CHAPTER

10

Using Procedures, Triggers, and Batches

About this chapter

Contents

Procedures and triggers store procedural SQL statements in the database for
use by all applications. They enhance the security, efficiency, and
standardization of databases. User-defined functions are one kind of
procedure that return a value to the calling environment for use in queries
and other SQL statements. Batches are sets of SQL statements submitted to
the database server as a group. Many features available in procedures and
triggers, such as control statements, are also available in batches.

&~ For many purposes, server-side JDBC provides a more flexible way to
build logic into the database than SQL stored procedures. For information on
JDBC, see "Data Access Using JDBC" on page 503.

Topic Page
Procedure and trigger overview 222
Benefits of procedures and triggers 223
Introduction to procedures 224
Introduction to user-defined functions 229
Introduction to triggers 232
Introduction to batches 237
Control statements 239
The structure of procedures and triggers 242
Returning results from procedures 246
Using cursors in procedures and triggers 251
Errors and warnings in procedures and triggers 256
Using the EXECUTE IMMEDIATE statement in procedures 265
Transactions and savepoints in procedures and triggers 266
Some tips for writing procedures 267
Statements allowed in batches 269
Calling external libraries from procedures 271

221

Procedure and trigger overview

Procedure and trigger overview

222

Procedures and triggers store procedural SQL statements in a database for
use by all applications.

Procedures and triggers can include control statements that allow repetition
(LOOP statement) and conditional execution (IF statement and CASE
statement) of SQL statements.

Procedures are invoked with a CALL statement, and use parameters to
accept values and return values to the calling environment. Procedures can
also return result sets to the caller. Procedures can call other procedures and
fire triggers.

Triggers are associated with specific database tables. They are invoked
automatically (fired) whenever rows of the associated table are inserted,
updated or deleted. Triggers do not have parameters and cannot be invoked
by a CALL statement. Triggers can call procedures and fire other triggers.

User-defined functions are one kind of stored procedure that returns a single
value to the calling environment. User-defined functions do not modify
parameters passed to them. They broaden the scope of functions available to
queries and other SQL statements.

Chapter 10 Using Procedures, Triggers, and Batches

Benefits of procedures and triggers

Standardization

Efficiency

Security

Procedures and triggers are defined in the database, separate from any one
database application. This separation provides a number of advantages.

Procedures and triggers allow standardization of any actions that are
performed by more than one application program. The action is coded once
and stored in the database. The applications need only CALL the procedure
or fire the trigger to achieve the desired result. If the implementation of the
action evolves over time, any changes are made in only one place, and all
applications that use the action automatically acquire the new functionality.

When used in a database implemented on a network server, procedures and
triggers are executed on the database server machine. They can access the
data in the database without requiring network communication. This means
that they execute faster and with less impact on network performance than if
they had been implemented in an application on one of the client machines.

When a procedure or trigger is created, it is checked for correct syntax and
then stored in the system tables. The first time it is required by any
application, it is retrieved from the system tables and compiled into the
virtual memory of the server, and executed from there. Subsequent
executions of the same procedure or trigger will result in immediate
execution, since the compiled copy is retained. A procedure or trigger can be
used concurrently by several applications and recursively by one application.
Only one copy is compiled and kept in virtual memory.

Procedures, including user-defined functions, execute with the permissions
of the procedure owner but can be called by any user that has been granted
permission to do so.

Triggers execute under the table permissions of the owner of the associated
table but are fired by any user with permission to insert, update or delete
rows in the table. This means that a procedure or trigger can (and usually
does) have different permissions than the user ID that invoked it. Procedures
and triggers provide security by allowing users limited access to data in
tables that they cannot directly examine or modify.

223

Introduction to procedures

Introduction to procedures

In order to use procedures, you need to understand how to do the following:
¢ Call procedures from a database application

¢ Create procedures

¢ Drop, or remove, procedures

L4

Control who has permission to use procedures

This section discusses each of these aspects of using procedures, and also
describes some of the different uses of procedures.

Creating procedures

Procedures are created using the CREATE PROCEDURE statement. You
must have RESOURCE authority in order to create a procedure.

Where you enter the statement depends on the tool you are using:

¢ You can create the example procedure new_dept by connecting to the
sample database from Interactive SQL as user ID DBA, using password
SQL, and typing the statement in the command window.

¢ You can create the example procedure by connecting to the sample
database from Sybase Central, opening the Procedures folder, and
clicking Add Procedure/Function Wizard. The Wizard walks you
through the process. Alternatively, click Add Procedure/Function
Template, which places you immediately in the last window of the
Wizard, the Procedure window, in which you enter the code for the
procedure.

¢ Ifyou are using a tool other than Interactive SQL or Sybase Central,
follow the instructions for your tool. You may need to change the
command delimiter away from the semicolon before entering the
CREATE PROCEDURE statement.

The following simple example creates a procedure that carries out an
INSERT into the department table of the sample database, creating a new
department.

CREATE PROCEDURE new dept (IN id INT,
IN name CHAR(35),
IN head id INT)

BEGIN

INSERT

INTO dba.department (dept id,
dept name,

224

Chapter 10 Using Procedures, Triggers, and Batches

dept head id)
VALUES (id, name, head id);
END

& For a complete description of the CREATE PROCEDURE syntax, see
"CREATE PROCEDURE statement" on page 403 of the book Adaptive
Server Anywhere Reference Manual.

The body of a procedure is a compound statement. The compound
statement starts with a BEGIN statement and concludes with an END
statement. In the case of new_dept, the compound statement is a single
INSERT bracketed by BEGIN and END statements.

& For more information, see "Using compound statements" on page 239.

Parameters to procedures are marked as one of IN, OUT, or INOUT. All
parameters to the new_dept procedure are IN parameters, as they are not
changed by the procedure.

Calling procedures

A procedure is invoked with a CALL statement. Procedures can be called by
an application program, or they can be called by other procedures and
triggers.

& For more information, see "CALL statement" on page 367 of the book
Adaptive Server Anywhere Reference Manual.

The following statement calls the new_dept procedure to insert an Eastern
Sales department:

CALL new dept(210, 'Eastern Sales', 902);

After this call, you may wish to check the department table to see that the
new department has been added.

The new_dept procedure can be called by all users who have been granted
EXECUTE permission for the procedure, even if they have no permissions
on the department table.

Dropping procedures

Once a procedure is created, it remains in the database until it is explicitly
removed. Only the owner of the procedure or a user with DBA authority can
drop the procedure from the database.

The following statement removes the procedure new_dept from the
database:

225

Introduction to procedures

DROP PROCEDURE new dept

Permissions to execute procedures

A procedure is owned by the user who created it, and that user can execute it
without permission. Permission to execute it can be granted to other users
using the GRANT EXECUTE command.

For example, the owner of the procedure new_dept could allow
another_user to execute new_dept with the statement:

GRANT EXECUTE ON new dept TO another user
The following statement revokes permission to execute the procedure:

REVOKE EXECUTE ON new dept FROM another user

& For more information on managing user permissions on procedures, see
"Granting permissions on procedures" on page 583.

Returning procedure results in parameters

226

Procedures can return results to the calling environment in one of the
following ways:

¢ Individual values are returned as OUT or INOUT parameters.
¢ Result sets can be returned.

¢ A single result can be returned using a RETURN statement.

This section describes how to return results from procedures as parameters.

The following procedure on the sample database returns the average salary of
employees as an OUT parameter.

CREATE PROCEDURE AverageSalary(OUT avgsal
NUMERIC (20,3))
BEGIN
SELECT AVG(salary)
INTO avgsal
FROM employee;
END

To run this procedure and display its output from Interactive SQL, carry out
the following steps:

1 Connect to the sample database from Interactive SQL as user ID DBA
using password SQL.

2 Create the procedure.

Chapter 10 Using Procedures, Triggers, and Batches

3 Create a variable to hold the procedure output. In this case, the output
variable is numeric, with three decimal places, so create a variable as
follows:

CREATE VARIABLE Average NUMERIC (20, 3)
4 Call the procedure, using the created variable to hold the result:
CALL AverageSalary (Average)

The Interactive SQL statistics window displays the message "Procedure
completed" if the procedure was created and run properly.

5 Look at the value of the output variable Average. The Interactive SQL
Data window displays the value 49988.623 for this variable; the average
employee salary.

Returning procedure results in result sets

In addition to returning results to the calling environment in individual
parameters, procedures can return information in result sets. A result set is
typically the result of a query. The following procedure returns a result set
containing the salary for each employee in a given department:

CREATE PROCEDURE SalaryList (IN department id INT)
RESULT ("Employee ID" INT, "Salary" NUMERIC(20,3))
BEGIN

SELECT emp id, salary

FROM employee

WHERE employee.dept id = department id;
END

If this procedure is called from Interactive SQL, the names in the RESULT
clause are matched to the results of the query and used as column headings in
the displayed results.

To test this procedure from Interactive SQL, you can CALL it, specifying
one of the departments of the company. The results are displayed in the
Interactive SQL Data window. For example:

To list the salaries of employees in the R & D department
(department ID 100):
¢ Type the following:

CALL SalaryList (100)

227

Introduction to procedures

228

Employee ID Salary

102 45700.000
105 62000.000
160 57490.000
243 72995.000
247 48023.690

To execute a CALL of a procedure that returns a result set, Interactive SQL
opens a Cursor.

The cursor is left open after the CALL in case a second result set is returned.
The Interactive SQL statistics window displays the plan of the SELECT
query in the procedure and then displays the line:

Procedure is executing. Use RESUME to continue.

You need to execute the RESUME statement or the Interactive SQL CLEAR
command from the Interactive SQL Command window before you can alter
or drop the procedure.

& For more information about using cursors in procedures, see "Using
cursors in procedures and triggers" on page 251.

Chapter 10 Using Procedures, Triggers, and Batches

Introduction to user-defined functions

User-defined functions are a class of procedures that return a single value to
the calling environment. This section introduces creating, using, and
dropping user-defined functions

Creating user-defined functions

User-defined functions are created using the CREATE FUNCTION
statement. You must have RESOURCE authority in order to create a user-
defined function.

The following simple example creates a function that concatenates two
strings, together with a space, to form a full name from a first name and a
last name.

You can create the example function fullname by connecting to the sample
database from Interactive SQL as user ID DBA, using password SQL, and
typing the statement in the command window.

If you are using a tool other than Interactive SQL or Sybase Central, you
may need to change the command delimiter away from the semicolon before
entering the CREATE FUNCTION statement.

CREATE FUNCTION fullname (firstname CHAR(30),
lastname CHAR (30)
RETURNS CHAR (61)

BEGIN
DECLARE name CHAR(61);
SET name = firstname || ' ' || lastname;
RETURN (name);

END

& For a complete description of the CREATE FUNCTION syntax, see
"CREATE FUNCTION statement" on page 397 of the book Adaptive Server
Anywhere Reference Manual.

The CREATE FUNCTION syntax differs slightly from that of the CREATE
PROCEDURE statement. The following are distinctive differences:

¢ No IN, OUT, or INOUT keywords are required, as all parameters are IN
parameters.

¢ The RETURNS clause is required to specify the data type being
returned.

¢ The RETURN statement is required to specify the value being returned.

229

Introduction to user-defined functions

Calling user-defined functions

A user-defined function can be used, subject to permissions, in any place that
a built-in non-aggregate function is used.

The following statement in Interactive SQL returns a full name from two
columns containing a first and last name:

SELECT fullname (emp fname, emp lname)
FROM employee;

fullname (emp_fname, emp_Ilname)

Fran Whitney
Matthew Cobb
Philip Chin

The following statement in Interactive SQL returns a full name from a
supplied first and last name:

SELECT fullname ('Jane', 'Smith'");

fullname ('Jane’,'Smith’)

Jane Smith

The fullname function can be used by any user who has been granted
EXECUTE permission for the function.

Dropping user-defined functions

Once a user-defined function is created, it remains in the database until it is
explicitly removed. Only the owner of the function or a user with DBA
authority can drop a function from the database.

The following statement removes the function fullname from the database:

DROP FUNCTION fullname

Permissions to execute user-defined functions
A user-defined function is owned by the user who created it, and that user

can execute it without permission. Permission to execute it can be granted to
other users using the GRANT EXECUTE command.

230

Chapter 10 Using Procedures, Triggers, and Batches

For example, the creator of the function fullname could allow another_user
to use fullname with the statement:

GRANT EXECUTE ON fullname TO another user

The following statement revokes permission to use the function:

REVOKE EXECUTE ON fullname FROM another user

& For more information on managing user permissions on functions, see
"Granting permissions on procedures" on page 583.

231

Introduction to triggers

Introduction to triggers

232

Triggers are used whenever referential integrity and other declarative
constraints are not sufficient.

& For information on referential integrity, see "Ensuring Data Integrity"
on page 347 and "CREATE TABLE statement" on page 415 of the book
Adaptive Server Anywhere Reference Manual.

You may want to enforce a more complex form of referential integrity
involving more detailed checking, or you may want to enforce checking on
new data but allow legacy data to violate constraints. Another use for triggers
is in logging the activity on database tables, independent of the applications
using the database.

Trigger execution permissions

Triggers execute with the permissions of the owner of the associated
table, not the user ID whose actions cause the trigger to fire. A trigger can
modify rows in a table that a user could not modify directly.

Triggers can be defined on one or more of the following triggering actions:

Action Description

INSERT The trigger is invoked whenever a new row is inserted into
the table associated with the trigger

DELETE The trigger is invoked whenever a row of the associated table
is deleted.

UPDATE The trigger is invoked whenever a row of the associated table
is updated.

UPDATE OF The trigger is invoked whenever a row of the associated table

column-list is updated such that a column in the column-list has been
modified

Triggers can be defined as row-level triggers or statement-level triggers.
Row-level triggers can execute BEFORE or AFTER each row modified by
the triggering insert, update, or delete operation is changed. Statement-level
triggers execute after the entire operation is performed.

Flexibility in trigger execution time is particularly useful for triggers that rely
on referential integrity actions such as cascaded updates or deletes being
carried out (or not) as they execute.

Chapter 10 Using Procedures, Triggers, and Batches

Creating triggers

A row-level
INSERT trigger
example

If an error occurs while a trigger is executing, the operation that fired the
trigger fails. INSERT, UPDATE, and DELETE are atomic operations (see
"Atomic compound statements" on page 241). When they fail, all effects of
the statement (including the effects of triggers and any procedures called by
triggers) are undone.

You create triggers using the CREATE TRIGGER statement. You must have
RESOURCE authority in order to create a trigger and you must have ALTER
permissions on the table associated with the trigger. For information about
ALTER permissions, see "Granting permissions on tables and views" on
page 582. For information about RESOURCE permissions, see "Granting
DBA and RESOURCE authority" on page 581.

The body of a trigger consists of a compound statement (see "Using
compound statements" on page 239): a set of semicolon-delimited SQL
statements bracketed by a BEGIN and an END statement.

COMMIT and ROLLBACK and some ROLLBACK TO SAVEPOINT
statements are not permitted within a trigger (see "Transactions and
savepoints in procedures and triggers" on page 266).

The following trigger is an example of a row-level INSERT trigger. It checks
that the birthdate entered for a new employee is reasonable:

CREATE TRIGGER check birth date
AFTER INSERT ON Employee
REFERENCING NEW AS new employee
FOR EACH ROW
BEGIN
DECLARE err user error EXCEPTION
FOR SQLSTATE '99999';
IF new employee.birth date > 'June 6, 1994' THEN
SIGNAL err _user error;
END IF;
END

This trigger is fired just after any row is inserted into the employee table. It
detects and disallows any new rows that correspond to birth dates later than
June 6, 1994.

The phrase REFERENCING NEW AS new_employee allows statements in
the trigger code to refer to the data in the new row using the alias
new_employee.

Signaling an error causes the triggering statement as well as any previous
effects of the trigger to be undone.

233

Introduction to triggers

A row-level
DELETE trigger
example

A statement-level
UPDATE trigger
example

234

For an INSERT statement that adds many rows to the employee table, the
check birth_date trigger is fired once for each new row. If the trigger fails
for any of the rows, all effects of the INSERT statement are rolled back.

You can specify that the trigger fire before the row is inserted rather than
after by changing the first line of the example to:

CREATE TRIGGER mytrigger BEFORE INSERT ON Employee

The REFERENCING NEW clause refers to the inserted values of the row; it
is independent of the timing (BEFORE or AFTER) of the trigger.

The following CREATE TRIGGER statement defines a row-level DELETE
trigger:

CREATE TRIGGER mytrigger BEFORE DELETE ON employee
REFERENCING OLD AS oldtable

FOR EACH ROW

BEGIN

END

The REFERENCING OLD clause enables the delete trigger code to refer to
the values in the row being deleted using the alias oldtable.

You can specify that the trigger fire after the row is deleted rather than
before, by changing the first line of the example to:

CREATE TRIGGER mytrigger AFTER DELETE ON employee

The REFERENCING OLD clause is independent of the timing (BEFORE or
AFTER) of the trigger.

The following CREATE TRIGGER statement is appropriate for statement-
level UPDATE triggers:

CREATE TRIGGER mytrigger AFTER UPDATE ON employee
REFERENCING NEW AS table after update
OLD AS table before update
FOR EACH STATEMENT
BEGIN

END

The REFERENCING NEW and REFERENCING OLD clause allows the
UPDATE trigger code to refer to both the old and new values of the rows
being updated. Columns in the new row are referred to with the table alias
table_after _update and columns in the old row are referred to with the table
alias table_before update.

The REFERENCING NEW and REFERENCING OLD clause has a slightly
different meaning for statement-level and row-level triggers. For statement-
level triggers the REFERENCING OLD or NEW aliases are table aliases,
while in row-level triggers they refer to the row being altered.

Chapter 10 Using Procedures, Triggers, and Batches

Executing triggers

Triggers are executed automatically whenever an INSERT, UPDATE, or
DELETE operation is performed on the table named in the trigger. A row-
level trigger is fired once for each row that is affected, while a statement-
level trigger is fired once for the entire statement.

When an INSERT, UPDATE, or DELETE fires a trigger, the order of
operation is as follows:

1 Any BEFORE triggers are fired.
2 Any referential actions are performed.
3 The operation itself is performed.

4 Any AFTER triggers are fired.

If any of the steps encounters an error that is not handled within a procedure
or trigger, the preceding steps are undone, the subsequent steps are not
performed, and the operation that fired the trigger fails.

Dropping triggers

Once a trigger is created, it remains in the database until it is explicitly
removed. You must have ALTER permissions on the table associated with
the trigger.

The following statement removes the trigger mytrigger from the database:

DROP TRIGGER mytrigger

Trigger execution permissions

You cannot grant permissions to execute a trigger, as triggers are not
executed by users: they are fired by Adaptive Server Anywhere in response
to actions on the database. Nevertheless, a trigger does have permissions
associated with it as it executes, defining its right to carry out certain actions.

Triggers execute using the permissions of the owner of the table on which
they are defined, not the permissions of the user that caused the trigger to
fire, and not the permissions of the user that created the trigger.

235

Introduction to triggers

236

When a trigger refers to a table, it uses the group memberships of the table
creator to locate tables with no explicit owner name specified. For example,
if a trigger on user_1.Table_A references Table B and does not specify the
owner of Table_ B, then either Table B must have been created by user_1
or user_1 must be a member of a group (directly or indirectly) that is the
owner of Table_B. If neither condition is met, a table not found message
results when the trigger is fired.

Also, user_1 must have permission to carry out the operations specified in
the trigger.

Chapter 10 Using Procedures, Triggers, and Batches

Introduction to batches

A simple batch consists of a set of SQL statements, separated by semicolons.
For example, the following set of statements form a batch, which creates an
Eastern Sales department and transfers all sales reps from Massachusetts to
that department.

INSERT

INTO department (dept id, dept name)
VALUES (220, 'Eastern Sales')

UPDATE employee

SET dept id = 220
WHERE dept_id = 200
AND state = '"MA' ;

COMMIT ;

You can include this set of statements in an application and execute them
together.

Interactive SQL and batches

A list of semicolon-separated statements, such as the above, is parsed by
Interactive SQL before it is sent to the server. In this case, Interactive
SQL sends each statement individually to the server, not as a batch.
Unless you have such parsing code in your application, the statements
would be sent and treated as a batch. Putting a BEGIN and END around a
set of statements causes Interactive SQL to treat them as a batch.

Many statements used in procedures and triggers can also be used in batches.
You can use control statements (CASE, IF, LOOP, and so on), including
compound statements (BEGIN and END), in batches. Compound statements
can include declarations of variables, exceptions, temporary tables, or
cursors inside the compound statement.

The following batch creates a table only if a table of that name does not
already exist:

BEGIN
IF NOT EXISTS (
SELECT * FROM SYSTABLE
WHERE table name = 'tl') THEN
CREATE TABLE tl1 (
firstcol INT PRIMARY KEY,
secondcol CHAR(30)
) i
ELSE
MESSAGE 'Table tl already exists' ;

237

Introduction to batches

END IF
END

If you run this batch twice from Interactive SQL, it creates the table the first
time you run it, and prints the message on the server message window the
next time you run it.

238

Chapter 10 Using Procedures, Triggers, and Batches

Control statements

There are a number of control statements for logical flow and decision
making in the body of the procedure or trigger, or in a batch. The following
is a list of control statements available.

Control statement

Syntax

Compound statements

Conditional execution: IF

Conditional execution: CASE

Repetition: WHILE, LOOP

Repetition: FOR cursor loop

Break: LEAVE
CALL

BEGIN [ATOMIC]
statement-list
END

IF condition THEN
statement-list
ELSEIF condition THEN
statement-list
ELSE
statement-list
END IF

CASE expression
WHEN value THEN
statement-list
WHEN value THEN
statement-list
ELSE
statement-list
END CASE

WHILE condition LOOP
statement-list
END LOOP

FOR
statement-list
END FOR

LEAVE label

CALL procname(arg, ...)

& For complete descriptions of each, see the entries in "SQL Statements"
on page 339 of the book Adaptive Server Anywhere Reference Manual

Using compound statements

A compound statement starts with the keyword BEGIN and ends with the
keyword END. The body of a procedure or trigger is a compound
statement. Compound statements can also be used in batches. Compound
statements can be nested, and combined with other control statements to
define execution flow in procedures and triggers or in batches.

239

Control statements

A compound statement allows a set of SQL statements to be grouped
together and treated as a unit. SQL statements within a compound statement
should be delimited with semicolons.

A command delimiter is required after the first two SELECT statements. It is
optional after the final statement in a statement list.

Declarations in compound statements

Local declarations in a compound statement immediately follow the BEGIN
keyword. These local declarations exist only within the compound statement.
The following may be declared within a compound statement:

¢ Variables

¢ Cursors

¢ Temporary tables
L2

Exceptions (error identifiers)

Local declarations can be referenced by any statement in that compound
statement, or in any compound statement nested within it. Local declarations
are not visible to other procedures called from the compound statement.

The following user-defined function illustrates local declarations of
variables.

The customer table includes some Canadian customers sprinkled among
those from the USA, but there is no country column. The user-defined
function nationality uses the fact that the US zip code is numeric while the
Canadian postal code begins with a letter to distinguish Canadian and US
customers.

CREATE FUNCTION nationality(cust id INT)
RETURNS CHAR(20)
BEGIN
DECLARE natl CHAR(20);
IF cust_id IN (SELECT id FROM customer
WHERE LEFT (zip,1l) > '9') THEN

SET natl = 'CDN';
ELSE
SET natl = 'USA';
END IF;
RETURN (natl);
END

This example declares a variable natl to hold the nationality string, uses a
SET statement to set a value for the variable, and returns the value of the
natl string to the calling environment.

240

Chapter 10 Using Procedures, Triggers, and Batches

The following query lists all Canadian customers in the customer table:

SELECT *
FROM customer
WHERE nationality(id) = 'CDN'

Declarations of cursors and exceptions are discussed in later sections.

Atomic compound statements

An atomic statement is a statement that is executed completely or not at all.
For example, an UPDATE statement that updates thousands of rows might
encounter an error after updating many rows. If the statement does not
complete, all changes are undone. The UPDATE statement is atomic.

All noncompound SQL statements are atomic. A compound statement can be
made atomic by adding the keyword ATOMIC after the BEGIN keyword.

BEGIN ATOMIC

UPDATE employee

SET manager ID = 501

WHERE emp ID = 467;

UPDATE employee

SET birth date = 'bad data';
END

In this example, the two update statements are part of an atomic compound
statement. They must either succeed or fail as one. The first update statement
would succeed. The second one causes a data conversion error since the
value being assigned to the birth_date column cannot be converted to a date.

The atomic compound statement fails and the effect of both UPDATE
statements is undone. Even if the currently executing transaction is
eventually committed, neither statement in the atomic compound statement
takes effect.

COMMIT and ROLLBACK and some ROLLBACK TO SAVEPOINT
statements are not permitted within an atomic compound statement (see
"Transactions and savepoints in procedures and triggers" on page 266).

There is a case where some, but not all, of the statements within an atomic
compound statement are executed. This is when an error occurs, and is
handled by an exception handler within the compound statement.

& For more information, see "Using exception handlers in procedures and
triggers" on page 261.

241

The structure of procedures and triggers

The structure of procedures and triggers

The body of a procedure or trigger consists of a compound statement as
discussed in "Using compound statements" on page 239. A compound
statement consists of a BEGIN and an END, enclosing a set of SQL
statements. The statements must be delimited by semicolons.

& The SQL statements that can occur in procedures and triggers are
described in "SQL statements allowed in procedures and triggers" on page
242,

& Procedures and triggers can contain control statements, which are
described in "Control statements" on page 239.

SQL statements allowed in procedures and triggers

242

Almost all SQL statements are allowed within procedures and triggers,
including the following:

¢ SELECT, UPDATE, DELETE, INSERT and SET VARIABLE.
¢ The CALL statement to execute other procedures.

¢ Control statements (see "Control statements" on page 239).

L4

Cursor statements (see "Using cursors in procedures and triggers" on
page 251).

¢ Exception handling statements (see "Using exception handlers in
procedures and triggers" on page 261).

¢ The EXECUTE IMMEDIATE statement.

Some SQL statements are not allowed within procedures and triggers. These
include the following;:

¢ CONNECT statement
¢ DISCONNECT statement.

COMMIT, ROLLBACK and SAVEPOINT statements are allowed within
procedures and triggers with certain restrictions (see "Transactions and
savepoints in procedures and triggers" on page 266).

& For details, see the Usage for each SQL statement in the chapter "SQL
Statements" on page 339 of the book Adaptive Server Anywhere Reference
Manual

Chapter 10 Using Procedures, Triggers, and Batches

Declaring parameters for procedures

Procedure parameters, or arguments, are specified as a list in the CREATE
PROCEDURE statement. Parameter names must conform to the rules for
other database identifiers such as column names. They must be a valid data
types (see "SQL Data Types" on page 219 of the book Adaptive Server
Anywhere Reference Manual), and must be prefixed with one of the
keywords IN, OUT or INOUT. These keywords have the following
meanings:

¢ IN The argument is an expression that provides a value to the
procedure.

¢ OUT The argument is a variable that could be given a value by the
procedure.

¢ INOUT The argument is a variable that provides a value to the
procedure, and could be given a new value by the procedure.

Default values can be assigned to procedure parameters in the CREATE
PROCEDURE statement. The default value must be a constant, which may
be NULL. For example, the following procedure uses the NULL default for
an IN parameter to avoid executing a query that would have no meaning:

CREATE PROCEDURE
CustomerProducts (IN customer id
INTEGER DEFAULT NULL)
RESULT (product id INTEGER,
quantity ordered INTEGER)
BEGIN
IF customer id IS NULL THEN
RETURN;
ELSE
SELECT product.id,
sum(sales order items.quantity)
FROM product,
sales order items,
sales order
WHERE sales order.cust id = customer id
AND sales order.id = sales order items.id
AND sales order items.prod id=product.id
GROUP BY product.id;
END IF;
END

The following statement causes the DEFAULT NULL to be assigned, and
the procedure RETURNS instead of executing the query.

CALL customerproducts () ;

243

The structure of procedures and triggers

Passing parameters to procedures

You can take advantage of default values of stored procedure parameters
with either of two forms of the CALL statement.

If the optional parameters are at the end of the argument list in the CREATE
PROCEDURE statement, they may be omitted from the CALL statement. As
an example, consider a procedure with three INOUT parameters:

CREATE PROCEDURE SampleProc(INOUT varl INT
DEFAULT 1,
INOUT var2 int DEFAULT 2,
INOUT var3 int DEFAULT 3)

We assume that the calling environment has set up three variables to hold the
values passed to the procedure:

CREATE VARIABLE V1 INT;
CREATE VARIABLE V2 INT;
CREATE VARIABLE V3 INT;

The procedure SampleProc may be called supplying only the first parameter
as follows:

CALL SampleProc(V1)
in which case the default values are used for var2 and var3.

A more flexible method of calling procedures with optional arguments is to
pass the parameters by name. The SampleProc procedure may be called as
follows:

CALL SampleProc(varl = V1, var3 = V3)
or as follows:

CALL SampleProc(var3 = V3, varl = V1)

Passing parameters to functions

User-defined functions are not invoked with the CALL statement, but are
used in the same manner that built-in functions are. For example, the
following statement uses the fullname function defined in "Creating user-
defined functions" on page 229 to retrieve the names of employees:

% To list the names of all employees:
¢ Type the following:
SELECT fullname (emp fname, emp lname) AS Name

FROM employee

244

Chapter 10 Using Procedures, Triggers, and Batches

Notes

Name

Fran Whitney
Matthew Cobb
Philip Chin
Julie Jordan

Robert Breault

¢ Default parameters can be used in calling functions. However,
parameters cannot be passed to functions by name.

¢ Parameters are passed by value, not by reference. Even if the function
changes the value of the parameter, this change is not returned to the
calling environment.

¢ Output parameters cannot be used in user-defined functions.

¢ User-defined functions cannot return result sets.

245

Returning results from procedures

Returning results from procedures

Procedures can return results that are a single row of data, or multiple rows.
In the former case, results can be passed back as arguments to the procedure.
In the latter case, results are passed back as result sets. Procedures can also
return a single value given in the RETURN statement.

& For simple examples of how to return results from procedures, see
"Introduction to procedures" on page 224. For more detailed information, see
the following sections.

Returning a value using the RETURN statement

A single value can be returned to the calling environment using the
RETURN statement, which causes an immediate exit from the procedure.
The RETURN statement takes the form:

RETURN expression

The value of the supplied expression is returned to the calling environment.
To save the return value in a variable, an extension of the CALL statement is
used:

CREATE VARIABLE returnval INTEGER ;
returnval = CALL myproc() ;

Returning results as procedure parameters

Using the SET
statement

246

Procedures can return results to the calling environment in the parameters to
the procedure.

Within a procedure, parameters and variables can be assigned values in one
of the following ways:

¢ The parameter can be assigned a value using the SET statement.

¢ The parameter can be assigned a value using a SELECT statement with
an INTO clause.

The following somewhat artificial procedure returns a value in an OUT
parameter that is assigned using a SET statement:

CREATE PROCEDURE greater (IN a INT,
IN b INT,
OUT c INT)
BEGIN
IF a > b THEN
SET ¢ = a;

Chapter 10 Using Procedures, Triggers, and Batches

Using single-row
SELECT
statements

Notes

ELSE
SET ¢ = b;
END IF ;
END

Single-row queries retrieve at most one row from the database. This type of
query is achieved by a SELECT statement with an INTO clause. The INTO
clause follows the select list and precedes the FROM clause. It contains a list
of variables to receive the value for each select list item. There must be the
same number of variables as there are select list items.

When a SELECT statement is executed, the server retrieves the results of the
SELECT statement and places the results in the variables. If the query results
contain more than one row, the server returns an error. For queries returning
more than one row, cursors must be used. For information about returning
more than one row from a procedure, see "Returning result sets from
procedures” on page 248.

If the query results in no rows being selected, a row not found warning is
returned.

The following procedure returns the results of a single-row SELECT
statement in the procedure parameters.

To return the number of orders placed by a given customer:

¢ Type the following:

CREATE PROCEDURE OrderCount (IN customer ID INT,
OUT Orders INT)
BEGIN
SELECT COUNT (dba.sales order.id)
INTO Orders
FROM dba.customer
KEY LEFT OUTER JOIN "dba".sales order
WHERE dba.customer.id = customer ID;
END

You can test this procedure in Interactive SQL using the following
statements, which show the number of orders placed by the customer with ID
102:

CREATE VARIABLE orders INT;
CALL OrderCount (102, orders);
SELECT orders;

¢ The customer ID parameter is declared as an IN parameter. This
parameter holds the customer ID that is passed in to the procedure.

¢ The Orders parameter is declared as an OUT parameter. It holds the
value of the orders variable that is returned to the calling environment.

247

Returning results from procedures

¢ No DECLARE statement is required for the Orders variable, as it is

declared in the procedure argument list.

¢ The SELECT statement returns a single row and places it into the
variable Orders.

Returning result sets from procedures

Notes

248

If a procedure returns more than one row of results to the calling
environment, it does so using result sets.

The following procedure returns a list of customers who have placed orders,
together with the total value of the orders placed. The procedure does not list
customers who have not placed orders.

CREATE PROCEDURE ListCustomerValue ()
RESULT ("Company" CHAR(36), "Value" INT)
BEGIN
SELECT company name,
CAST (sum(sales order items.quantity *
product.unit price)
AS INTEGER) AS value
FROM customer
INNER JOIN sales order
INNER JOIN sales order items
INNER JOIN product
GROUP BY company name
ORDER BY wvalue DESC;
END

¢ Type the following:

CALL ListCustomerValue ()

Company Value

Chadwicks 8076
Overland Army Navy 80064

Martins Landing 6888
Sterling & Co. 6804
Carmel Industries 6780

¢ The number of variables in the RESULT list must match the number of
the SELECT list items. Automatic data type conversion is carried out
where possible if data types do not match.

Chapter 10 Using Procedures, Triggers, and Batches

¢ The RESULT clause is part of the CREATE PROCEDURE statement,
and is not followed by a command delimiter.

¢ The names of the SELECT list items do not need to match those of the
RESULT list.

¢ When testing this procedure, Interactive SQL opens a cursor to handle
the results. The cursor is left open following the SELECT statement, in
case the procedure returns more than one result set. You should type
RESUME to complete the procedure and close the cursor.

¢ Procedure result sets are modifiable, unless they are generated from a
view. The user calling the procedure requires the appropriate
permissions on the underlying table in order to modify procedure results.
This differs from the usual permissions for procedure execution, where
the procedure owner must have permissions on the table.

Returning multiple result sets from procedures

Notes

A procedure can return more than one result set to the calling environment. If
a RESULT clause is employed, the result sets must be compatible: they must
have the same number of items in the SELECT lists, and the data types must
all be of types that can be automatically converted to the data types listed in
the RESULT list.

The following procedure lists the names of all employees, customers, and
contacts listed in the database:

CREATE PROCEDURE ListPeople ()
RESULT (lname CHAR(36), fname CHAR(36))
BEGIN
SELECT emp lname, emp fname
FROM employee;
SELECT lname, fname
FROM customer;
SELECT last name, first name
FROM contact;
END

¢ To test this procedure in Interactive SQL, enter the following statement:
CALL ListPeople ()

You must enter a RESUME statement after each of the three result sets
is displayed in the Interactive SQL Data window to continue, and then
complete, the procedure.

249

Returning results from procedures

Returning variable result sets from procedures

250

The RESULT clause is optional in procedures. Omitting the result clause
allows you to write procedures that return different result sets, with different
numbers or types of columns, depending on how they are executed.

If you are not using this feature of variable result sets, it is recommended that
you employ a RESULT clause, for performance reasons.

For example, the following procedure returns two columns if the input
variable is Y, but only one column otherwise:

CREATE PROCEDURE names (IN formal char(1l)
BEGIN
IF formal = 'y' THEN
SELECT emp lname, emp fname
FROM employee
ELSE
SELECT emp fname
FROM employee
END IF
END

The use of variable result sets in procedures is subject to some limitations,
depending on the interface used by the client application.

¢ Embedded SQL You must DESCRIBE the procedure call after the
cursor for the result set is opened, but before any rows are returned, in
order to get the proper shape of result set.

&~ For information about the DESCRIBE statement, see "DESCRIBE
statement" on page 446 of the book Adaptive Server Anywhere
Reference Manual.

¢ ODBC Variable result set procedures can be used by ODBC
applications. The proper description of the variable result sets is carried
out by the Adaptive Server Anywhere ODBC driver.

¢ Open Client applications Variable result set procedures can be used
by Open Client applications. The proper description of the variable
result sets is carried out by Adaptive Server Anywhere.

¢ Interactive SQL Interactive SQL does not support variable result set
procedures, and so cannot be used for testing this feature.

Chapter 10 Using Procedures, Triggers, and Batches

Using cursors in procedures and triggers

Cursors are used to retrieve rows one at a time from a query or stored
procedure that has multiple rows in its result set. A cursor is a handle or an
identifier for the query or procedure, and for a current position within the
result set.

Cursor management overview

Cursor positioning

Managing a cursor is similar to managing a file in a programming language.
The following steps are used to manage cursors:

1 Declare a cursor for a particular SELECT statement or procedure using
the DECLARE statement.

2 Open the cursor using the OPEN statement.

3 Use the FETCH statement to retrieve results one row at a time from the
cursor.

4 Records are usually fetched until the warning Row Not Found is
returned, signaling the end of the result set.

5 Close the cursor using the CLOSE statement.

By default, cursors are automatically closed at the end of a transaction (on
COMMIT or ROLLBACK statements). Cursors that are opened using the
WITH HOLD clause will be kept open for subsequent transactions until they
are explicitly closed.

A cursor can be positioned at one of three places:
¢ Onarow
¢ Before the first row

¢ After the last row

251

Using cursors in procedures and triggers

252

Absolute row Absolute row
from start from end
0 Before first row -n-1
1 -n
2 -n+ 1
3 -n +2
n-2 -3
n-1 -2
n -1
After last row
n+1 0

When a cursor is opened, it is positioned before the first row. The cursor
position can be moved using the FETCH command (see "FETCH statement"
on page 468 of the book Adaptive Server Anywhere Reference Manual). It
can be positioned to an absolute position from the start or the end of the
query results (using FETCH ABSOLUTE, FETCH FIRST, or FETCH
LAST). It can also be moved relative to the current cursor position (using
FETCH RELATIVE, FETCH PRIOR, or FETCH NEXT). The NEXT
keyword is the default qualifier for the FETCH statement.

There are special positioned versions of the UPDATE and DELETE
statements that can be used to update or delete the row at the current position
of the cursor. If the cursor is positioned before the first row or after the last
row, a No current row of cursor error will be returned.

Chapter 10 Using Procedures, Triggers, and Batches

Cursor positioning problems

Inserts and some updates to DYNAMIC SCROLL cursors can cause
problems with cursor positioning. The server will not put inserted rows at
a predictable position within a cursor unless there is an ORDER BY
clause on the SELECT statement. In some cases, the inserted row will not
appear at all until the cursor is closed and opened again.

With Adaptive Server Anywhere, this occurs if a temporary table had to
be created to open the cursor (see "Temporary tables used in query
processing" on page 640 for a description).

The UPDATE statement may cause a row to move in the cursor. This will
happen if the cursor has an ORDER BY clause that uses an existing index
(a temporary table is not created). Using STATIC SCROLL cursors
alleviates these problems but requires more memory and processing.

Using cursors on SELECT statements in procedures

The following procedure uses a cursor on a SELECT statement. It illustrates
several features of the stored procedure language. It is based on the same
query used in the ListCustomerValue procedure described in "Returning
result sets from procedures” on page 248.

CREATE PROCEDURE TopCustomerValue
(OUT TopCompany CHAR(36),
OUT TopValue INT)
BEGIN
-— 1. Declare the "error not found" exception
DECLARE err notfound
EXCEPTION FOR SQLSTATE '02000';
-— 2. Declare variables to hold
- each company name and its value
DECLARE ThisName CHAR (36);
DECLARE ThisValue INT;
-— 3. Declare the cursor ThisCompany
- for the query
DECLARE ThisCompany CURSOR FOR
SELECT company name,
CAST (sum(sales order items.quantity *
product.unit price) AS INTEGER)
AS value
FROM customer
INNER JOIN sales order
INNER JOIN sales order items
INNER JOIN product
GROUP BY company name;

253

Using cursors in procedures and triggers

Notes

254

-— 4. Initialize the values of TopValue
SET TopValue = 0O;
-- 5. Open the cursor
OPEN ThisCompany;
-— 6. Loop over the rows of the query
CompanyLoop:
LOOP
FETCH NEXT ThisCompany
INTO ThisName, ThisValue;
IF SQLSTATE = err notfound THEN
LEAVE CompanyLoop;
END IF;
IF ThisValue > TopValue THEN
SET TopCompany = ThisName;
SET TopValue = ThisValue;
END TIF;
END LOOP CompanyLoop;
-— 7. Close the cursor
CLOSE ThisCompany;
END

The TopCustomerValue procedure has the following notable features:

¢

¢

The "error not found" exception is declared. This exception is used later
in the procedure to signal when a loop over the results of a query has
completed.

& For more information about exceptions, see "Errors and warnings
in procedures and triggers" on page 256.

Two local variables ThisName and ThisValue are declared to hold the
results from each row of the query.

The cursor ThisCompany is declared. The SELECT statement produces
a list of company names and the total value of the orders placed by that
company.

The value of TopValue is set to an initial value of 0, for later use in the
loop.
The ThisCompany cursor is opened.

The LOOP statement loops over each row of the query, placing each
company name in turn into the variables ThisName and ThisValue. If
ThisValue is greater than the current top value, TopCompany and
TopValue are reset to ThisName and ThisValue.

The cursor is closed at the end of the procedure.

The LOOP construct in the TopCompanyValue procedure is a standard
form, exiting after the last row is processed. You can rewrite this procedure
in a more compact form using a FOR loop. The FOR statement combines
several aspects of the above procedure into a single statement.

Chapter 10 Using Procedures, Triggers, and Batches

CREATE PROCEDURE TopCustomerValue?2 (
OUT TopCompany CHAR (36),
OUT TopValue INT)
BEGIN
-— Initialize the TopValue variable
SET TopValue = 0O;
-- Do the For Loop
CompanyLoop:
FOR CompanyFor AS ThisCompany
CURSOR FOR
SELECT company name AS ThisName ,
CAST (sum(sales order items.quantity *
product.unit price) AS INTEGER)
AS ThisValue
FROM customer
INNER JOIN sales order
INNER JOIN sales order items
INNER JOIN product
GROUP BY ThisName

DO
IF ThisValue > TopValue THEN
SET TopCompany = ThisName;
SET TopValue = ThisValue;
END TIF;
END FOR CompanyLoop;
END

255

Errors and warnings in procedures and triggers

Errors and warnings in procedures and triggers

After an application program executes a SQL statement, it can examine a
return code. This return code indicates whether the statement executed
successfully or failed and gives the reason for the failure. The same
mechanism can be used to indicate the success or failure of a CALL
statement to a procedure.

Error reporting uses either the SQLCODE or SQLSTATE status
descriptions. For full descriptions of SQLCODE and SQLSTATE error and
warning values and their meanings, see "Database Error Messages" on page
581 of the book Adaptive Server Anywhere Reference Manual. Whenever a
SQL statement is executed, a value is placed in special procedure variables
called SQLSTATE and SQLCODE. That value indicates whether or not
there were any unusual conditions encountered while the statement was
being performed. You can check the value of SQLSTATE or SQLCODE in
an [F statement following a SQL statement, and take actions depending on
whether the statement succeeded or failed.

For example, the SQLSTATE variable can be used to indicate if a row is
successfully fetched. The TopCustomerValue procedure presented in
section "Using cursors on SELECT statements in procedures" on page 253
used the SQLSTATE test to detect that all rows of a SELECT statement had
been processed.

& Possible values for the SQLSTATE and SQLCODE variables are listed
in "Database Error Messages" on page 581 of the book Adaptive Server
Anywhere Reference Manual.

Default error handling in procedures and triggers

256

This section describes how Adaptive Server Anywhere handles errors that
occur during a procedure execution, if you have no error handling built in to
the procedure.

& If you want to have different behavior from that described in this
section, you can use exception handlers, described in "Using exception
handlers in procedures and triggers" on page 261. Warnings are handled in a
slightly different manner from errors: for a description, see "Default handling
of warnings in procedures and triggers" on page 260.

There are two ways of handling errors without using explicit error handling:

¢ Default error handling The procedure or trigger fails and returns an
error code to the calling environment.

Chapter 10 Using Procedures, Triggers, and Batches

Default error
handling

Notes

¢ ON EXCEPTION RESUME Ifthe ON EXCEPTION RESUME clause
is included in the CREATE PROCEDURE statement, the procedure
carries on executing after an error, resuming at the statement following
the one causing the error.

Generally, if a SQL statement in a procedure or trigger fails, the procedure or
trigger terminates execution and control is returned to the application
program with an appropriate setting for the SQLSTATE and SQLCODE
values. This is true even if the error occurred in a procedure or trigger
invoked directly or indirectly from the first one. In the case of a trigger, the
operation causing the trigger is also undone and the error is returned to the
application.

The following demonstration procedures show what happens when an
application calls the procedure OuterProc, and OuterProc in turn calls the
procedure InnerProc, which then encounters an error.

CREATE PROCEDURE OuterProc /()
BEGIN
MESSAGE 'Hello from OuterProc.';
CALL InnerProc();
MESSAGE 'SQLSTATE set to ',
SQLSTATE, ' in OuterProc.'
END
CREATE PROCEDURE InnerProc ()
BEGIN
DECLARE column not found
EXCEPTION FOR SQLSTATE '52003';
MESSAGE 'Hello from InnerProc.';
SIGNAL column not found;
MESSAGE 'SQLSTATE set to ',
SQLSTATE, ' in InnerProc.';
END

¢ The DECLARE statement in InnerProc declares a symbolic name for
one of the predefined SQLSTATE values associated with error
conditions already known to the server. The DECLARE statement does
not take any other action.

¢ The MESSAGE statement sends a message to the server window and the
dbconsol message window.

¢ The SIGNAL statement generates an error condition from within the
InnerProc procedure.

The following statement executes the QuterProc procedure:
CALL OuterProc () ;
The message window of the server then displays the following:

Hello from OuterProc.

257

Errors and warnings in procedures and triggers

Hello from InnerProc.

No statements following the SIGNAL statement in InnerProc are executed:
InnerProc immediately passes control back to the calling environment,
which in this case is the procedure OuterProc. No statements following the
CALL statement in OuterProc are executed. The error condition is returned
to the calling environment to be handled there. For example, Interactive SQL
handles the error by displaying a message window describing the error.

The TRACEBACK function provides a list of the statements that were
executing when the error occurred. You can use the TRACEBACK function
from Interactive SQL by typing the following statement:

SELECT TRACEBACK (*)

Error handling with ON EXCEPTION RESUME

If the ON EXCEPTION RESUME clause is included in the CREATE
PROCEDURE statement, the procedure checks the following statement
when an error occurs. If the statement handles the error, then the procedure
does not return control to the calling environment when an error occurs.
Instead, it continues executing, resuming at the statement after the one
causing the error.

The following statements are considered error-handling statements:
IF

SELECT @variable =
CASE

LOOP

LEAVE

CONTINUE

CALL

EXECUTE

SIGNAL

RESIGNAL
DECLARE

* & & 6 & O ¢ O o o o

The following example illustrates how this works.

Drop the Remember to drop both the InnerProc and OuterProc procedures before
procedures continuing with the tutorial. You can do this by entering the following
commands in the command window:

258

Chapter 10 Using Procedures, Triggers, and Batches

DROP PROCEDURE OUTERPROC;
DROP PROCEDURE INNERPROC

The following demonstration procedures show what happens when an
application calls the procedure OuterProc; and OuterProc in turn calls the
procedure InnerProc, which then encounters an error. These demonstration
procedures are based on those used earlier in this section:

CREATE PROCEDURE OuterProc/()
ON EXCEPTION RESUME
BEGIN
DECLARE res CHAR(S5);
MESSAGE 'Hello from OuterProc.';
CALL InnerProc();
SELECT Qres=SQLSTATE;
IF res='52003" THEN
MESSAGE 'SQLSTATE set to ',
res, ' in OuterProc.';
END IF
END;

CREATE PROCEDURE InnerProc()

ON EXCEPTION RESUME

BEGIN
DECLARE column not found

EXCEPTION FOR SQLSTATE '52003';

MESSAGE 'Hello from InnerProc.';
SIGNAL column not found;
MESSAGE 'SQLSTATE set to ',
SQLSTATE, ' in InnerProc.';

END

The following statement executes the QuterProc procedure:
CALL OuterProc () ;

The message window of the server then displays the following:
Hello from OuterProc.
Hello from InnerProc.
SQLSTATE set to 52003 in OuterProc.

The execution path is as follows:

1 OuterProc executes and calls InnerProc

2 In InnerProc, the SIGNAL statement signals an error.

3 The MESSAGE statement is not an error-handling statement, so control
is passed back to OuterProc and the message is not displayed.

259

Errors and warnings in procedures and triggers

4 In OuterProc, the statement following the error assigns the SQLSTATE
value to the variable named res. This is an error-handling statement, and
so execution continues and the OuterProc message is displayed.

Default handling of warnings in procedures and triggers

Warnings are handled differently from errors. While the default action for
errors is to set a value for the SQLSTATE and SQLCODE variables, and
return control to the calling environment, the default action for warnings is to
set the SQLSTATE and SQLCODE values and continue execution of the

procedure.
Drop the Remember to drop both the InnerProc and OuterProc procedures before
procedures continuing with the tutorial. You can do this by entering the following

commands in the command window:

DROP PROCEDURE OUTERPROC;
DROP PROCEDURE INNERPROC

The following demonstration procedures illustrate default handling of
warnings. These demonstration procedures are based on those used in
"Default error handling in procedures and triggers" on page 256. In this case,
the SIGNAL statement generates a row not found condition, which is a
warning rather than an error.

CREATE PROCEDURE OuterProc/()
BEGIN
MESSAGE 'Hello from OuterProc.';
CALL InnerProc();
MESSAGE 'SQLSTATE set to ',
SQLSTATE, ' in OuterProc.';
END
CREATE PROCEDURE InnerProc()
BEGIN
DECLARE row not found
EXCEPTION FOR SQLSTATE '02000';
MESSAGE 'Hello from InnerProc.';
SIGNAL row not found;
MESSAGE 'SQLSTATE set to ',
SQLSTATE, ' in InnerProc.';
END

The following statement executes the QuterProc procedure:
CALL OuterProc () ;

The message window of the server then displays the following:
Hello from OuterProc.

Hello from InnerProc.

260

Chapter 10 Using Procedures, Triggers, and Batches

SQLSTATE set to 02000 in InnerProc.
SQLSTATE set to 02000 in OuterProc.

The procedures both continued executing after the warning was generated,
with SQLSTATE set by the warning (02000).

Using exception handlers in procedures and triggers

Drop the
procedures

It is often desirable to intercept certain types of errors and handle them
within a procedure or trigger, rather than pass the error back to the calling
environment. This is done through the use of an exception handler.

An exception handler is defined with the EXCEPTION part of a compound
statement (see "Using compound statements" on page 239). The exception
handler is executed whenever an error occurs in the compound statement.
Unlike errors, warnings do not cause exception handling code to be executed.
Exception handling code is also executed if an error is encountered in a
nested compound statement or in a procedure or trigger that has been
invoked anywhere within the compound statement.

Remember to drop both the InnerProc and OuterProc procedures before
continuing with the tutorial. You can do this by entering the following
commands in the command window:

DROP PROCEDURE OUTERPROC;
DROP PROCEDURE INNERPROC

The demonstration procedures used to illustrate exception handling are based
on those used in "Default error handling in procedures and triggers" on page
256. In this case, additional code is added to handle the column not found
error in the InnerProc procedure.

CREATE PROCEDURE OuterProc ()
BEGIN
MESSAGE 'Hello from OuterProc.';
CALL InnerProc();
MESSAGE 'SQLSTATE set to ',
SQLSTATE, ' in OuterProc.'
END
CREATE PROCEDURE InnerProc/()
BEGIN
DECLARE column not found
EXCEPTION FOR SQLSTATE '52003';
MESSAGE 'Hello from InnerProc.';
SIGNAL column not found;
MESSAGE 'Line following SIGNAL.';
EXCEPTION
WHEN column not found THEN
MESSAGE 'Column not found handling.';

261

Errors and warnings in procedures and triggers

Notes

262

WHEN OTHERS THEN
RESIGNAL ;
END

The EXCEPTION statement declares the exception handler itself. The lines
following the EXCEPTION statement are not executed unless an error
occurs. Each WHEN clause specifies an exception name (declared with a
DECLARE statement) and the statement or statements to be executed in the
event of that exception. The WHEN OTHERS THEN clause specifies the
statement(s) to be executed when the exception that occurred is not in the
preceding WHEN clauses.

In this example, the statement RESIGNAL passes the exception on to a
higher-level exception handler. RESIGNAL is the default action if WHEN
OTHERS THEN is not specified in an exception handler.

The following statement executes the QuterProc procedure:
CALL OuterProc();

The message window of the server then displays the following:
Hello from OuterProc.
Hello from InnerProc.
Column not found handling.
SQLSTATE set to 00000 in OuterProc.

¢ The lines following the SIGNAL statement in InnerProc are not
executed; instead, the EXCEPTION statements are executed.

¢ As the error encountered was a column not found error, the MESSAGE
statement included to handle the error is executed, and SQLSTATE is
reset to zero (indicating no errors).

¢ After the exception handling code is executed, control is passed back to
OuterProc, which proceeds as if no error was encountered.

¢ You should not use ON EXCEPTION RESUME together with explicit
exception handling. The exception handling code is not executed if ON
EXCEPTION RESUME is included.

¢ Ifthe error handling code for the column not found exception is simply a
RESIGNAL statement, control is passed back to the OuterProc
procedure with SQLSTATE still set at the value 52003. This is just as if
there were no error handling code in InnerProc. As there is no error
handling code in OuterProc, the procedure fails.

Chapter 10 Using Procedures, Triggers, and Batches

Exception handling
and atomic
compound
statements

When an exception is handled inside a compound statement, the compound
statement completes without an active exception and the changes before the
exception are not undone. This is true even for atomic compound statements.
If an error occurs within an atomic compound statement and is explicitly
handled, some but not all of the statements in the atomic compound
statement are executed.

Nested compound statements and exception handlers

Drop the
procedures

The code following a statement that causes an error is not executed unless an
ON EXCEPTION RESUME clause is included in a procedure definition.

You can use nested compound statements to give you more control over
which statements are and are not executed following an error.

Remember to drop both the InnerProc and OuterProc procedures before
continuing with the tutorial. You can do this by entering the following
commands in the command window:

DROP PROCEDURE OUTERPROC;
DROP PROCEDURE INNERPROC

The following demonstration procedure illustrates how nested compound
statements can be used to control flow. The procedure is based on that used
as an example in "Default error handling in procedures and triggers" on page
256.

CREATE PROCEDURE InnerProc ()
BEGIN
DECLARE column not found
EXCEPTION FOR SQLSTATE VALUE '52003';
MESSAGE 'Hello from InnerProc';
SIGNAL column not found;
MESSAGE 'Line following SIGNAL'
EXCEPTION
WHEN column not found THEN
MESSAGE 'Column not found handling';
WHEN OTHERS THEN
RESIGNAL;
MESSAGE 'Outer compound statement';
END

The following statement executes the InnerProc procedure:
CALL InnerProc();

The message window of the server then displays the following:
Hello from InnerProc

Column not found handling

263

Errors and warnings in procedures and triggers

264

Outer compound statement

When the SIGNAL statement that causes the error is encountered, control

passes to the exception handler for the compound statement, and the Column
not found handling message is printed. Control then passes back to the outer
compound statement and the Outer compound statement message is printed.

If an error other than column not found is encountered in the inner compound
statement, the exception handler executes the RESIGNAL statement. The
RESIGNAL statement passes control directly back to the calling
environment, and the remainder of the outer compound statement is not
executed.

Chapter 10 Using Procedures, Triggers, and Batches

Using the EXECUTE IMMEDIATE statement in

procedures

The EXECUTE IMMEDIATE statement allows statements to be built up
inside procedures using a combination of literal strings (in quotes) and
variables.

For example, the following procedure includes an EXECUTE IMMEDIATE
statement that creates a table.

CREATE PROCEDURE CreateTableProc(
IN tablename char (30))

BEGIN

EXECUTE IMMEDIATE 'CREATE TABLE ' || tablename |]|' (
columnl INT PRIMARY KEY)'
END

In ATOMIC compound statements, you cannot use an EXECUTE
IMMEDIATE statement that causes a COMMIT, as COMMITSs are not
allowed in that context.

265

Transactions and savepoints in procedures and triggers

Transactions and savepoints in procedures and

triggers

266

SQL statements in a procedure or trigger are part of the current transaction
(see "Using Transactions and Locks" on page 367). You can call several
procedures within one transaction or have several transactions in one
procedure.

COMMIT and ROLLBACK are not allowed within any atomic statement
(see "Atomic compound statements" on page 241). Note that triggers are
fired due to an INSERT, UPDATE, or DELETE which are atomic
statements. COMMIT and ROLLBACK are not allowed in a trigger or in any
procedures called by a trigger.

Savepoints (see "Savepoints within transactions" on page 418) can be used
within a procedure or trigger, but a ROLLBACK TO SAVEPOINT
statement can never refer to a savepoint before the atomic operation started.
Also, all savepoints within an atomic operation are released when the atomic
operation completes.

Chapter 10 Using Procedures, Triggers, and Batches

Some tips for writing procedures

This section provides some pointers for developing procedures.

Check if you need to change the command delimiter

You do not need to change the command delimiter in Interactive SQL or
Sybase Central when you are writing procedures. However, if you are
creating and testing procedures and triggers from some other browsing tool,
you may need to change the command delimiter from the semicolon to
another character.

Each statement within the procedure ends with a semicolon. For some
browsing applications to parse the CREATE PROCEDURE statement itself,
you need the command delimiter to be something other than a semicolon.

If you are using an application that requires changing the command
delimiter, a good choice is to use two semicolons as the command delimiter
(;;) or a question mark (?) if the system does not permit a multicharacter
delimiter.

Remember to delimit statements within your procedure

You should terminate each statement within the procedure with a semicolon.
Although you can leave off semicolons for the last statement in a statement
list, it is good practice to use semicolons after each statement.

The CREATE PROCEDURE statement itself contains both the RESULT
specification and the compound statement that forms its body. No semicolon
is needed after the BEGIN or END keywords, or after the RESULT clause.

Use fully-qualified names for tables in procedures

If a procedure has references to tables in it, you should always preface the
table name with the name of the owner (creator) of the table.

When a procedure refers to a table, it uses the group memberships of the
procedure creator to locate tables with no explicit owner name specified. For
example, if a procedure created by user_1 references Table_B and does not
specify the owner of Table B, then either Table_ B must have been created
by user_1 or user_1 must be a member of a group (directly or indirectly)
that is the owner of Table_B. If neither condition is met, a table not found
message results when the procedure is called.

267

Some tips for writing procedures

You can minimize the inconvenience of long fully qualified names by using
a correlation name to provide a convenient name to use for the table within a
statement. Correlation names are described in "FROM clause" on page 476
of the book Adaptive Server Anywhere Reference Manual.

Specifying dates and times in procedures

When dates and times are sent to the database from procedures, they are sent
as strings. The date part of the string is interpreted according to the current
setting of the DATE_ORDER database option. As different connections may
set this option to different values, some strings may be converted incorrectly
to dates, or the database may not be able to convert the string to a date.

You should use the unambiguous date format yyyy-mm-dd or yyyy/mm/dd
when sending dates to the database from procedures. These strings are
interpreted unambiguously as dates by the database, regardless of the
DATE_ORDER database option setting.

&> For more information on dates and times, see "Date and time data
types" on page 233 of the book Adaptive Server Anywhere Reference
Manual.

Verifying that procedure input arguments are passed correctly

268

You can verify that input arguments to a procedure are passed correctly in
several ways.

You can display the value of the parameter on the message window of the
server using the MESSAGE statement. For example, the following procedure
simply displays the value of the input parameter var:

CREATE PROCEDURE message test (IN var char (40))
BEGIN
MESSAGE var;
END

You can do the following from Interactive SQL:
1 Create the procedure.
2 Call the procedure:
CALL MESSAGE TEST ('Test Message');

3 After calling the procedure, double click the server icon in the system
tray to ensure that the message was passed properly to the server.

SELECT GLOBALVAR

Chapter 10 Using Procedures, Triggers, and Batches

Statements allowed in batches

The following statements are not allowed in batches:

¢ CONNECT or DISCONNECT statement

¢ ALTER PROCEDURE or ALTER FUNCTION statement
¢ CREATE TRIGGER statement

¢ Interactive SQL commands such as INPUT or OUTPUT

Otherwise, any SQL statement is allowed, including data definition
statements such as CREATE TABLE, ALTER TABLE, and so on.

The CREATE PROCEDURE statement is allowed, but must be the final
statement of the batch. Therefore a batch can contain only a single CREATE
PROCEDURE statement.

Using SELECT statements in batches

You can include one or more SELECT statements in a batch. Multiple
SELECT statements are allowed only if they return the same result columns.

The following is a valid batch:

IF EXISTS(SELECT *
FROM systable
WHERE table name='employee')
THEN
SELECTemp Iname AS LastName,
emp fname AS FirstName
FROM employee;
SELECT lname, fname
FROM customer;
SELECT last name, first name
FROM contact;
END IF

The alias for the result set is required only in the first SELECT statement, as
the server uses the first SELECT statement in the batch to describe the result
set.

A RESUME statement is required following each query to retrieve the next
result set.

The following is not a valid batch, as the two queries return different result
sets:

IF EXISTS(SELECT * FROM systable
WHERE table name='employee')

269

Statements allowed in batches

THEN
SELECTemp lname AS LastName,
emp fname AS FirstName
FROM employee;
SELECT id, lname, fname
FROM customer;
END IF

270

Chapter 10 Using Procedures, Triggers, and Batches

Calling external libraries from procedures

You can call a function in an external Dynamic Link Library (DLL) from a
stored procedure or user-defined functions under an operating system that
supports DLLs. You can also call functions in an NLM under NetWare. You
cannot use external functions on UNIX.

Adaptive Server Anywhere includes a set of system procedures that make
use of this capability to send MAPI e-mail messages and carry out other
functions. This section describes how to use the external library calls in
procedures.

Caution: external libraries can corrupt your database

External libraries called from procedures share the memory of the server.
If you call a DLL from a procedure and the DLL contains memory-
handling errors, you can crash the server or corrupt your database.
Ensure that your libraries are thoroughly tested before deploying them on
production databases.

& For information on MAPI and other system procedures, see "System
Procedures and Functions" on page 751 of the book Adaptive Server
Anywhere Reference Manual.

Creating procedures and functions with external calls

Syntax

This section presents some examples of procedures and functions with
external calls.

& For a full description of the CREATE PROCEDURE statement syntax,
see "CREATE PROCEDURE statement" on page 403 of the book Adaptive
Server Anywhere Reference Manual.

&~ For a full description of the CREATE FUNCTION statement syntax for
external calls, see "CREATE FUNCTION statement” on page 397 of the
book Adaptive Server Anywhere Reference Manual.

DBA permissions required

You must have DBA permissions in order to create external procedures or
functions. This requirement is more strict that the RESOURCE
permissions required for creating other procedures or functions.

A procedure that calls a function function name in DLL library.dll can be
created as follows:

271

Calling external libraries from procedures

No other
statements
permitted

System-dependent
calls

272

CREATE PROCEDURE dll proc (parameter-1list)
EXTERNAL NAME 'function name@library.dll'

Such a procedure is called an external stored procedure. If you call an
external DLL from a procedure, the procedure cannot carry out any other
tasks; it just forms a wrapper around the DLL.

An analogous CREATE FUNCTION statement is as follows:

CREATE FUNCTION dll func (parameter-1ist
RETURNS data-type
EXTERNAL NAME 'function name@library.dll'

In these statements, function name is the name of a function in the dynamic
link library, and library.dll is the name of the library. The arguments in the
procedure argument list must correspond in type and order to the arguments
for the library function; they are passed to the external DLL function in the
order in which they are listed. Any value returned by the external function is
in turn returned by the procedure to the calling environment.

A procedure that calls an external function can include no other statements:
its sole purposes are to take arguments for a function, call the function, and
return any value and returned arguments from the function to the calling
environment. You can use IN, INOUT, or OUT parameters in the procedure
call in the same way as for other procedures: the input values get passed to
the external function, and any parameters modified by the function are
returned to the calling environment in OUT or INOUT parameters.

You can specify operating-system dependent calls, so that a procedure calls
one function when run on one operating system, and another function
(presumably analogous) on another operating system. The syntax for such
calls is to prefix the function name with the operating system name. For
example:

CREATE PROCEDURE dll proc (parameter-list)
EXTERNAL NAME
'0S2:0s82 fnRos2 lib.dll;WindowsNT:nt fn@nt lib.dll’'

The operating system identifier must be one of OS2, WindowsNT,
Windows95, Windows3X, or NetWare.

If no system identifier for the current operating system is provided, and a
function with no system identifier is provided, that function is called.

NetWare calls have a slightly different format than the other operating
systems. All symbols are globally known under NetWare, so any symbol
(such as a function name) that is exported must be unique to all NLMs on the
system. Consequently, the NLM name is not necessary in the call, and the
call has the following syntax:

CREATE PROCEDURE dll proc (parameter-list)
EXTERNAL NAME 'NetWare:nw fn'

Chapter 10 Using Procedures, Triggers, and Batches

No library name needs to be provided.

External function prototypes

When an external function is called, a stack is fabricated with the arguments
(or argument references in the case of INOUT or OUT parameters) and the
DLL is called. Only the following data types can be passed to an external
library:

¢ CHARACTER data types, but INOUT and OUT parameters must be no
more than 255 bytes in length

¢ SMALLINT and INT data types
¢ REAL and DOUBLE data types

This section describes the format of the function prototype.

& For information about passing parameters to external functions, see
"Passing parameters to external procedures and functions" on page 274.

For convenience, a header file named dllapi.h is provided in the A
subdirectory. This header file handles the platform-dependent features of
external function prototypes. If you use this header file, then all external
function prototypes are of the following form.

return_type _entry function_name(argument-list);

If you do not use this header file, external function declarations should
follow the following guidelines:

¢ Windows NT and Windows 95 The function declaration should be of
the following form for the Watcom C/C++ compiler:

return-type _ stdcall function-name(argument-1list)

¢ Windows 3.x All pointers are far pointers, so the DLL must be at least
compiled under the large model. The function declaration should be of
the following form for the Watcom C/C++ compiler:

return-type far pascal function-name(argument-
list)

No more than 256 parameters can be used, of any type.

¢ NetWare The function declaration should be of the following form for
the Watcom C/C++ compiler:

return-type function-name(argument-1ist);

273

Calling external libraries from procedures

Passing parameters to external procedures and functions

SQL data types are mapped to their C equivalents as follows:

SQL data type C data type
INTEGER long
SMALLINT short
FLOAT float
DOUBLE double
CHAR(n),n <254 char *

These are the only SQL data types you can use. Any other data type produces
an error.

Procedure parameters that are INOUT or OUT parameters are passed to the
external function by reference. For example, the procedure

CREATE PROCEDURE dll proc(INOUT xvar REAL)
EXTERNAL NAME 'function name@library.dll’

has an associated C function parameter declaration of
function name(float * xvar)

Procedure parameters that are IN parameters are passed to the external
function by value. For example, the procedure

CREATE PROCEDURE dll proc(IN xvar REAL)
EXTERNAL NAME 'function name@library.dll’

has an associated external function parameter declaration of
function name(float xvar)

Character data types are an exception to IN parameters being passed. They
are always passed by reference, whether they are IN, OUT, or INOUT
parameters. For example, the procedure

CREATE PROCEDURE dll_proc (IN invar CHAR(128))
EXTERNAL NAME 'function name@library.dll’

has the following external function parameter declaration

function name (char * invar)

External function return types

The following table lists the supported return types, and how they map to the
return type of the SQL external function or external procedure.

274

Chapter 10 Using Procedures, Triggers, and Batches

C data type SQL data type

void Used for external procedures.

char * External function returning CHAR(), up to 254 characters.
long External function returning INTEGER

float External function returning FLOAT

double External function returning DOUBLE.

If a function in the external library returns NULL, and the SQL external
function was declared to return CHAR(), then the return value of the SQL
extended function is NULL. NULL is also returned if the pointer is
determiend to be invalid.

Special considerations when passing character types

For the character data type (CHAR), Adaptive Server Anywhere allocates a
255-byte buffer (including one for the null terminator) for each parameter. If
the parameter is an INOUT parameter, the existing value is copied into the
buffer and null terminated, and a pointer to this buffer is passed to the
external function. The external function should therefore not allocate a buffer
of its own for OUT or INOUT character parameters: the server has already
allocated the space. If the external function writes beyond the 255 bytes
(including the ending null character), it is writing over data structures in the
server.

When the entry point returns, the parameter buffers are translated back into
their server data structure string equivalents based on the strlen() value of
the buffer.

The external function should be sure to null-terminate any output string
parameters. OUT parameters follow the same procedure except that as there
is no initial data, no initial value of the output buffer parameter is guaranteed.

275

Calling external libraries from procedures

276

