.
Using a work table Repeated updates to a blob should be done in a "work" table, and the final
to avoid redundant version should be assigned to the replicated table. For example, if a
updates document in progress is updated 20 times throughout the day and the

Message Agent is run once at the end of the day, all 20 updates are
replicated. If the document is 200Kb in length, this causes 4Mb of messages
to be sent.

105

How statements are replicated

Controlling
replication of blobs

106

The better solution is to have a document_in_progress table. When the user
is done revising a document, the application moves it from the
document_in_progress table to the replicated table. The results in a single
update (200KDb of messages).

The Adaptive Server Anywhere BLOB_ THRESHOLD option allows further
control over the replication of long values. Any value longer than the

BLOB THRESHOLD option is replicated as a blob. That is, it is broken into
pieces and replicated in chunks, before being reconstituted by using a SQL
variable and concatenating the pieces at the recipient site.

By setting BLOB_ THRESHOLD to a high value in remote Adaptive Server
Anywhere databases, blobs are not broken into pieces, and operations can be
applied to Adaptive Server Enterprise by the Message Agent. Each SQL
statement must fit within a message, so this only allows replication of small
blobs.

Chapter 6 Principles of SQL Remote Design

Who gets what?

Adaptive Server
Anywhere actions

Each time a row in a table is inserted, deleted, or updated, a message has to
be sent to those subscribed to the row. In addition, an update may cause the
subscription expression to change, so that the statement is sent to some
subscribers as a delete, some as an update, and some as an insert.

& For details of what statements get sent to which subscribers, see "How
statements are replicated" on page 100. For details on subscriptions, see the
following two chapters.

This section describes how SQL Remote sends the right operations to the
right recipients.

The task of determining who gets what is divided between the database
server and the Message Agent. The engine handles those aspects that are to
do with publications, while the Message Agent handles aspects to do with
subscriptions.

Adaptive Server Anywhere evaluates the subscription expression for each
update made to a table that is part of a publication. It adds the value of the
expression to the log, both before and after the update.

Not the subscriber list

Adaptive Server Enterprise does not evaluate or enter into the log a list of
subscribers. The subscription expression (a property of the publication) is
evaluated and entered. All handling of subscribers is left to the Message
Agent.

For a table that is part of more than one publication, the subscription
expression is evaluated before and after the update for each publication.

The addition of information to the log can affect performance in the
following cases:

¢ Expensive expressions When a subscription expression is expensive
to evaluate, it can affect performance.

¢ Many publications When a table belongs to many publications, many
expressions must be evaluated. In contrast, the number of subscriptions
is irrelevant.

¢ Many-valued expressions Some expressions are many-valued. This
can lead to much additional in formation in the transaction log, with a
corresponding effect on performance.

107

Who gets what?

Adaptive Server
Enterprise actions

Message Agent
actions

108

In a SQL Remote for Adaptive Server Enterprise publication, the
subscription expression must be a column. The subscription column contains
either a single value or a comma-separated list of values.

Not the subscriber list

Adaptive Server Enterprise does not enter into the log a list of subscribers.
The column value is entered. All handling of subscribers is left to the
Message Agent.

When a table is marked for replication using sp_add_remote_table (which
calls sp_setreplicate), Adaptive Server Enterprise places an entire before
image of the row in the transaction log for deletes, and entire after image for
inserts, and both images for updates. This means that the before and after
values of the subscription column are available.

The Message Agent reads the evaluated subscription expressions or
subscription column entries from the transaction log, and matches the before
and after values against the subscription value for each subscriber to the
publication. In this way, the Message Agent can send the correct operations
to each subscriber.

While large numbers of subscribers do not have any impact on server
performance, they can impact Message Agent performance. Both the work in
matching subscription values against large numbers of subscription values,
and the work in sending the messages, can be demanding.

Chapter 6 Principles of SQL Remote Design

Replication errors and conflicts

SQL Remote is designed to allow databases to be updated at many different
sites. Careful design is required to avoid replication errors, especially if the
database has a complicated structure. This section describes the kinds of
errors and conflict that can occur in a replication setup; subsequent sections
describe how you can design your publications to avoid errors and manage

conflicts.

Delivery errors not discussed here

This section does not discuss issues related to message delivery failures.
For information on delivery errors and how they are handled, see "The
message tracking system" on page 252

Replication errors

Replication errors fall into the following categories:

¢

Duplicate primary key errors Two users INSERT a row using the
same primary key values, or one user updates a primary key and a
second user inserts a primary key of the new value. The second
operation to reach a given database in the replication system fails
because it would produce a duplicate primary key.

Row not found errors A user DELETES a row (that is, the row with a
given primary key value). A second user UPDATES or DELETES the
same row at another site.

In this case, the second statement fails, as the row is not found.

Referential integrity errors If a column containing a foreign key is
included in a publication, but the associated primary key is not included,
the extraction utility leaves the foreign key definition out of the remote
database so that INSERTS at the remote database will not fail.

This can be solved by including proper defaults into the table
definitions.

Also, referential integrity errors can occur when a primary table has a
SUBSCRIBE BY expression and the associated foreign table does not:
rows from the foreign table may be replicated, but the rows from the
primary table may be excluded from the publication.

109

Replication errors and conflicts

Replication conflicts

Replication conflicts are different from errors. Properly handled, conflicts are
not a problem in SQL Remote.

¢ Conflicts A user updates a row. A second user updates the same row
at another site. The second user's operation succeeds, and SQL Remote
allows a trigger to be fired (Adaptive Server Anywhere) or a procedure
to be called (Adaptive Server Enterprise) to resolve these conflicts in a
way that makes sense for the data being changed.

Conflicts will occur in many installations. SQL Remote allows
appropriate resolution of conflicts as part of the regular operation of a
SQL Remote setup, using triggers and procedures.

& For information about how SQL Remote handles conflicts as they
occur, see the following chapters.

Tracking SQL errors

110

SQL errors in replication must be designed out of your setup. SQL Remote
includes an option to help you track errors in SQL statements, but this option
is not intended to resolve such errors.

By setting the Replication_error option, you can specify a stored procedure
to be called by the Message Agent when a SQL error occurs. By default no
procedure is called.

To set the Replication_error option in Adaptive Server Anywhere:
¢ Issue the following statement:

SET OPTION
remote-user.Replication error
= 'procedure-name'

where remote-user is the user ID on the Message Agent command line,
and procedure-name is the procedure called when a SQL error is
detected.

< To set the Replication_error option in Adaptive Server Enterprise:

¢ Issue the following statement:

exec sp_remote option Replication error, procedure-
name

go

Chapter 6 Principles of SQL Remote Design

Replication error
procedure
requirements

where procedure-name is the procedure called when a SQL error is
detected.

The replication error procedure must have a single argument of type CHAR,
VARCHAR, or LONG VARCHAR. The procedure is called once with the
SQL error message and once with the SQL statement that causes the error.

111

Replication errors and conflicts

112

