CHAPTER 11

Importing and Exporting Data

About this chapter Transferring large amounts of data into and out of your database may be
necessary in several situations. For example:

¢ Importing an initial set of data into a new database

¢ Exporting data into other applications, such as spreadsheets
¢ Building new copies of a database with a modified structure
¢

Creating extractions of a database

This chapter describes how to import data to and export data from databases,
both in text form and in other formats.

Contents Topic Page
Import and export overview 278
Exporting data from a database 280
Importing data into a database 285

277



Import and export overview

Import and export overview

Adaptive Server Anywhere supports import and export of individual tables
or a complete database using text files. Importing and exporting data to other
formats, such as spreadsheet program formats, is available from the
Interactive SQL utility.

The LOAD TABLE statement and the UNLOAD TABLE statement are the
SQL statements for loading and unloading tables using text files. The INPUT
statement and the OUTPUT statement are Interactive SQL commands for
importing and exporting data using a variety of formats.

You can unload individual tables or a complete database from Sybase
Central, using the Unload Database wizard. You can also unload individual
tables or a complete database using the DBUNLOAD command line utility.
The DBUNLOAD utility is accessible from Interactive SQL.

This chapter describes the LOAD TABLE and UNLOAD TABLE SQL
statements, as well as the use of Sybase Central, DBUNLOAD, and
Interactive SQL to import and export data.

Input and output data formats

278

The LOAD TABLE and UNLOAD TABLE import and export text files,
with one row per line, and values separated by a delimiter.

The Interactive SQL INPUT and OUTPUT statements support the following
file formats:

File Format Description

ASCII A text file, one row per line, with values separated by a
delimiter. String values are optionally enclosed in apostrophes
(single quotes). This is the same as the format used by LOAD
TABLE and UNLOAD TABLE

DBASEII DBASE II format

DBASEIII DBASE III format

DIF Data Interchange Format

FIXED Data records are in fixed format with the width of each column
either the same as defined by the column's type or specified as a
parameter

FOXPRO FoxPro format

LOTUS Lotus workspace format

WATFILE WATFILE format.




Chapter 11 Importing and Exporting Data

There is a Interactive SQL option for the default input format and one for the
default output format. For details on how to specify these options, see
"INPUT _FORMAT option" on page 157 of the book Adaptive Server
Anywhere Reference Manual and "OUTPUT _FORMAT option" on page 166
of the book Adaptive Server Anywhere Reference Manual.

The file format can alternatively be specified on each INPUT statement or
OUTPUT statement.

279



Exporting data from a database

Exporting data from a database

You can export data from your database using one of the following methods:
¢ The UNLOAD TABLE statement, for efficient export of text files

¢ The Interactive SQL OUTPUT statement, for slower but more flexible
export to a variety of file formats

¢ The DBUNLOAD utility, for text export of more than one table

This section describes each of these methods, and also describes some tips
for dealing with NULL output.

Unloading data using the UNLOAD TABLE statement

Example 1

Notes

280

The UNLOAD TABLE statement is used for efficient export of data from a
database table to a text file. You must have SELECT permission on the table
to use the UNLOAD TABLE statement.

The following statement unloads the department table from the sample
database into the file dept.txt in the server's current working directory. If you
are running against a network server, the command unloads the data into a
file on the server machine, not the client machine.

UNLOAD TABLE department
TO 'dept.txt'

The dept.txt file has the following contents:

100, 'R & D',501

200, 'Sales"', 902

300, 'Finance', 1293
400, '"Marketing', 1576
500, 'Shipping', 703

¢ Each row of the table is output on a single line of the output file.
¢ No column names are exported.

¢  The columns are separated, or delimited, by a comma. The delimiter
character can be changed using the DELIMITED BY clause.

¢ The fields are not fixed-width fields. Only the characters in each entry
are exported, not the full width of the column.

¢  The character data in the dept_name column is enclosed in single
quotes. The single quotes can be turned off using the QUOTES clause.



Chapter 11 Importing and Exporting Data

Example 2

¢ The data is exported in order by primary key values. This makes
reloading quicker. You can export data in the order in which it is stored
using the ORDER OFF clause.

¢ The file name is relative to the server's current directory, not the current
directory of the client application. Also, the file name is passed to the
server as a string. It is recommended that you escape backslash
characters in the file name to prevent misinterpretation if a directory of
file name begins with an n (\n is a newline character). For example, the
following statement unloads a table into the file ¢ \temp\newfile.dat:

UNLOAD TABLE employee
TO 'c:\\temp\\newfile.dat'

&~ For more information on the syntax, see "UNLOAD TABLE
statement” on page 570 of the book Adaptive Server Anywhere Reference
Manual.

The following example uses explicit settings for the DELIMITED BY and
QUOTES clauses:

UNLOAD TABLE department
TO 'dept.txt'

DELIMITED BY 'S’

QUOTES OFF

The resulting dept.txt file has the following contents:

1008R & D$S501
200$Saless$902
300$Finance$1293
400SMarketing$1576
5008Shipping$703

If a delimiter character appears within a value and the QUOTES option is
turned off, the character is replaced by its hexadecimal value preceded by
\x. For example:

UNLOAD TABLE department
TO 'dept.txt'

DELIMITED BY '&'

QUOTES OFF

yields the following output file.

100&R \x26 D&501
200&Sales&902
300&Finance&1293
400&Marketing&l1576
500&Shipping&703

281



Exporting data from a database

Exporting query results using Interactive SQL

You can export queries to a file from Interactive SQL either by using the
OUTPUT statement or by redirecting output.

Using the output statement

Data can be exported from a database to a variety of file formats using the
Interactive SQL OUTPUT statement. This statement exports the results of
the current query (the one displayed in the Interactive SQL Data window)
and puts the results into a specified file. The output format can be specified
on the output command.

For example, the following commands extract the employee table to a
dBaselll format file:

SELECT *
FROM employee;

OUTPUT TO employee.dbf
FORMAT dbaseiii;

Using output redirection

Redirecting with
error messages

282

Output redirection can be used to export data as an alternative to the
OUTPUT statement.

The output of any command can be redirected to a file or device by putting
the ># redirection symbol anywhere on the command. The redirection
symbol must be followed by a file name, as follows:

SELECT *

FROM employee
># filename

Do not enclose the file name in quotation marks.

Output redirection is most useful on the SELECT statement. The SET
OUTPUT FORMAT command can be used to control the format of the
output file.

The >& redirection symbol redirects all output including error messages and
statistics for the command on which it appears. For example:

SELECT *
FROM employee
>& filename

outputs the SELECT statement to the file, followed by the output from the
SELECT statement and some statistics pertaining to the command.



Chapter 11 Importing and Exporting Data

Do not enclose the file name in quotation marks.

The >& redirection is useful for getting a log of what happens during a
READ command. The statistics and errors of each command are written
following the command in the redirected output file.

If two > characters are used in a redirection symbol instead of one (>># or
>>&.), the output is appended to the specified file instead of replacing the
contents of the file. For output from the SELECT statement, headings are
output if and only if the output starts at the beginning of the specified file and
the output format supports headings.

NULL value output

The most common reason to extract data is for use in other software
products. The other software package may not understand NULL values.

There is a Interactive SQL option (NULLS) that allows you to choose how
NULL values are output. Alternatively, you can use the IFNULL function to
output a specific value whenever there is a NULL value.

& For information on setting Interactive SQL options, see "SET OPTION
statement" on page 553 of the book Adaptive Server Anywhere Reference
Manual.

Unloading a database using DBUNLOAD

Exporting a list of
tables

The dbunload utility is used to unload an entire database in ASCII comma-
delimited format and to create the necessary Interactive SQL command files
to completely recreate your database. This may be useful for creating
extractions, creating a backup of your database, or building new copies of
your database with the same or a slightly modified structure.

If you want to rearrange your tables in the database, you can use dbunload to
create the necessary command files and modify them as needed.

For Windows 3.x, the DBUNLOAD executable is named dbunloaw.exe.

& For a full description of dbunload utility command-line switches, see
the section "The Unload utility" on page 110 of the book Adaptive Server
Anywhere Reference Manual.

The dbunload utility can also export a list of tables, rather than the entire
database. This is useful for retrieving data from a corrupted database that
cannot be entirely unloaded.

283



Exporting data from a database

The following statement unloads the data from the sample database (assumed
to be running on the default database server with the default database name)
into a set of files in the c¢:\temp directory. A command file to rebuild the
database from the data files is created with the default name reload.sql in the
current directory.

dbunload -c "dbn=asademo;uid=dba;pwd=sgql" c:\temp

284



Chapter 11 Importing and Exporting Data

Importing data into a database

You can import data into your database using one of the following methods:
¢ The LOAD TABLE statement, for efficient import of text files.

¢  The Interactive SQL INPUT statement, for slower but more flexible
import of a variety of file formats.

¢ Interactive input using the INSERT Statement or the Interactive SQL
INPUT statement.

This section describes each of these methods, and also describes some tips
for dealing with incompatible data structure and conversion errors.

Loading data using the LOAD TABLE statement

Example

The LOAD TABLE statement is used for efficient importing of data from a
text file into a database table. The table must exist and have the same number
of columns as the input file has fields, defined on compatible data types. In
order to use the LOAD TABLE statement, the user must have INSERT
permission on the table.

If the department table had all its rows deleted, the following statement
would load the data from the file dept.£xt into the department table:

LOAD TABLE department
FROM 'dept.txt'

The LOAD TABLE statement appends the contents of the file to the existing
rows of the table; it does not replace the existing rows in the table. You can
use the TRUNCATE TABLE statement to remove all the rows from a table.

Neither the TRUNCATE TABLE statement nor the LOAD TABLE
statement fires triggers, including referential integrity actions such as
cascaded deletes.

The LOAD TABLE statement has many of the same options as the
UNLOAD TABLE statement.

& For a description of column delimiters, use of quotes, and file names,
see "Unloading data using the UNLOAD TABLE statement" on page 280.

The LOAD TABLE statement has the additional STRIP clause. The default
setting (STRIP ON) strips trailing blanks from values before they are
inserted. To keep trailing blanks, use the STRIP OFF clause in your LOAD
TABLE statement.

285



Importing data into a database

& For a full description of the LOAD TABLE statement syntax, see
"LOAD TABLE statement" on page 504 of the book Adaptive Server
Anywhere Reference Manual.

Importing data using the Interactive SQL INPUT statement

Data with the same structure as existing database tables can be loaded into
your database from a file using the Interactive SQL INPUT statement.

The Interactive SQL INPUT statement is less efficient than the LOAD
TABLE statement for importing text files. However, the INPUT statement
supports several different file formats, whereas the LOAD TABLE statement
can be used only for text files.

The INPUT command can be entered in Interactive SQL as follows:

INPUT INTO tl
FROM filel
FORMAT ASCII;

INPUT INTO t2

FROM file2

FORMAT FIXED

COLUMN WIDTHS (5, 10, 40, 40 );

These statements could be put in a command file which can then be executed
in Interactive SQL for modification and reference.

& For more information about command files, see the tutorial chapter
"Running command files" on page 80 of the book First Guide to SOL
Anywhere Studio.

Loading data interactively
There are two commands that can be used to input data interactively. You
can use the insert command:

INSERT INTO T1
VALUES ( ... )

to insert a single row at a time or you can use the input command:
INPUT INTO T1 PROMPT

which gives you a full screen to type in data in the current input format
(controlled by the Interactive SQL INPUT _FORMAT option).

286



Chapter 11 Importing and Exporting Data

Handling conversion errors on data import

When you are loading data from external sources, there may be errors in the
data. For example, there may be dates that are not valid dates and numbers
that are not valid numbers. The CONVERSION ERROR database option
allows you to ignore conversion errors by converting them to NULL values.

& For information on setting Interactive SQL database options, see "SET
OPTION statement" on page 553 of the book Adaptive Server Anywhere
Reference Manual.

Loading data that does not match the table structure

DECLARE
TEMPORARY
TABLE statement

CREATE TABLE
statement

The structure of the data to be loaded into a table does not always match the
structure of the destination table itself. For example, the column data types
may be different, or in different order, or there may be extra values in the
data to be imported that do not match columns in the destination table.

To load data that has a different structure:

1 Using the LOAD TABLE statement, load the data into a temporary table
that has a structure matching that of the input file.

2 Use the INSERT statement with a FROM SELECT clause to extract and
summarize data from the temporary table and put it into one or more of
the permanent database tables.

If you are loading a set of data once and for all, you should make the
temporary table using the DECLARE TEMPORARY TABLE statement. A
declared temporary table exists only for the duration of a connection or, if
defined inside a compound statement, of the compound statement.

If you are loading data of a similar structure repeatedly, you should make the
temporary table using the CREATE TABLE statement, specifying a global
temporary table. The definition of the temporary table is held in the database
permanently, but the rows exist only within a given connection.

Tuning bulk loading of data

Loading large volumes of data into a database can be very time consuming.
There are a few things you can do to save time.

¢ Ifyou are using the INPUT command, run Interactive SQL or the client
application on the same machine as the server. Loading data over the
network adds extra communication overhead. This might mean loading
new data during off hours.

287



Importing data into a database

288

Place data files on a separate physical disk drive from the database file.
This could avoid excessive disk head movement during the load.

Increase the size of the database cache. Eliminate disk cache in favor of
database cache if the machine is a dedicated database server.

& For a description of how to control the cache size from the server
command line option see "The database server" on page 12 of the book
Adaptive Server Anywhere Reference Manual.

If you are using the INPUT command, start the server with the —b
switch for bulk operations mode. In this mode, the server does not keep
arollback log or a transaction log, it does not perform an automatic
COMMIT before data definition commands, and it does not lock any
records.

Without a rollback log, you cannot use savepoints and aborting a
command always causes transactions to roll back. Without automatic
COMMIT, a ROLLBACK undoes everything since the last explicit
COMMIT.

Without a transaction log, there is no log of the changes. You should
back up the database file before and after using bulk operations mode
because, in this mode, your database is not protected against media
failure. For more information, see "Backup and Data Recovery" on page
553.

The server allows only one connection when you use the —b switch.

If you have data that requires many commits, running with the —b option
may slow database operation. At each COMMIT, the server carries out a
checkpoint; this frequent checkpointing can slow the server.

Extend the size of the database file, as described in "ALTER DBSPACE
statement” on page 345 of the book Adaptive Server Anywhere
Reference Manual. This command allows a database file to be extended
in large amounts before the space is required, rather than the normal 32
pages at a time when the space is needed. As well as improving
performance for loading large amounts of data, it also serves to keep the
database files more contiguous within the file system.



