CHAPTER 7

SQL Remote Design for Adaptive Server
Anywhere

About this chapter This chapter describes how to design a SQL Remote installation when the
consolidated database is an Adaptive Server Anywhere database.

Similar material for Adaptive Server Enterprise

Many of the principles of publication design are the same for Adaptive
Server Anywhere and Adaptive Server Enterprise, but there are
differences in commands and capabilities. There is a large overlap
between this chapter and the corresponding chapter for Adaptive Server
Enterprise users, "SQL Remote Design for Adaptive Server Enterprise" on

page 159.
Contents Topic Page

Design overview 114
Creating publications 115
Publication design for Adaptive Server Anywhere 122
Partitioning tables that do not contain the subscription expression 125
Sharing rows among several subscriptions 133
Managing conflicts 142
Ensuring unique primary keys 152
Creating subscriptions 157

113

Design overview

Design overview

Designing a SQL Remote installation includes the following tasks:

¢ Designing publications The publications determine what information
is shared among which databases.

¢ Designing subscriptions The subscriptions determine what
information each user receives.

¢ Implementing the design Creating publications and subscriptions for
all users in the system.

All administration is Like all SQL Remote administrative tasks, design is carried out by a database
at the consolidated administrator or system administrator at the consolidated database.
database

The Adaptive Server Anywhere Database Administrator should perform all
SQL Remote configuration tasks.

114

Chapter 7 SQL Remote Design for Adaptive Server Anywhere

Creating publications

This section describes how to create simple publications consisting of whole
tables, or of column-wise subsets of tables.

& Simple publications are also discussed in the chapter "A Tutorial for
Adaptive Server Anywhere Users" on page 37.

Creating publications for Adaptive Server Anywhere using Sybase

Central

You can add a publication to a database from within the SQL Remote folder
of Sybase Central.

To create a publication from Sybase Central:

1 Open the SQL Remote folder for your database, which is inside the
database container.

2 Click the Publications folder.

3 Double-click Add Publication. The Publication Wizard is displayed.
4 Follow the instructions in the Wizard.

& For more information on how to use Sybase Central, see the Sybase
Central online Help.

With Sybase Central, you do not need to know the SQL syntax in order to
create publications. The remainder of this section discusses different kinds of
publication that can be created. It describes the SQL syntax needed for these
publications. However, each of the publications can also be created from
Sybase Central.

To send SQL statements to an Adaptive Server Anywhere database, you can
use the Interactive SQL utility.

Publishing a whole table

The simplest publication you can make consists of a single article, which
consists of a single, entire, table.

115

Creating publications

< To create a publication that includes all the rows and columns of a
single table:

¢ Execute a create publication statement specifying the table you wish to
publish. The syntax is as follows:

CREATE PUBLICATION publication name (
TABLE table name
)

Example ¢ The following statement creates a publication that publishes the whole
customer table:

CREATE PUBLICATION pub customer (
TABLE customer
)

Publishing some of the columns in a table

Partitioning tables An article that contains only some of the columns of a table can be called a
column-wise partitioning of the table. An article that contains only some of
the rows of a table can be called a row-wise partitioning of the table.
Articles can be both column-wise and row-wise partitions of a table.

& Only column-wise partitioning is described in this section. For
information on row-wise partitioning of tables, see "Publishing some of the
rows from a table" on page 117.

You create a publication that contains all the rows, but only some of the
columns, of a table by specifying a list of columns in the CREATE
PUBLICATION statement.

& Any article must conform to the requirements listed in "Conditions for
valid articles" on page 123.

« To create a publication that includes all the rows and some of the
columns of a table:

¢ Enter a CREATE PUBLICATION statement that includes the column
names you wish to include. The syntax is as follows:
CREATE PUBLICATION publication name (
TABLE table name (column name, ..)

)
Example ¢ The following statement creates a publication that publishes all rows of
the id, company_name, and city columns of the customer table:

CREATE PUBLICATION pub customer (
TABLE customer (
id,

116

Chapter 7 SQL Remote Design for Adaptive Server Anywhere

company name,
city)

Publishing a set of tables

When publishing a set of tables, a separate article is required for each table in
the publication. The following statement creates a publication including all
columns and rows in each of a set of tables from the Adaptive Server
Anywhere sample database:

CREATE PUBLICATION sales (
TABLE customer,
TABLE sales order,
TABLE sales order items,
TABLE product

)

Not all the tables in the database have been published. For example,
subscribers receive the sales_order table, but not the employee table.

Notes *

In the sample database, the sales_order and employee tables are related
by a foreign key (sales_rep in the sales_order table is a foreign key to
the emp_id column in the employee table). Although this could lead to
referential integrity problems in the remote database, they are easily
avoided by using the database extraction utility.

& For a discussion of this and other publication design issues, see
"Designing to avoid referential integrity errors" on page 149.

A slightly different publication design (including an article that contains
enough of the employee table to satisfy the foreign key relationship)
would make the publication more robust; for this section we are
publishing whole tables only.

Publishing some of the rows from a table

There are two ways of including only some of the rows in a publication:

¢

WHERE clause You can use a WHERE clause to include a subset of
rows in an article. All subscribers to the publication containing this
article receive the rows that satisfy the WHERE clause.

Subscription expression You can use a subscription expression to
include a different set of rows in different subscriptions to publications
containing the article.

117

Creating publications

You can combine a WHERE clause and a subscription expression in an

article.
When to use You should use a Subscription expression when different subscribers to a
WHERE and publication are to receive different rows from a table. The Subscription
subscription expression is the most powerful method of partitioning tables.

expressions The WHERE clause is used to exclude a set of rows from all subscriptions to

a publication.

Publishing a subset of rows using a WHERE clause

The following is a single-article publication sending relevant order
information to Samuel Singer, a sales rep:

CREATE PUBLICATION pub orders samuel singer (
TABLE sales order WHERE sales rep = 856
)

In Sybase Central, the Publication Wizard guides you through creating a
WHERE clause for an article.

« To create a publication using a WHERE clause:

¢ Enter a CREATE PUBLICATION statement that includes the rows you
wish to include in a WHERE clause. The syntax is as follows:

CREATE PUBLICATION publication name (
TABLE table name (column name, ..)
WHERE search-condition
)

Example ¢ The following statement creates a publication that publishes the id,
company_name, city, and state columns of the customer table, for the
customers marked as active in the status column.

CREATE PUBLICATION pub customer (
TABLE customer (
id,
company name,
city,
state)
WHERE status = 'active'
)

In this case, the status column is not included in the publication. It must
therefore have a default value so that inserts at remote databases will not
fail at the consolidated database.

118

Chapter 7 SQL Remote Design for Adaptive Server Anywhere

Publishing a subset of rows using a subscription expression

In a mobile workforce situation, a sales publication may be wanted where
each sales rep subscribes to their own sales orders, enabling them to update
their sales orders locally and replicate the sales to the consolidated database.

Using the WHERE clause model, a separate publication for each sales rep
would be needed: the following publication is for sales rep Samuel Singer:
each of the other sales reps would need a similar publication.

CREATE PUBLICATION pub orders samuel singer (
TABLE sales order
WHERE sales rep = 856
)

To address the needs of setups requiring large numbers of different
subscriptions, SQL Remote allows a subscription expression to be
associated with an article. Subscriptions receive rows depending on the value
of a supplied expression.

Benefits of Publications using a subscription expression are more compact, easier to
subscription understand, and provide better performance than maintaining several
expressions WHERE clause publications. The database server must add information to

the transaction log, and scan the transaction log to send messages, in direct
proportion to the number of publications. The subscription expression allows
many different subscriptions to be associated with a single publication,
whereas the WHERE clause does not.

+ To create an article using a subscription expression:

¢ Enter a CREATE PUBLICATION statement that includes the
expression you wish to use as a match in the subscription expression.
The syntax is as follows:

CREATE PUBLICATION publication name (
TABLE table name (column name, ..)
SUBSCRIBE BY expression
)

Example ¢ The following statement creates a publication that publishes the id,
company_name, city, and state columns of the customer table, and
which matches the rows with subscribers according to the value of the
state column:

CREATE PUBLICATION pub customer (
TABLE customer (
id,
company_name,
city,
state)
SUBSCRIBE BY state

119

Creating publications

¢

)

The following statements subscribe two employees to the publication:
Ann Taylor receives the customers in Georgia (GA), and Sam Singer
receives the customers in Massachusetts (MA).

CREATE SUBSCRIPTION
TO pub customer ('GA'")
FOR Ann_Taylor ;

CREATE SUBSCRIPTION
TO pub customer ('MA')
FOR Sam Singer

Users can subscribe to more than one publication, and can have more than
one subscription to a single publication.

For more ¢
information
*
*

For information on how to use subqueries in a publication, see
"Partitioning tables that do not contain the subscription expression" on
page 125.

For more information on creating subscriptions, see "Creating
subscriptions" on page 157.

In Sybase Central, the Publication Wizard guides you through creating a
subscription expression for an article.

Dropping publications

Publications can be dropped using the DROP PUBLICATION statement.
The following statement drops the publication named pub_orders.

DROP PUBLICATION pub orders

Dropping a publication has the side effect of dropping all subscriptions to
that publication.

Notes on publications

¢

120

The different publication types described above can be combined. A
single publication can publish a subset of columns from a set of tables,
and use both a WHERE clause to select a set of rows to be replicated
and a subscription expression to partition rows by subscription.

DBA authority is required to create publications.

Publications can be altered and dropped only by the DBA.

Chapter 7 SQL Remote Design for Adaptive Server Anywhere

Altering publications in a running SQL Remote setup is likely to cause
replication errors, and could lead to loss of data in the replication system
unless carried out with care.

Views cannot be included in publications.

Stored procedures cannot be included in publications. For a discussion
of how SQL Remote replicates procedures and triggers, see "Replication
of procedures" on page 102 .

For other considerations of referential integrity, see the section
"Designing to avoid referential integrity errors" on page 149.

121

Publication design for Adaptive Server Anywhere

Publication design for Adaptive Server

Anywhere

Once you understand how to create simple publications, you must think
about proper publication design. Sound design is an important part of
building a successful SQL Remote installation. This section helps set out the
principles of sound design as they apply to SQL Remote for Adaptive Server
Anywhere.

Similar material for Adaptive Server Enterprise

Many of the principles of publication design are the same for Adaptive
Server Anywhere and Adaptive Server Enterprise, but there are
differences in commands and capabilities. There is a large overlap
between this section and the corresponding section for Adaptive Server
Enterprise users, "Publication design for Adaptive Server Enterprise" on
page 166.

Design issues overview

Each subscription
must be a
complete relational
database

Transaction
integrity must be
maintained in the
absence of locking

122

A remote database shares with the consolidated database the information in
their subscriptions. The subscription is both a subset of the relational
database held at the consolidated site, and also a complete relational database
at the remote site. The information in the subscription is therefore subject to
the same rules as any other relational database:

¢ Foreign key relationships must be valid For every entry in a foreign
key, a corresponding primary key entry must exist in the database.

The database extraction utility ensures that the CREATE TABLE
statements for remote databases do not have foreign keys defined to
tables that do not exist remotely.

¢ Primary key uniqueness must be maintained There is no way of
checking what new rows have been entered at other sites, but not yet
replicated. The design must prevent users at different sites adding rows
with identical primary key values, as this would lead to conflicts when
the rows are replicated to the consolidated database.

The data in the dispersed database (which consists of the consolidated
database and all remote databases) must maintain its integrity in the face of
updates at all sites, even though there is no system-wide locking mechanism
for any particular row.

Chapter 7 SQL Remote Design for Adaptive Server Anywhere

¢ Locking conflicts must be prevented or resolved In a SQL Remote
installation, there is no method for locking rows across all databases to
prevent different users from altering the rows at the same time. Such
conflicts must be prevented by designing them out of the system or must
be resolved in an appropriate manner at the consolidated database.

These key features of relational databases must be incorporated into the
design of your publications and subscriptions. This section describes
principles and techniques for sound design.

Conditions for valid articles

Supporting
INSERTS at
remote databases

All columns in the primary key must be included in the article.

For INSERT statements at a remote database to replicate correctly to the
consolidated database, you can exclude from an article only columns that can
be left out of a valid INSERT statement. These are:

¢ Columns that allow NULL.

¢ Columns that have defaults.

If you exclude any column that does not satisfy one of these requirements,
INSERT statements carried out at a remote database will fail when replicated
to the consolidated database.

Consolidated| ID | Rep | Dept
INSERT 1 Ann | 101 _
INTO SalesRep (ID, Rep) Insert fails
VALUES (3, 'Shih") 2 | Marc| 101
3 | shih| X

Remote| ID | Rep

INSERT 1 | Ann

INTO SalesRep (ID, Rep) ———+———— Insert

VALUES (3, 'Shih") | 2 |Marc | succeeds
3 | Shih

123

Publication design for Adaptive Server Anywhere

Using BEFORE triggers as an alternative

An exception to this case is when the consolidated database is an
Adaptive Server Anywhere database, and a BEFORE trigger has been
written to maintain the columns that are not included in the INSERT
statement.

Design tips for performance

This section presents a check list for designing high performance SQL
Remote installations.

¢ Keep the number of publications small In particular, try not to
reference the same table in many different publications.

The work the database server needs to do is proportional to the number
of publications. Keeping the number low and making effective use of
subscriptions lightens the load on the database server.

When operations occur on a table, the database server and the Message
Agent must do some work for each publication that contains the table.
Having one publication for each remote user will drastically increase the
load on the database server. It is much better to have a few publications
that use SUBSCRIBE BY and have subscriptions for each remote user.
The database server does no additional work when more subscriptions
are added for a publication. The Message Agent is designed to work
efficiently with a large number of subscriptions.

¢ Group publications logically For example, if there is a table that
every remote user requires, such as a price list table, make a separate
publication for that table. Make one publication for each table where the
data can be partitioned by a column value.

¢ Use subscriptions effectively When remote users receive similar
subsets of the consolidated database, always use publications that
incorporate SUBSCRIBE BY expressions. Do not create a separate
publication for each remote user.

¢ Pay attention to Update Publication Triggers In particular:
¢ Usethe NEW /OLD SUBSCRIBE BY syntax.

¢ Tune the SELECT statements to ensure they are accessing the
database efficiently.

¢ Monitor the transaction log size The larger the transaction log, the
longer it takes the Message Agent to scan it. Rename the log regularly
and use the DELETE_OLD_LOGS option.

124

Chapter 7 SQL Remote Design for Adaptive Server Anywhere

Partitioning tables that do not contain the
subscription expression

In many cases, the rows of a table need to be partitioned even when the
subscription expression does not exist in the table.

The Contact example

The Contact database illustrates why and how to partition tables that do not
contain the subscription expression.

Example Here is a simple database that illustrates the problem.

Contact
contact key char(10)
name char(40)
cust_key char(12)

cust_key = cust_key

Customer

T har(i2) " SalesRep
cust key char rep_key =

—» rep_key char(5
name char(40) rep_key n_a%e_y m)
rep_key char(5)

Each sales representative sells to several customers. At some customers there
is a single contact, while other customers have several contacts.

The tables in the The three tables are described in more detail as follows:
database

125

Partitioning tables that do not contain the subscription expression

126

Table

Description

SalesRep

All sales representatives that work for the company. The
SalesRep table has the following columns:

¢ rep_key An identifier for each sales representative. This is
the primary key.

4 name The name of each sales representative.

The SQL statement creating this table is as follows:

CREATE TABLE SalesRep (
rep key CHAR(12) NOT NULL,
name CHAR(40) NOT NULL,
PRIMARY KEY (rep_key)

)

Customer

All customers that do business with the company. The Customer
table includes the following columns:

4 cust_key An identifier for each customer. This is the primary
key.

4 name The name of each customer.

¢ rep_key An identifier for the sales representative in a sales
relationship. This is a foreign key to the SalesRep table.

The SQL statement creating this table is as follows:

CREATE TABLE Customer (
cust key CHAR(12) NOT NULL,
name CHAR(40) NOT NULL,
rep_key CHAR(12) NOT NULL,
FOREIGN KEY REFERENCES SalesRep,
PRIMARY KEY (cust key)

Chapter 7 SQL Remote Design for Adaptive Server Anywhere

Table

Description

Contact

Replication goals

All individual contacts that do business with the company. Each
contact belongs to a single customer. The Contact table includes
the following columns:

¢

contact_key An identifier for each contact. This is the
primary key.

name The name of each contact.

cust_key An identifier for the customer to which the contact
belongs. This is a foreign key to the Customer table.

The SQL statement creating this table is:

CREATE TABLE Contact (

contact_key CHAR(12) NOT NULL,
name CHAR(40) NOT NULL,

cust key CHAR(12) NOT NULL,
FOREIGN KEY REFERENCES Customer,
PRIMARY KEY (contact_key)

The goals of the design are to provide each sales representative with the
following information:

¢ The complete SalesRep table.

¢ Those customers assigned to them, from the Customer table.

¢ Those contacts belonging to the relevant customers, from the Contact

table.

Partitioning the Customer table in the Contact example

The Customer table can be partitioned using the rep_key value as a
subscription expression. A publication that includes the SalesRep and
Customer tables would be as follows:

CREATE PUBLICATION SalesRepData (

TABLE SalesRep
TABLE Customer SUBSCRIBE BY rep key

127

Partitioning tables that do not contain the subscription expression

Partitioning the Contact table in the Contact example

The Contact table must also be partitioned among the sales representatives,
but contains no reference to the sales representative rep_key value. How can
the Message Agent match a subscription value against rows of this table,
when rep_Key is not present in the table?

To solve this problem, you can use a subquery in the Contact article that
evaluates to the rep_key column of the Customer table. The publication
then looks like this:

CREATE PUBLICATION SalesRepData (
TABLE SalesRep
TABLE Customer
SUBSCRIBE BY rep key
TABLE Contact
SUBSCRIBE BY (SELECT rep key
FROM Customer
WHERE Contact.cust key = Customer.cust key)

)

The WHERE clause in the subscription expression ensures that the subquery
returns only a single value, as only one row in the Customer table has the
cust_key value in the current row of the Contact table.

& For an Adaptive Server Enterprise consolidated database, the solution
is different. For more information, see "Partitioning tables that do not contain
the subscription column" on page 168.

Territory realignment in the Contact example

128

In territory realignment, rows are reassigned among subscribers. In the
present case, territory realignment is the reassignment of rows in the
Customer table, and by implication also the Contact table, among the Sales
Reps.

When a customer is reassigned to a new sales rep, the Customer table is
updated. The UPDATE is replicated as an INSERT or a or a DELETE to the
old and new sales representatives, respectively, so that the customer row is
properly transferred to the new sales representative.

& For information on the way in which Adaptive Server Anywhere and
SQL Remote work together to handle this situation, see "Who gets what?" on
page 107.

Chapter 7 SQL Remote Design for Adaptive Server Anywhere

Use triggers to
maintain Contacts

Trigger definition

A special UPDATE

statement for
publications

When a customer is reassigned, the Contact table is unaffected. There are no
changes to the Contact table, and consequently no entries in the transaction
log pertaining to the Contact table. In the absence of this information, SQL
Remote cannot reassign the rows of the Contact table along with the
Customer.

This failure will cause referential integrity problems: the Contact table at the
remote database of the old sales representative contains a cust_key value for
which there is no longer a Customer.

The solution is to use a trigger containing a special form of UPDATE
statement, which does not make any change to the database tables, but which
does make an entry in the transaction log. This log entry contains the before
and after values of the subscription expression, and so is of the proper form
for the Message Agent to replicate the rows properly.

The trigger must be fired BEFORE operations on the row. In this way, the
BEFORE value can be evaluated and placed in the log. Also, the trigger must
be fired FOR EACH ROW rather than for each statement, and the
information provided by the trigger must be the new subscription expression.
The Message Agent can use this information to determine which subscribers
receive which rows.

The trigger definition is as follows:

CREATE TRIGGER UpdateCustomer

BEFORE UPDATE ON Customer

REFERENCING NEW AS NewRow
OLD as OldRow

FOR EACH ROW

BEGIN
// determine the new subscription expression
// for the Customer table
UPDATE Contact
PUBLICATION SalesRepData
OLD SUBSCRIBE BY (OldRow.rep key)
NEW SUBSCRIBE BY (NewRow.rep key)
WHERE cust key = NewRow.cust key;

END;

The UPDATE statement in this trigger is of the following special form:

UPDATE table-name
PUBLICATION publication-name
{ SUBSCRIBE BY subscription-expression |
OLD SUBSCRIBE BY old-subscription-expression
NEW SUBSCRIBE BY new-subscription-expression }
WHERE search-condition

Here is what the UPDATE statement clauses mean:

129

Partitioning tables that do not contain the subscription expression

¢ The table-name indicates the table that must be modified at the remote
databases.

¢ The publication-name indicates the publication for which subscriptions
must be changed.

¢ The value of subscription-expression is used by the Message Agent to
determine both new and existing recipients of the rows. Alternatively,
you can provide both OLD and NEW subscription expressions.

¢ The WHERE clause specifies which rows are to be transferred between
subscribed databases.

Notes on the ¢ If'the trigger uses the following syntax:

trigger UPDATE table-name

PUBLICATION pub-name
SUBSCRIBE BY sub-expression
WHERE search-condition

the trigger must be a BEFORE trigger. In this case, a BEFORE
UPDATE trigger. In other contexts, BEFORE DELETE and BEFORE
INSERT are necessary.

¢ If'the trigger uses the alternate syntax:

UPDATE table-name
PUBLICATION publication-name
OLD SUBSCRIBE BY old-subscription-expression
NEW SUBSCRIBE BY new-subscription-expression }
WHERE search-condition

The trigger can be a BEFORE or AFTER trigger.

¢ The UPDATE statement lists the publication and table that is affected.
The WHERE clause in the statement describes the rows that are
affected. No changes are made to the data in the table itself by this
UPDATE, it makes entries in the transaction log.

¢ The subscription expression in this example returns a single value.
Subqueries returning multiple values can also be used. The value of the
subscription expression must the value after the UPDATE.

In this case, the only subscriber to the row is the new sales
representative. In "Sharing rows among several subscriptions" on page
133, we see cases where there are existing as well as new subscribers.

Information in the Here we describe the information placed in the transaction log.
transaction log Understanding this helps in designing efficient publications.

¢ Assume the following data:

¢ SalesRep table

130

Chapter 7 SQL Remote Design for Adaptive Server Anywhere

rep_key | name
repl Ann
rep2 Marc

¢ Customer table

cust_key | name | rep_key
custl | Sybase | repl
cust2 | ASA | rep2

¢ Contact table

contact_key | name | cust_key
contactl | David | custl
contact2 | Stefanie | cust2

Now apply the following territory realignment Update statement

UPDATE Customer
SET rep key = 'rep2'
WHERE cust key = 'custl'

The transaction log would contain two entries arising from this
statement: one for the BEFORE trigger on the Contact table, and one for
the actual UPDATE to the Customer table.

SalesRepData — Publication Name
repl - BEFORE list

rep2 - AFTER list

UPDATE Contact

SET contact key = 'contactl',
name = 'David',
cust key = 'custl'

WHERE contact key = 'contactl'

SalesRepData — Publication Name
repl - BEFORE list

rep2 - AFTER list

UPDATE Customer

SET rep key = 'rep2'

WHERE cust key = 'custl'

The Message Agent scans the log for these tags. Based on this
information it can determine which remote users get an INSERT,
UPDATE or DELETE.

131

Partitioning tables that do not contain the subscription expression

132

In this case, the BEFORE list was rep1 and the AFTER list is rep2. If
the before and after list values are different, the rows affected by the
UPDATE statement have "moved" from one subscriber value to another.
This means the Message Agent will send a DELETE to all remote users
who subscribed by the value repl1 for the Customer record custl and
send an INSERT to all remote users who subscribed by the value rep2.

If the BEFORE and AFTER lists are identical, the remote user already
has the row and an UPDATE will be sent.

Chapter 7 SQL Remote Design for Adaptive Server Anywhere

Sharing rows among several subscriptions

There are cases where a row may need to be included in several

subscriptions. For example, we may have a many-to-many relationship. In

this section, we use a case study to illustrate how to handle this situation.

The Policy example

The Policy database illustrates why and how to partition tables when there is
a many-to-many relationship in the database.

Example database Here is a simple database that illustrates the problem.
Customer Policy SalesRep
cust_key v\ policy_key rep_key
name cust_key name
rep_key

Each sales representative sells to several customers, and some customers deal

with more than one sales representative. In this case, the relationship
between Customer and SalesRep is thus a many-to-many relationship.

The tables in the
database

The three tables are described in more detail as follows:

133

Sharing rows among several subscriptions

134

Table

Description

SalesRep

All sales representatives that work for the company. The
SalesRep table has the following columns:

¢ rep ey An identifier for each sales representative. This is
the primary key.

4 ame The name of each sales representative.

The SQL statement creating this table is as follows:

CREATE TABLE SalesRep (
rep key CHAR(12) NOT NULL,
name CHAR(40) NOT NULL,
PRIMARY KEY (rep_key)

)

Customer

All customers that do business with the company. The
Customer table includes the following columns:

4 cust ey A primary key column containing an identifier for
each customer

4 ame A column containing the name of each customer

The SQL statement creating this table is as follows:

CREATE TABLE Customer (
cust_key CHAR(12) NOT NULL,
name CHAR(40) NOT NULL,
PRIMARY KEY (cust key)

Chapter 7 SQL Remote Design for Adaptive Server Anywhere

Replication goals

New problems

Table Description

Policy A three-column table that maintains the many-to-many
relationship between customers and sales representatives. The
Policy table has the following columns:

¢ policy ey A primary key column containing an identifier
for the sales relationship.

4 cust ey A column containing an identifier for the
customer representative in a sales relationship.

4 rep ey A column containing an identifier for the sales
representative in a sales relationship.

The SQL statement creating this table is as follows.

CREATE TABLE Policy (
policy key CHAR(12) NOT NULL,
cust_key CHAR(12) NOT NULL,
rep key CHAR(12) NOT NULL,
FOREIGN KEY (cust key)
REFERENCES Customer (cust_key)
FOREIGN KEY (rep_key)
REFERENCES SalesRep (rep key),
PRIMARY KEY (policy key)

The goals of the replication design are to provide each sales representative
with the following information:

¢ The entire SalesRep table.

¢ Those rows from the Policy table that include sales relationships
involving the sales rep subscribed to the data.

¢ Those rows from the Customer table listing customers that deal with the
sales rep subscribed to the data.

The many-to-many relationship between customers and sales representatives
introduces new challenges in maintaining a proper sharing of information:

¢ We have a table (in this case the Customer table) that has no reference to
the sales representative value that is used in the subscriptions to partition
the data.

Again, this problem is addressed by using a subquery in the publication.

¢ Each row in the Customer table may be related to many rows in the
SalesRep table, and shared with many sales representatives databases.

135

Sharing rows among several subscriptions

Put another way, the rows of the Contact table in "Partitioning tables
that do not contain the subscription expression" on page 125 were
partitioned into disjoint sets by the publication. In the present example
there are overlapping subscriptions.

To meet the replication goals we again need one publication and a set of
subscriptions. In this case, we use two triggers to handle the transfer of
customers from one sales representative to another.

The publication
A single publication provides the basis for the data sharing:

CREATE PUBLICATION SalesRepData (
TABLE SalesRep,
TABLE Policy SUBSCRIBE BY rep key,
TABLE Customer SUBSCRIBE BY (
SELECT rep key FROM Policy
WHERE Policy.cust key =
Customer.cust key
)
)

The subscription statements are exactly as in the previous example.

How the The publication includes part or all of each of the three tables. To understand
publication works how the publication works, it helps to look at each article in turn:

¢ SalesRep table There are no qualifiers to this article, so the entire
SalesRep table is included in the publication.

TABLE SalesRep,

¢ Policy table This article uses a subscription expression to specify a
column used to partition the data among the sales reps:

TABLE Policy
SUBSCRIBE BY rep key,

The subscription expression ensures that each sales rep receives only
those rows of the table for which the value of the rep_key column
matches the value provided in the subscription.

The Policy table partitioning is disjoint: there are no rows that are
shared with more than one subscriber.

¢ Customer table A subscription expression with a subquery is
used to define the partition. The article is defined as follows:

136

Chapter 7 SQL Remote Design for Adaptive Server Anywhere

Multiple-valued
subqueries in
publications

TABLE Customer SUBSCRIBE BY (
SELECT rep_ key
FROM Policy
WHERE Policy.cust key =
Customer.cust key

)y

The Customer partitioning is non-disjoint: some rows are shared with
more than one subscriber.

The subquery in the Customer article returns a single column (rep_key) in
its result set, but may return multiple rows, corresponding to all those sales
representatives that deal with the particular customer. When a subscription
expression has multiple values, the row is replicated to all subscribers whose
subscription matches any of the values. It is this ability to have multiple-
valued subscription expressions that allows non-disjoint partitionings of a
table.

Territory realignment with a many-to-many relationship

How customers are
transferred

Using Triggers to
solve the problem

The problem of territory realignment (reassigning rows among subscribers)
requires special attention, just as in the section "Territory realignment in the
Contact example" on page 128.

You need to write triggers to maintain proper data throughout the installation
when territory realignment (reassignment of rows among subscribers) is
allowed.

In this example, we require that a customer transfer be achieved by deleting
and inserting rows in the Policy table.

To cancel a sales relationship between a customer and a sales representative,
arow in the Policy table is deleted. In this case, the Policy table change is
properly replicated to the sales representative, and the row no longer appears
in their database. However, no change has been made to the Customer table,
and so no changes to the Customer table are replicated to the subscriber.

In the absence of triggers, this would leave the subscriber with incorrect data
in their Customer table. The same kind of problem arises when a new row is
added to the Policy table.

The solution is to write triggers that are fired by changes to the Policy table,
which include a special syntax of the UPDATE statement. The special
UPDATE statement makes no changes to the database tables, but does make
an entry in the transaction log that SQL Remote uses to maintain data in
subscriber databases.

137

Sharing rows among several subscriptions

A BEFORE Here is a trigger that tracks INSERTS into the Policy table, and ensures that
INSERT trigger remote databases contain the proper data.

CREATE TRIGGER InsPolicy
BEFORE INSERT ON Policy
REFERENCING NEW AS NewRow
FOR EACH ROW
BEGIN
UPDATE Customer
PUBLICATION SalesRepData
SUBSCRIBE BY (
SELECT rep key
FROM Policy
WHERE cust key = NewRow.cust key
UNION ALL
SELECT NewRow.rep key

)
WHERE cust key = NewRow.cust key;

END;
A BEFORE Here is a corresponding trigger that tracks DELETES from the Policy table:
DELETE trigger CREATE TRIGGER DelPolicy

BEFORE DELETE ON Policy
REFERENCING OLD AS OldRow
FOR EACH ROW
BEGIN
UPDATE Customer
PUBLICATION SalesRepData
SUBSCRIBE BY (
SELECT rep key
FROM Policy
WHERE cust key = OldRow.cust key
AND rep key <> OldRow.rep key
)
WHERE cust key = OldRow.cust key;
END;

Some of the features of the trigger are the same as in the previous section.
The major new features are that the INSERT trigger contains a subquery, and
that this subquery can be multi-valued.

Multiple-valued The subquery in the BEFORE INSERT trigger is a UNION expression, and
subqueries can be multi-valued:

SELECT rep key

FROM Policy

WHERE cust key = NewRow.cust key
UNION ALL

SELECT NewRow.rep key

138

Chapter 7 SQL Remote Design for Adaptive Server Anywhere

Notes

Th

[¢]

The second part of the UNION is the rep_key value for the new sales
representative dealing with the customer, taken from the INSERT
statement.

The first part of the UNION is the set of existing sales representatives
dealing with the customer, taken from the Policy table.

This illustrates the point that the result set of the subscription query must
be all those sales representatives receiving the row, not just the new
sales representatives.

subquery in the BEFORE DELETE trigger is multi-valued:

SELECT rep key

FROM Policy

WHERE cust key = OldRow.cust key
AND rep key <> OldRow.rep key

The subquery takes rep_key values from the Policy table. The values
include the primary key values of all those sales reps who deal with the
customer being transferred (WHERE cust_key = OldRow.cust_key),
with the exception of the one being deleted (AND rep_key <>
OldRow.rep_key).

This again emphasizes that the result set of the subscription query must
be all those values matched by sales representatives receiving the row
following the DELETE.

Data in the Customer table is not identified with an individual
subscriber (by a primary key value, for example) and is shared among
more than one subscriber. This allows the possibility of the data being
updated in more than one remote site between replication messages,
which could lead to replication conflicts. You can address this issue
either by permissions (allowing only certain users the right to update the
Customer table, for example) or by adding RESOLVE UPDATE
triggers to the database to handle the conflicts programmatically.

UPDATES on the Policy table have not been described here. They
should either be prevented, or a BEFORE UPDATE trigger is required
that combines features of the BEFORE INSERT and BEFORE DELETE
triggers shown in the example.

139

Sharing rows among several subscriptions

Using the Subscribe_by remote option with many-to-many

relationships

140

When the Subscribe by remote option is ON, operations from remote
databases on rows with a subscribe by value of NULL or an empty string
will assume the remote user is subscribed to the row. By default, the
Subscribe by remote option is set to ON. In most cases, this setting is the
desired setting.

The Subscribe by remote option solves a problem that otherwise would
arise with some publications, including the Policy example. This section
describes the problem, and how the option automatically avoids it.

The publication uses a subquery for the Customer table subscription
expression, because each Customer may belong to several Sales Reps:

CREATE PUBLICATION SalesRepData (
TABLE SalesRep,
TABLE Policy SUBSCRIBE BY rep key,
TABLE Customer SUBSCRIBE BY (
SELECT rep key FROM Policy
WHERE Policy.cust key =
Customer.cust key
)y
)i

Marc Dill is a Sales Rep who has just arranged a policy with a new customer.
He inserts a new Customer row and also inserts a row in the Policy table to
assign the new Customer to himself.

Customer Policy SalesRep
cust1010 >\ pol2345 195
cust_name cust1010 Marc Dill

195

As the INSERT of the Customer row is carried out by the Message Agent at
the consolidated database, Adaptive Server Anywhere records the
subscription value in the transaction log, at the time of the INSERT.

Later, when the Message Agent scans the log, it builds a list of subscribers
from the subscription expression, and Marc Dill is not on the list, as the row
in the Policy table assigning the customer to him has not yet been applied. If
Subscribe_by remote were set to OFF, the result would be that the new
Customer is sent back to Marc Dill as a DELETE operation.

Chapter 7 SQL Remote Design for Adaptive Server Anywhere

As long as Subscribe by remote is set to ON, the Message Agent assumes
the row belongs to the Sales Rep that inserted it, the INSERT is not
replicated back to Marc Dill, and the replication system is intact.

If Subscribe_by remote is set to OFF, you must ensure that the Policy row is
inserted before the Customer row, with the referential integrity violation
avoided by postponing checking to the end of the transaction.

141

Managing conflicts

Managing conflicts

An UPDATE conflict occurs when the following sequence of events takes

place:

1 User 1 updates a row at remote site 1.

2 User 2 updates the same row at remote site 2.

3 The update from User 1 is replicated to the consolidated database.

4 The update from User 2 is replicated to the consolidated database.

When the SQL Remote Message Agent replicates UPDATE statements, it
does so as a separate UPDATE for each row. Also, the message contains the
old row values for comparison. When the update from user 2 arrives at the
consolidated database, the values in the row are not those recorded in the

message.

First UPDATE
succeeds

ID | Rep | Dept
1 Ann | 101
2 |[Marc| 101
3 | Shih | 104

UPDATE SalesRep
SET Dept=103

Second UPDATE
overwrites the
first

UPDATE SalesRep
SET Dept=104

WHERE ID = 3 WHERE ID = 3
ID | Rep | Dept ID | Rep | Dept
1 Ann | 101 1 Ann | 101
2 | Marc| 101 2 | Marc| 101
3 | Shih [102>103 3 Shih [102>104

Default conflict

By default, the UPDATE still proceeds, so that the User 2 update (the last to

resolution reach the consolidated database) becomes the value in the consolidated
database, and is replicated to all other databases subscribed to that row.

142

Chapter 7 SQL Remote Design for Adaptive Server Anywhere

In general, the default method of conflict resolution is that the most recent
operation (in this case that from User 2) succeeds, and no report is made of
the conflict. The update from User 1 is lost. SQL Remote also allows custom
conflict resolution, using a trigger to resolve conflicts in a way that makes
sense for the data being changed.

Conflict resolution does not apply to primary key updates
UPDATE conflicts do not apply to primary key updates. You should not
update primary keys in a SQL Remote installation. Primary key conflicts
must be excluded from the installation by proper design.

This section describes how you can build conflict resolution into your SQL
Remote installation at the consolidated database.

How SQL Remote handles conflicts

When a conflict is
detected

SQL Remote replication messages include UPDATE statements as a set of
single row updates, each with a VERIFY clause that includes values prior to
updating.

An UPDATE conflict is detected by the database server as a failure of the
VERIFY clause values to match the rows in the database.

Conlflicts are detected and resolved by the Message Agent, but only at a
consolidated database. When an UPDATE conflict is detected in a message
from a remote database, the Message Agent causes the database server to
take two actions:

1 Any conflict resolution (RESOLVE UPDATE) triggers are fired.
2 The UPDATE is applied.

UPDATE statements are applied even if the VERIFY clause values do not
match, whether or not there is a RESOLVE UPDATE trigger.

Conflict resolution can take several forms. For example:

¢ In some applications, resolution could mean reporting the conflict into a
table.

¢ You may wish to keep updates made at the consolidated database in
preference to those made at remote sites.

¢ Conflict resolution can be more sophisticated, for example in resolving
inventory numbers in the face of goods deliveries and orders.

143

Managing conflicts

& The method of conflict resolution is different at an Adaptive Server
Enterprise consolidated database. For more information, see "How SQL
Remote handles conflicts" on page 183.

Implementing conflict resolution

This section describes what you need to do to implement custom conflict
resolution in SQL Remote for Adaptive Server Anywhere. The concepts are
the same in SQL Remote for Adaptive Server Enterprise, but the
implementation is different.

SQL Remote allows you to define conflict resolution triggers to handle
UPDATE conflicts. Conflict resolution triggers are fired only at a
consolidated database, when messages are applied by a remote user. When
an UPDATE conflict is detected at a consolidated database, the following
sequence of events takes place.

1 Any conflict resolution triggers defined for the operation are fired.
2 The UPDATE takes place.

3 Any actions of the trigger, as well as the UPDATE, are replicated to all
remote databases, including the sender of the message that triggered the
conflict.

In general, SQL Remote for Adaptive Server Anywhere does not
replicate the actions of triggers: the trigger is assumed to be present at
the remote database. Conflict resolution triggers are fired only at
consolidated databases, and so their actions are replicated to remote
databases.

4 Atremote databases, no RESOLVE UPDATE triggers are fired when a
message from a consolidated database contains an UPDATE conflict.

5 The UPDATE is carried out at the remote databases.
At the end of the process, the data is consistent throughout the setup.

UPDATE conflicts cannot happen where data is shared for reading, but each
row (as identified by its primary key) is updated at only one site. They only
occur when data is being updated at more than one site.

Using conflict resolution triggers

This section describes how to use RESOLVE UPDATE, or conflict
resolution triggers.

144

Chapter 7 SQL Remote Design for Adaptive Server Anywhere

UPDATE
statements with a
VERIFY clause

Conflict resolution
trigger syntax

Using the
VERIFY_ALL_
COLUMNS option

Conflict resolution triggers are fired by the failure of values in the VERIFY
clause of an UPDATE statement to match the values in the database before
the update. An UPDATE statement with a VERIFY clause takes the
following form:

UPDATE table-list

SET column-name = expression, ...

[FROM table-list]

[VERIFY (column-name, ...)
VALUES (expression, ...)]

[WHERE search-condition]

The VERIFY clause compares the values of specified columns to a set of
expected values, which are the values that were present in the publisher
database when the UPDATE statement was applied there.

The verify clause is useful only for single-row updates. However, multi-row
update statements entered at a database are replicated as a set of single-row
updates by the Message Agent, so this imposes no constraints on client
applications.

The syntax for a RESOLVE UPDATE trigger is as follows:

CREATE TRIGGER trigger-name
RESOLVE UPDATE
OF column-name ON table-name
[REFERENCING [OLD AS old_val]
[NEW AS new_val]
[REMOTE AS remote_val 1]
FOR EACH ROW
BEGIN

END

RESOLVE UPDATE triggers fire before each row is updated. The
REFERENCING clause allows access to the values in the row of the table to
be updated (OLD), to the values the row is to be updated to (NEW) and to
the rows that should be present according to the VERIFY clause (REMOTE).
Only columns present in the VERIFY clause can be referenced in the
REMOTE AS clause; other columns produce a "column not found" error.

The database option VERIFY ALL COLUMNS is OFF by default. If it is
set to ON, all columns are verified on replicated updates, and a RESOLVE
UPDATE trigger is fired whenever any column is different. If it is set to
OFF, only those columns that are updated are checked.

Setting this option to ON makes messages bigger, because more information
is sent for each UPDATE.

If this option is set at the consolidated database before remote databases are
extracted, it will be set at the remote databases also.

145

Managing conflicts

You can set the VERIFY ALL COLUMNS option either for the PUBLIC
group or just for the user contained in the Message Agent connection string.

Using the The CURRENT REMOTE USER special constant holds the user ID of the
CURRENT remote user sending the message. This can be used in RESOLVE UPDATE
REMOTE USER triggers that place reports of conflicts into a table, to identify the user
special constant producing a conflict.

Conflict resolution examples

This section describes some ways of using RESOLVE UPDATE triggers to
handle conflicts.

Resolving date conflicts

Suppose a table in a contact management system has a column holding the
most recent contact with each customer.

One representative talks with a customer on a Friday, but does not upload his
changes to the consolidated database until the next Monday. Meanwhile, a
second representative meets the customer on the Saturday, and updates the
changes that evening.

There is no conflict when the Saturday UPDATE is replicated to the
consolidated database, but when the Monday UPDATE arrives it finds the
row already changed.

By default, the Monday UPDATE would proceed, leaving the column with
the incorrect information that the most recent contact occurred on Friday.

Update conflicts on this column should be resolved by inserting the most
recent date in the row.

Implementing the The following RESOLVE UPDATE trigger chooses the most recent of the
solution two new values and enters it in the database.

CREATE TRIGGER contact date RESOLVE UPDATE
ON contact
REFERENCING OLD AS old name
NEW AS new name
FOR EACH ROW
BEGIN
IF new name.contact date <
old name.contact date THEN
SET new name.contact date
= old name.contact date
END IF
END

146

Chapter 7 SQL Remote Design for Adaptive Server Anywhere

If the value being updated is later than the value that would replace it, the
new value is reset to leave the entry unchanged.

Resolving inventory conflicts

Consider a warehouse system for a manufacturer of sporting goods. There is
a table of product information, with a quantity column holding the number
of each product left in stock. An update to this column will typically deplete
the quantity in stock or, if a new shipment is brought in, add to it.

A sales representative at a remote database enters an order, depleting the
stock of small tank top tee shirts by five, from 28 to 23, and enters this in on
her database. Meanwhile, before this update is replicated to the consolidated
database, a new shipment of tee shirts comes in, and the warehouse enters the
shipment, adding 40 to the quantity column to make it 68.

28 > 68

made at

remote

databases 28> 68

The warehouse entry gets added to the database: the quantity column now
shows there are 68 small tank-top tee shirts in stock. When the update from
the sales representative arrives, it causes a conflict—Adaptive Server
Anywhere detects that the update is from 28 to 23, but that the current value
of the column is 68.

By default, the most recent UPDATE succeeds, and the inventory level is set
to the incorrect value of 23.

147

Managing conflicts

Default
conflict
resolution:
wrong result

28 > 68

In this case the conflict should be resolved by summing the changes to the
inventory column to produce the final result, so that a final value of 63 is
placed into the database.

Conflict
resolution
trigger:
correct
result

28 > 68
Implementing the A suitable RESOLVE UPDATE trigger for this situation would add the
solution increments from the two updates. For example:

CREATE TRIGGER resolve quantity
RESOLVE UPDATE OF quantity

ON "DBA".product

REFERENCING OLD AS old name

NEW AS new name

REMOTE AS remote name

FOR EACH ROW

BEGIN
SET new name.quantity = new name.quantity
+ old name.quantity
- remote name.quantity
END

148

Chapter 7 SQL Remote Design for Adaptive Server Anywhere

Reporting conflicts

This trigger adds the difference between the old value in the consolidated
database (68) and the old value in the remote database when the original
UPDATE was executed (28) to the new value being sent, before the
UPDATE is implemented. Thus, new_val.quantity becomes 63 (=23 + 68 -
28), and this value is entered into the quantity column.

Consistency is maintained at the remote database as follows:
1 The original remote UPDATE changed the value from 28 to 23.

2 The warehouse's entry is replicated to the remote database, but fails as
the old value is not what was expected.

3 The changes made by the RESOLVE UPDATE trigger are replicated to
the remote database.

In some cases, you may not want to alter the default way in which SQL
Remote resolves conflicts; you may just want to report the conflicts by
storing them in a table. In this way, you can look at the conflict table to see
what, if any, conflicts have occurred, and if necessary take action to resolve
the conflicts.

Designing to avoid referential integrity errors

Unreplicated
referenced table
errors

The tables in a relational database are related through foreign key references.
The referential integrity constraints applied as a consequence of these
references ensure that the database remains consistent. If you wish to
replicate only a part of a database, there are potential problems with the
referential integrity of the replicated database.

Referential integrity errors stop replication

If a remote database receives a message that includes a statement that
cannot be executed because of referential integrity constraints, no further
messages can be applied to the database (because they come after a
message that has not yet been applied), including passthrough statements,
which would sit in the message queue.

By paying attention to referential integrity issues while designing
publications you can avoid these problems. This section describes some of
the more common integrity problems and suggests ways to avoid them.

The sales publication described in "Publishing a set of tables" on page 117
includes the sales_order table:

149

Managing conflicts

CREATE PUBLICATION pub sales (
TABLE customer,
TABLE sales order,
TABLE sales order items,
TABLE product

)

The sales_order table has a foreign key to the employee table. The id of the
sales rep is a foreign key in the sales_order table referencing the primary
key of the employee table. However, the employee table is not included in
the publication.

If the publication is created in this manner, new sales orders would fail to
replicate unless the remote database has the foreign key reference removed
from the sales_order table.

If you use the extraction utility to create the remote databases, the foreign
key reference is automatically excluded from the remote database, and this
problem is avoided. However, there is no constraint in the database to
prevent an invalid value from being inserted into the sales_rep_id column of
the sales_order table, and if this happens the INSERT will fail at the
consolidated database. To avoid this problem, you can include the employee
table (or at least its primary key) in the publication.

Designing triggers to avoid errors

150

Actions performed by triggers are not replicated: triggers that exist at one
database in a SQL Remote setup are assumed by the replication procedure to
exist at other databases in the setup. When an action that fires a trigger at the
consolidated database is replicated at the replicate site, the trigger is
automatically fired. By default, the database extraction utility extracts the
trigger definitions, so that they are in place at the remote database also.

If a publication includes only a subset of a database, a trigger at the
consolidated database may refer to tables or rows that are present at the
consolidated database, but not at the remote databases. You can design your
triggers to avoid such errors by making actions of the trigger conditional
using an IF statement. The following list suggests some ways in which
triggers can be designed to work on consolidated and remote databases.

¢ Have actions of the trigger be conditional on the value of CURRENT
PUBLISHER. In this case, the trigger would not execute certain actions
at the remote database.

¢ Have actions of the trigger be conditional on the object_id function not
returning NULL. The object_id function takes a table or other object as
argument, and returns the ID number of that object or NULL if the
object does not exist.

Chapter 7 SQL Remote Design for Adaptive Server Anywhere

¢ Have actions of the trigger be conditional on a SELECT statement
which determines if rows exist.

The RESOLVE UPDATE trigger is a special trigger type for the resolution
of UPDATE conflicts, and is discussed in the section "Conflict resolution
examples" on page 146. The actions of RESOLVE UPDATE triggers are
replicated to remote databases, including the database that caused the
conflict.

151

Ensuring unique primary keys

Ensuring unique primary keys

Overview of
primary key pools

Users at physically distinct sites can each INSERT new rows to a table, so
there is an obvious problem ensuring that primary key values are kept
unique.

If two users INSERT a row using the same primary key values, the second
INSERT to reach a given database in the replication system will fail. As SQL
Remote is a replication system for occasionally-connected users, there can be
no locking mechanism across all databases in the installation. It is necessary
to design your SQL Remote installation so that primary key errors do not
occur.

For primary key errors to be designed out of SQL Remote installations; the
primary keys of tables that may be modified at more than one site must be
guaranteed unique. There are several ways of achieving this goal. This
chapter describes a general, economical and reliable method that uses a pool
of primary key values for each site in the installation.

The primary key pool is a table that holds a set of primary key values for
each database in the SQL Remote installation. Each remote user receives
their own set of primary key values. When a remote user inserts a new row
into a table, they use a stored procedure to select a valid primary key from
the pool. The pool is maintained by periodically running a procedure at the
consolidated database that replenishes the supply.

The method is described using a simple example database consisting of sales
representatives and their customers. The tables are much simpler than you
would use in a real database; this allows us to focus just on those issues
important for replication.

The primary key pool

152

The pool of primary keys is held in a separate table. The following CREATE
TABLE statement creates a primary key pool table:

CREATE TABLE KeyPool (
table name VARCHAR (40) NOT NULL,
value INTEGER NOT NULL,
location CHAR (12) NOT NULL,
PRIMARY KEY (table name, value),
)i

The columns of this table have the following meanings:

Chapter 7 SQL Remote Design for Adaptive Server Anywhere

Column

Description

table_name

value

location

Holds the names of tables for which primary key pools must be
maintained. In our simple example, if new sales representatives
were to be added only at the consolidated database, only the
Customer table needs a primary key pool and this column is
redundant. It is included to show a general solution.

Holds a list of primary key values. Each value is unique for each
table listed in table_name.

An identifier for the recipient. In some setups, this could be the
same as the rep_key value of the SalesRep table. In other setups,
there will be users other than sales representatives and the two
identifiers should be distinct.

For performance reasons, you may wish to create an index on the table:

CREATE INDEX KeyPoolLocation
ON KeyPool (table name, location, wvalue);

Replicating the primary key pool

.
o

You can either incorporate the key pool into an existing publication, or share
it as a separate publication. In this example, we create a separate publication
for the primary key pool.

To replicate the primary key pool:

1 Create a publication for the primary key pool data.

CREATE PUBLICATION KeyPoolData (

)i

TABLE KeyPool SUBSCRIBE BY location

2 Create subscriptions for each remote database to the KeyPoolData
publication.

CREATE SUBSCRIPTION
TO KeyPoolData('userl')
FOR userl;

CREATE SUBSCRIPTION
TO KeyPoolData ('user2')
FOR user2;

The subscription argument is the location identifier.

153

Ensuring unique primary keys

In some circumstances it makes sense to add the KeyPool table to an existing
publication and use the same argument to subscribe to each publication. Here
we keep the location and rep_key values distinct to provide a more general
solution.

Filling and replenishing the key pool

154

Every time a user adds a new customer, their pool of available primary keys
is depleted by one. The primary key pool table needs to be periodically
replenished at the consolidated database using a procedure such as the
following;:

CREATE PROCEDURE ReplenishPool ()
BEGIN
FOR EachTable AS TableCursor
CURSOR FOR
SELECT table name
AS CurrTable, max(value) as MaxValue
FROM KeyPool
GROUP BY table name
DO
FOR EachRep AS RepCursor
CURSOR FOR
SELECT location
AS CurrRep, count(*) as NumValues
FROM KeyPool
WHERE table name = CurrTable
GROUP BY location
DO
// make sure there are 100 values.
// Fit the top-up value to your
// requirements
WHILE NumValues < 100 LOOP
SET MaxValue = MaxValue + 1;
SET NumValues = NumValues + 1;
INSERT INTO KeyPool
(table name, location, value)
VALUES
(CurrTable, CurrRep, MaxValue);
END LOOP;
END FOR;
END FOR;
END;

This procedure fills the pool for each user up to 100 values. The value you
need depends on how often users are inserting rows into the tables in the
database.

The ReplenishPool procedure must be run periodically at the consolidated
database to refill the pool of primary key values in the KeyPool table.

Chapter 7 SQL Remote Design for Adaptive Server Anywhere

The ReplenishPool procedure requires at least one primary key value to
exist for each subscriber, so that it can find the maximum value and add one
to generate the next set. To initially fill the pool you can insert a single value
for each user, and then call ReplenishPool to fill up the rest. The following
example illustrates this for three remote users and a single consolidated user
named Office:

'Customer', 40, 'userl');

INSERT INTO KeyPool VALUES)

'Customer', 41, 'user2');
)
)

INSERT INTO KeyPool VALUES
INSERT INTO KeyPool VALUES
INSERT INTO KeyPool VALUES
CALL ReplenishPool();

’

'Customer', 42, 'user3'
'Customer', 43, 'Office’

(
(
(
(.

’

Cannot use a trigger to replenish the key pool
You cannot use a trigger to replenish the key pool, as trigger actions are
not replicated.

Adding new customers

When a sales representative wants to add a new customer to the Customer
table, the primary key value to be inserted is obtained using a stored
procedure. This example shows a stored procedure to supply the primary key
value, and also illustrates a stored procedure to carry out the INSERT.

The procedures takes advantage of the fact that the Sales Rep identifier is the
CURRENT PUBLISHER of the remote database.

¢ NewKey procedure The NewKey procedure supplies an integer value
from the key pool and deletes the value from the pool.

CREATE PROCEDURE NewKey (
IN @table name VARCHAR(40),
OUT @value INTEGER)
BEGIN
DECLARE NumValues INTEGER;

SELECT count (*), min(value)
INTO NumValues, @value
FROM KeyPool
WHERE table name = @table name
AND location = CURRENT PUBLISHER;
IF NumValues > 1 THEN
DELETE FROM KeyPool
WHERE table name = @table name
AND value = @value;
ELSE
// Never take the last value, because
// ReplenishPool will not work.

155

Ensuring unique primary keys

// The key pool should be kept large enough
// that this never happens.
SET @value = NULL;
END TIF;
END;

¢ NewCustomer procedure The NewCustomer procedure inserts a
new customer into the table, using the value obtained by NewKey to
construct the primary key.

CREATE PROCEDURE NewCustomer (
IN customer name CHAR(40))
BEGIN
DECLARE new cust key INTEGER ;
CALL NewKey('Customer', new cust key);
INSERT
INTO Customer (
cust key,
name,
location

)
VALUES (

'Customer ' |
CONVERT (CHAR(3), new cust key),
customer name,
CURRENT PUBLISHER
)7

)i

END

You may want to enhance this procedure by testing the new_cust_key
value obtained from NewKey to check that it is not NULL, and
preventing the insert if it is NULL.

Primary key pool summary

The primary key pool technique requires the following components:

¢ Key pool table A table to hold valid primary key values for each
database in the installation.

¢ Replenishment procedure A stored procedure keeps the key pool
table filled.

¢ Sharing of key pools Each database in the installation must subscribe
to its own set of valid values from the key pool table.

¢ Data entry procedures New rows are entered using a stored
procedure that picks the next valid primary key value from the pool and
delete that value from the key pool.

156

Chapter 7 SQL Remote Design for Adaptive Server Anywhere

Creating subscriptions

Subscriptions with
no subscription
expression

Subscriptions with
a subscription
expression

Starting a
subscription

To subscribe to a publication, each subscriber must be granted REMOTE
permissions and a subscription must also be created for that user. The details
of the subscription are different depending on whether or not the publication
uses a subscription expression.

To subscribe a user to a publication, if that publication has no subscription
expression, you need the following information:

¢ UserID The user who is being subscribed to the publication. This user
must have been granted remote permissions.

¢ Publication name The name of the publication to which the user is
being subscribed.

The following statement creates a subscription for a user ID SamsS to the
pub_orders_samuel_singer publication, which was created using a
WHERE clause:

CREATE SUBSCRIPTION
TO pub orders samuel singer
FOR SamS

To subscribe a user to a publication, if that publication does have a
subscription expression, you need the following information:

¢ UserID The user who is being subscribed to the publication. This user
must have been granted remote permissions.

¢ Publication name The name of the publication to which the user is
being subscribed.

¢ Subscription value The value that is to be tested against the
subscription expression of the publication. For example, if a publication
has the name of a column containing an employee ID as a subscription
expression, the value of the employee ID of the subscribing user must be
provided in the subscription. The subscription value is always a string.

The following statement creates a subscription for Samuel Singer (user ID
SamS, employee ID 856) to the pub_orders publication, defined with a
subscription expression sales_rep, requesting the rows for Samuel Singer's
own sales:

CREATE SUBSCRIPTION
TO pub orders ('856')
FOR SamS

In order to receive and apply updates properly, each subscriber needs to have
an initial copy of the data. The synchronization process is discussed in
"Synchronizing databases" on page 207.

157

Creating subscriptions

158

