CHAPTER 13
Designing Your Database

About this chapter This chapter introduces the basic concepts of relational database design and
gives you step-by-step suggestions for designing your own databases. It uses
the expedient technique known as conceptual data modeling, which focuses
on entities and the relationships between them.

Contents .
Topic Page
Introduction 324
Database design concepts 325
The design process 331
Designing the database table properties 344

323

Introduction

Introduction

Java classes and
database design

324

While designing a database is not a difficult task for small and medium sized
databases, it is an important one. Bad database design can lead to an
inefficient and possibly unreliable database system. Because client
applications are built to work on specific parts of a database, and rely on the
database design, a bad design can be difficult to revise at a later date.

& This chapter covers database design in an elementary manner. For more
advanced information, you may wish to the DataArchitect documentation.
DataArchitect is a component of Powersoft PowerDesigner, a database
design tool available from Sybase, Inc.

& You may also wish to consult an introductory book such as 4 Database
Primer by C. J. Date. If you are interested in pursuing database theory,

C.J. Date's An Introduction to Database Systems is an excellent textbook on
the subject.

The addition of Java classes to the available data types extends the relational
database concepts on which this chapter is based. Database design involving
Java classes is not discussed in this chapter.

& For information on designing databases that take advantage of Java
class data types, see "Java database design" on page 495.

Chapter 13 Designing Your Database

Database design concepts

Entities and
relationships

Entity-relationship
diagrams

Entities

Attributes and
identifiers

In designing a database, you plan what things you want to store information
about, and what information you will keep about each one. You also
determine how these things are related. In the common language of database
design, what you are creating during this step is a conceptual database
model.

The distinguishable objects or things that you want to store information
about are called entities. The associations between them are called
relationships. You might like to think of the entities as nouns in the
language of database description and the relationships as verbs.

Conceptual models are useful because they make a clean distinction between
the entities and relationships. These models hide the details involved in
implementing a design in any particular database management system. They
allow you to focus on fundamental database structure. Hence, they also form
a common language for the discussion of database design.

The main component of a conceptual database model is a diagram that shows
the entities and relationships. This diagram is commonly called an entity-
relationship diagram. In consequence, many people use the name entity-
relationship modeling to refer to the task of creating a conceptual database
model.

Conceptual database design is a top-down design method. There are now
sophisticated tools such as Powersoft PowerDesigner that helps you pursue
this method, or other approaches. This chapter is an introductory chapter
only, but it does contain enough information for the design of
straightforward databases.

An entity is the database equivalent of a noun. Distinguishable objects such
as employees, order items, departments and products are all examples of
entities. In a database, a table represents each entity. The entities that you
build into your database arise from the activities for which you will be using
the database, whether that be tracking sales calls, maintaining employee
information, or some other activity.

Each entity contains a number of attributes. Attributes are particular
characteristics of the things that you would like to store. For example, in an
employee entity, you might want to store an employee ID number, first and
last names, an address, and other particular information that pertains to a
particular employee. Attributes are also known as properties.

325

Database design concepts

Relationships

326

You depict an entity using a rectangular box. Inside, you list the attributes
associated with than entity.

Employee
Employee Number
First Name
Last Name
Address

An identifier is one or more attributes on which all the other attributes
depend. It uniquely identifies an item in the entity. Underline the names of
attributes that you wish to form part of an identifier.

In the Employee entity, above, the Employee Number uniquely identifies an
employee. All the other attributes store information that pertains only to that
one employee. For example, an employee number uniquely determines an
employee’s name and address. Two employees might have the same name or
the same address, but you can make sure that they don’t have the same
employee number. Employee Number is underlined to show that it is an
identifier.

It is good practice to create an identifier for each entity. As will be explained
later, these identifiers become primary keys within your tables. Primary key
values must be unique and cannot be null or undefined. They identify each
row in a table uniquely and improve the performance of the database server.

A relationship between entities is the database equivalent of a verb. An
employee is a member of a department, or an office is located in a city.
Relationships in a database may appear as foreign key relationships between
tables, or may appear as separate tables themselves. You will see examples
of each in this chapter.

The relationships in the database are an encoding of rules or practices that
govern the data in the entities. If each department has one department head,
you can create a one-to-one relationship between departments and employees
to identify the department head.

Once a relationship is built into the structure of the database, there is no
provision for exceptions. There is nowhere to put a second department head.
Duplicating the department entry would involve duplicating the department
ID, which is the identifier. Duplicate identifiers are not allowed.

Chapter 13 Designing Your Database

Cardinality of
relationships

Roles

Tip

Strict database structure can benefit you, because it can eliminate
inconsistencies, such as a department with two managers. On the other
hand, you as the designer should make your design flexible enough to
allow some expansion for unforeseen uses. Extending a well-designed
database is usually not too difficult, but modifying the existing table
structure can render an entire database and its client applications obsolete.

There are three kinds of relationships between tables. These correspond to
the cardinality (number) of the entities involved in the relationship.

¢ One-to-one relationships You depict a relationship by drawing a line
between two entities. The line may have other markings on it such as the
two little circles shown. Later sections explain the purpose of these
marks.

Department Employee
FO

Management Relationship

One employee manages one department.

¢ One-to-many relationships The fact that one item contained in
Entity 1 can be associated with multiple entities in Entity 2 is denoted by
the multiple lines forming the attachment to Entity 2.

Office Telephones

Phone Location Relationship

One office can have many telephones.

¢ Many-to-many relationships In this case, draw multiple lines for the
connections to both entities.

Parts Warehouses

Storage Relationship

One warehouse can hold many different parts and one type of part can
be stored at many warehouses.

You can describe each relationship with two roles. Roles are verbs or
phrases that describe the relationship from each point of view. For example,
a relationship between employees and departments might be described by the
following two roles.

1 An employee is @ member of a department.

327

Database design concepts

Mandatory
elements

328

2 A department contains an employee.

Employee is a member of
Employee Number Department
First Name Department ID
Last Name Department Name
Address contains

Roles are very important because they afford you a convenient and effective

means of verifying your work.

Tip

makes it easy to read these diagrams: Read the
1 name of the first entity,
role next to the first entity,

name of the second entity.

Whether reading from left-to-right or from right-to-left, the following rule

2
3 cardinality from the connection to the second entity, and
4

The little circles just before the end of the line that denotes the relation serve

an important purpose. A circle means that an element can exist in the one

entity without a corresponding element in the other entity.

If a cross bar appears in place of the circle, that entity must contain at least
one element for each element in the other entity. An example will clarify

these statements.

Publisher

ID Number
Publisher Name

publishes
Books is written by
ID Number
Titl
is published by e

writes

This diagram corresponds to the following four statements.
1 A publisher publishes zero or more books.

2 A book is published by exactly one publisher.

3 A book is written by one or more authors.
4

An author writes zero or more books.

Authors

ID Number

First Name
Last Name

Chapter 13 Designing Your Database

Tip
Think of the little circle as the digit 0 and the cross bar as the number one.
The circle means at least zero. The cross bar means at least one.

Reflexive Sometimes, a relationship will exist between entries in a single entity. In this
relationships case, the relationship is called reflexive. Both ends of the relationship attach
to a single entity.

Employee
Employee Number
First Name
Last Name
Address

manages repc}gs to
-

This diagram corresponds to the following two statements.
1 An employee reports to at most one other employee.

2 An employee manages zero or more or more employees.

Notice that in the case of this relation, it is essential that the relation be
optional in both directions. Some employees are not managers. Similarly, at
least one employee should head the organization and hence report to no one.

& Naturally, you would also like to specify that an employee cannot be his
or her own manager. This restriction is a type of business rule. Business rules
are discussed later as part of "The design process" on page 331.

Changing many-to-many relationships into entities

When you have attributes associated with a relationship, rather than an
entity, you can change the relationship into an entity. This situation
sometimes arises with many-to-many relationships, when you have attributes
that are particular to the relationship and so you cannot reasonably add them
to either entity.

Suppose that your parts inventory is located at a number of different
warehouses. You have drawn the following diagram.

Parts
stored at
Part Number
Description Warehouse
contains Warehouse D
Address

329

Database design concepts

But you wish to record the quantity of each part stored at each location. This
attribute can only be associated with the relationship. Each quantity depends
on both the parts and the warehouse involved. To represent this situation,
you can redraw the diagram as follows:

Parts
M stored at
Description
Inventory Warehouse
Quantity Warehouse 1D
contains Address

Notice the following details of the transformation:

1 Two new relations join the relation entity with each of the two original
entities. They inherit their names from the two roles of the original
relationship: stored at and contains, respectively.

2 Each entry in the Inventory entity demands one mandatory entry in the
Parts entity and one mandatory entry in the Warehouse entity. These
relationships are mandatory because a storage relationship only makes
sense if it is associated with one particular part and one particular
warehouse.

3 The new entity is dependent on both the Parts entity and on the
Warehouse entity, meaning that the new entity is identified by the
identifiers of both of these entities. In this new diagram, one identifier
from the Parts entity and one identifier from the Warehouse entity
uniquely identify an entry in the Inventory entity. The triangles that
appear between the circles and the multiple lines that join the two new
relationships to the new Inventory entity denote the dependencies.

Do not add either a Part Number or Warehouse ID attribute to the Inventory
entity. Each entry in the Inventory entity does depend on both a particular
part and a particular warehouse, but the triangles denote this dependence
more clearly.

330

Chapter 13 Designing Your Database

The design process

There are five major steps in the design process.

¢

¢
¢
¢
¢

"Step 1: Identify entities and relationships" on page 331.
"Step 2: Identify the required data" on page 334.

"Step 3: Normalize the data" on page 336.

"Step 4: Resolve the relationships" on page 339.

"Step 5: Verify the design" on page 342.

& For information about implementing the database design, see "Working
with Database Objects" on page 65.

Step 1: Identify entities and relationships

% To identify the entities in your design and their relationship to each
other:

1

Define high-level activities Identify the general activities for which
you will use this database. For example, you may want to keep track of
information about employees.

Identify entities For the list of activities, identify the subject areas you
need to maintain information about. These subjects will become entities.

For example, hire employees, assign to a department, and determine a
skill level.

Identify relationships Look at the activities and determine what the
relationships will be between the entities. For example, there is a
relationship between parts and warehouses. Define two roles to describe
each relationship.

Break down the activities You started out with high-level activities.
Now, examine these activities more carefully to see if some of them can
be broken down into lower-level activities. For example, a high-level
activity such as maintain employee information can be broken down
into:

¢ Add new employees.
¢ Change existing employee information.

¢ Delete terminated employees.

331

The design process

5 Identify business rules Look at your business description and see
what rules you follow. For example, one business rule might be that a
department has one and only one department head. These rules will be
built into the structure of the database.

Entity and relationship example

Example

Define high-level
activities

Identify the entities
and relationships

332

ACME Corporation is a small company with offices in five locations.
Currently, 75 employees work for ACME. The company is preparing for
rapid growth and has identified nine departments, each with its own
department head.

To help in its search for new employees, the personnel department has
identified 68 skills that it believes the company will need in its future
employee base. When an employee is hired, the employee's level of expertise
for each skill is identified.

Some of the high-level activities for ACME Corporation are:
Hire employees.

Terminate employees.

Maintain personal employee information.

Maintain information on skills required for the company.
Maintain information on which employees have which skills.

Maintain information on departments.

* & 6 ¢ o o o

Maintain information on offices.

Identify the entities (subjects) and the relationships (roles) that connect them.
Create a diagram based on the description and high-level activities.

Use boxes to show entities and lines to show relationships. Use the two roles
to label each relationship. You should also identify those relationships that
are one-to-many, one-to-one, and many-to-many using the appropriate
annotation.

Below, is a rough entity-relationship diagram. It will be refined throughout
the chapter.

Chapter 13 Designing Your Database

Break down the
high-level activities

Identify business
rules

Skill

is acquired by

Department

is headed by

is ca;ble of

manages ﬁ)

contains

Employee
works out of

contains is a member of

Office

manages g (XS to
N

The following lower-level activities below are based on the high-level
activities listed above:

Add or delete an employee.

Add or delete an office.

List employees for a department.

Add a skill to the skill list.

Identify the skills of an employee.

Identify an employee's skill level for each skill.

Identify all employees that have the same skill level for a particular skill.

* & & O O o o o

Change an employee's skill level.

These lower-level activities can be used to identify if any new tables or
relationships are needed.

Business rules often identify one-to-many, one-to-one, and many-to-many
relationships.

The kind of business rules that may be relevant include the following;:

¢ There are now five offices; expansion plans allow for a maximum of ten.
¢ Employees can change department or office.

¢ Each department has one department head.

¢ Each office has a maximum of three telephone numbers.
¢

Each telephone number has one or more extensions.

333

The design process

When an employee is hired, the level of expertise in each of several
skills is identified.

Each employee can have from three to twenty skills.

An employee may or may not be assigned to an office.

Step 2: Identify the required data

Identify supporting
data

334

< To identify the required data:

1
2
3
4

5
6

Identify supporting data.
List all the data you need to track.
Set up data for each entity.

List the available data for each entity. The data that describes an entity
(subject) answers the questions who, what, where, when, and why.

List any data required for each relationship (verb).

List the data, if any, that applies to each relationship.

The supporting data you identify will become the names of the attributes of
the entity. For example, the data below might apply to the Employee entity,
the Skill entity, and the Expert In relationship.

Employee SKkill Expert In
Employee ID Skill ID Skill level
Employee first name Skill name Date skill was acquired

Employee last name
Employee department
Employee office
Employee address

Description of skill

If you make a diagram of this data, it will look something like this picture:

Employee
Employee ID
First name
Last name
Home address

is acquired by

is capable of

Skill
Skill ID
Skill name
Skill description

Chapter 13 Designing Your Database

Things to
remember

Observe that not all of the attributes you listed appear in this diagram. The
missing items fall into two categories:

1 Some are contained implicitly in other relationships; for example,
Employee department and Employee office are denoted by the relations
to the Department and Office entities, respectively.

2 Others are not present because they are associated not with either of
these entities, but rather the relationship between them. The above
diagram is inadequate.

The first category of items will fall naturally into place when you draw the
entire entity-relationship diagram.

You can add the second category by converting this many-to-many
relationship into an entity.

Employee -
Skill
Employee ID Expert In i
; - Skill ID
First name Skill level Skil
Last name is capable of Date acquired is acquired by [SXIl name
Skill description
Home address

The new entity depends on both the Employee and the Skill entities. It
borrows its identifiers from these entities because it depends on both of them.

¢ When you are identifying the supporting data, be sure to refer to the
activities you identified earlier to see how you will access the data.

For example, you may need to list employees by first name in some
situations and by last name in others. To accommodate this requirement,
create a First Name attribute and a Last Name attribute, rather than a
single attribute that contains both names. With the names separate, you
can later create two indexes, one suited to each task.

¢ Choose consistent names. Consistency makes it easier to maintain your
database and easier to read reports and output windows.

For example, if you choose to use an abbreviated name such as
Emp_status for one attribute, you should not use a full name, such as
Employee ID, for another attribute. Instead, the names should be
Emp_status and Emp ID.

¢ At this stage, it is not crucial that the data be associated with the correct
entity. You can use your intuition. In the next section, you'll apply tests
to check your judgment.

335

The design process

Step 3: Normalize the data

Normalization is a series of tests that eliminate redundancy in the data and
make sure the data is associated with the correct entity or relationship. There
are five tests. This section presents the first three of them. These three tests
are the most important and so the most frequently used.

Why normalize?

The goals of normalization are to remove redundancy and to improve
consistency. For example, if you store a customer’s address in multiple
locations, it is difficult to update all copies correctly should he move.

&> For more information about the normalization tests, see a book on
database design.

Normal forms There are several tests for data normalization. When your data passes the
first test, it is considered to be in first normal form. When it passes the
second test, it is in second normal form, and when it passes the third test, it is
in third normal form.

«+» To normalize data in a database:
1 List the data.

¢ Identify at least one key for each entity. Each entity must have an
identifier.

¢ Identify keys for relationships. The keys for a relationship are the
keys from the two entities that it joins.

¢ Check for calculated data in your supporting data list. Calculated
data is not normally stored in a relational database.

2 Put data in first normal form.

¢ Ifan attribute can have several different values for the same entry,
remove these repeated values.

¢ Create one or more entities or relationships with the data that you
remove.

3 Putdata in second normal form.
¢ Identify entities and relationships with more than one key.
¢ Remove data that depends on only one part of the key.

¢ Create one or more entities and relationships with the data that you
remove.

4 Put data in third normal form.

336

Chapter 13 Designing Your Database

Data and identifiers

¢ Remove data that depends on other data in the entity or relationship,

not on the key.

¢ Create one or more entities and relationships with the data that you

remove.

Before you begin to normalize (test your design), simply list the data and
identify a unique identifier each table. The identifier can be made up of one
piece of data (attribute) or several (a compound identifier).

The identifier is the set of attributes that uniquely identifies each row in an
entity. The identifier for the Employee entity is the Employee ID attribute.
The identifier for the Works In relationship consists of the Office Code and
Employee ID attributes. You can make an identifier for each relationship in
your database by taking the identifiers from each of the entities that it
connects. In the following table, the attributes identified with an asterisk are
the identifiers for the entity or relationship.

Entity or Relationship

Attributes

Office

*Office code
Office address
Phone number

Works in

*Office code
*Employee ID

Department

*Department 1D
Department name

Heads

*Department 1D
*Employee ID

Member of

*Department 1D
*Employee ID

Skill

*Skill ID
Skill name
Skill description

Expert in

*Skill ID
*Employee ID
Skill level
Date acquired

Employee

*Employee ID
last name

first name
Social security
number
Address
phone number
date of birth

337

The design process

Putting data in first
normal form

Putting data in
second normal
form

338

¢ To test for first normal form, look for attributes that can have repeating
values.

¢ Remove attributes when multiple values can apply to a single item.
Move these repeating attributes to a new entity.

In the entity below, Phone number can repeat—an office can have more than
one telephone number.

Office and Phone
Office code
Office address
Phone number

Remove the repeating attribute and make a new entity called Telephone. Set
up a relationship between Office and Telephone.

Office

Office code
Office address Telephone
Phone number

has

is located at

¢ Remove data that does not depend on the whole key.

¢ Look only at entities and relationships whose identifier is composed of
more than one attribute. To test for second normal form, remove any
data that does not depend on the whole identifier. Each attribute should
depend on all of the attributes that comprise the identifier.

In this example, the identifier of the Employee and Department entity is
composed of two attributes. Some of the data does not depend on both
identifier attributes; for example, the department name depends on only one
of those attributes, Department ID, and Employee first name depends only on
Employee ID.

Employee and Department

Employee ID
Department ID
Employee first name
Employee last name
Department name

Move the identifier Department ID, which the other employee data does not
depend on, to a entity of its own called Department. Also move any attributes
that depend on it. Create a relationship between Employee and Department.

Chapter 13 Designing Your Database

Putting data in third
normal form

Employee
Employee ID
Employee first name
Employee last name

works in

Department

Department ID
Department name

contains

¢ Remove data that doesn't depend directly on the key.

¢ To test for third normal form, remove any attributes that depends on
other attributes, rather than directly on the identifier.

In this example, the Employee and Office entity contains some attributes that
depend on its identifier, Employee ID. However, attributes such as Office
location and Office phone depend on another attribute, Office code. They do
not depend directly on the identifier, Employee ID.

Employee and Office
Employee ID
Employee first name
Employee last name
Office code
Office location
Office phone

Remove Office code and those attributes that depend on it. Make another

entity called Office. Then, create a relationship that connects Employee with
Office.

Employee
Employee 1D works out of
Employee first name Office
Employee last name Office code
houses Office location
Office phone

Step 4: Resolve the relationships

When you finish the normalization process, your design is almost complete.
All you need to do is to generate the physical data model that corresponds
to your conceptual data model. This process is also known as resolving the
relationships, because a large portion of the task involves converting the
relationships in the conceptual model into the corresponding tables and
foreign-key relationships.

Whereas the conceptual model is largely independent of implementation
details, the physical data model is tightly bound to the table structure and
options available in a particular database application. In this case, that
application is Adaptive Server Anywhere.

339

The design process

Resolving
relationships that
do not carry data

340

In order to implement relationships that do not carry data, you define foreign
keys. A foreign key is a column or set of columns that contains primary key
values from another table. The foreign key allows you to access data from
more than one table at one time.

A database design tool such as the DataArchitect component of Powersoft
PowerDesigner can generate the physical data model for you. However, if
you’re doing it yourself there are some basic rules that help you decide
where to put the keys.

¢ Onetomany An one-to-many relationship always becomes an entity
and a foreign key relationship.

Employee is a member of
Employee Number Department
First Name Department ID
Last Name Department Name
Address contains

Notice that entities become tables. Identifiers in entities become (at least
part of) the primary key in a table. Attributes become columns. In a one-
to-many relationship, the identifier in the one entity will appear as a new
foreign key column in the many table.

Employee
Employee Number <pk>
Department ID <fk>
First Name
Last Name Department ID = Department 1D
Address
Department
Department ID <pk>

Department Name

In this example, the Employee entity becomes an Employee table.
Similarly, the Department entity becomes a Department table. A foreign
key called Department ID appears in the Employee table.

¢ Onetoone Inaone-to-one relationship, the foreign key can go into

either table. If the relationship is mandatory on one side, but optional on
the other, it should go on the optional side. In this example, put the
foreign key (Vehicle ID) in the Truck table because a vehicle does not
have to be a truck.

Vehicle
may be
Vehicle ID _Truck
Model Weight rating
Price is a type of

Chapter 13 Designing Your Database

The above entity-relationship model thus resolves the database base
structure, below.

Vehicle
';"‘.’de' ehieie B S venice Vehicle ID <>
ree Weight rating

¢ Many to many In a many-to-many relationship, a new table is created
with two foreign keys. This arrangement is necessary to make the
database efficient.

Parts
stored at
Part Number
Description Warehouse
contains Warehouse [D
Address

The new Storage Location table relates the Parts and Warehouse tables.

Parts
Part Number <pk>
Description

Storage Location
Part Number <pk fk> | Warehouse ID = Warehouse ID

Part Number = Part Number | \warehouse ID <pk.fk> 4}

Warehouse
Warehouse ID <pk>
Address
Resolving Some of your relationships may carry data. This situation often occurs in
relationships that many-to-many relationships.
carry data
Parts
M stored at
Description
Inventory Warehouse
Quantity Warehouse ID
contains Address

If this is the case, each entity resolves to a table. Each role becomes a foreign
key that points to another table.

341

The design process

Parts
Part Number <pk>
Description

Inventory
Warehouse ID
Part Number = Part Number | Part Number

<pk.fk> | Warehouse ID = Warehouse ID

<pk.fk> l

Quantity
Warehouse
Warehouse ID <pk>
Address

The Inventory entity borrows its identifiers from the Parts and Warehouse
tables, because it depends on both of them. Once resolved, these borrowed
identifiers form the primary key of the Inventory table.

Tip

A conceptual data model simplifies the design process because it hides a
lot of details. For example, a many-to-many relationship always generates
an extra table and two foreign key references. In a conceptual data model,
you can usually denote all of this structure with a single connection.

Step 5: Verify the design

Final design

342

Before you implement your design, you need to make sure that it supports
your needs. Examine the activities you identified at the start of the design
process and make sure you can access all of the data that the activities
require.

¢ Can you find a path to get the information you need?
¢ Does the design meet your needs?

¢ s all of the required data available?

If you can answer yes to all the questions above, you are ready to implement
your design.

Applying steps 1 through 3 to the database for the little company produces
the following entity-relationship diagram. This database is now in third
normal form.

Chapter 13 Designing Your Database

is acquired by

Expert In

Skill Level
Date Acquired

is capable of

works out of

houses

Office
ID Number
Office name
Address

Skill
ID Number
Skill name

Skill description

Department

Department ID
Department name

d

contains

is headed by
manages
Employee
Employee ID >4
First name
Last name

Home address

manages g Xs to
N

is a member of

The corresponding physical data model appears below.

ID Number = ID Number

Expert In
1D Number <pk.fk>
Employee ID <pk.fk>
Skill Level
Date Acquired

Skill
ID Number <pk>
Skill name
Skill description

Employee ID = Employee ID

Employee ID = Employee |

ID Number = ID Number

p=—

Employee
Employee ID <pk>
1D Number <fk>
Emp_Employee ID <fk>
First name
Last hame
Home address

Office
1D Number <pk>
Office name
Address

t

Employee ID = Emp_Employee ID

Department
Department ID <pk>
Employee ID <fk>
Department name

Department ID |= Department ID

Department/Employee
Department ID <pk,fk>
Employee ID <pk,fk>

Employee ID = Employee ID

343

Designing the database table properties

Designing the database table properties

The database design specifies which tables you have and what columns each
table contains. This section describes how to specify each column's
properties.

For each column, you must decide the column name, the data type and size,
whether or not NULL values are allowed, and whether you want the database
to restrict the values allowed in the column.

Choosing column names

A column name can be any set of letters, numbers or symbols. However, you
must enclose a column name in double quotes if it contains characters other
than letters, numbers, or underscores, if it does not begin with a letter, or if it
is the same as a keyword.

& See "Alphabetical list of keywords" on page 215 of the book Adaptive
Server Anywhere Reference Manual.

Choosing data types for columns

344

Available data types in Adaptive Server Anywhere include the following:
Integer data types

Decimal data types

Floating-point data types

Character data types

Binary data types

Date/time data types

User-defined data types

* & 6 & O o o o

Java class data types

& For a description of data types, see "SQL Data Types" on page 219 of
the book Adaptive Server Anywhere Reference Manual.

The data type of the column affects the maximum size of the column. For
example, if you specify SMALLINT, a column can contain a maximum
value of 32,767. If you specify INTEGER, the maximum value is
2,147,483,647. In the case of CHAR, you must specify the maximum length
of a value in the column.

Chapter 13 Designing Your Database

NULL and
NOT NULL

The long binary data type can be used to store information such as images
(for instance, stored as bitmaps) or word-processing documents in a
database. These types of information are commonly called binary large
objects, or BLOBS.

& For a complete description of each data type, see "SQL Data Types" on
page 219 of the book Adaptive Server Anywhere Reference Manual.

If the column value is mandatory for a record, you define the column as
being NOT NULL. Otherwise, the column is allowed to contain the NULL
value, which represents no value. The default in SQL is to allow NULL
values, but you should explicitly declare columns NOT NULL unless there is
a good reason to allow NULL values.

& For a complete description of the NULL value, see "NULL value" on
page 213 of the book Adaptive Server Anywhere Reference Manual. For
information on its use in comparisons, see "Search conditions" on page 194
of the book Adaptive Server Anywhere Reference Manual.

Choosing constraints

Example

Although the data type of a column restricts the values that are allowed in
that column (for example, only numbers or only dates), you may want to
further restrict the allowed values.

You can restrict the values of any column by specifying a CHECK
constraint. You can use any valid condition that could appear in a WHERE
clause to restrict the allowed values. Most CHECK constraints use either the
BETWEEN or IN condition.

&> For more information about valid conditions, see "Search conditions"
on page 194 of the book Adaptive Server Anywhere Reference Manual.

For more information about assigning constraints to tables and columns, see
"Ensuring Data Integrity" on page 347.

The sample database has a table called Department, which has columns
named dept_id, dept_name, and dept_head_id. Its definition is as follows:

Column | Data Type | Size | Null/Not Null | Constraint
dept_id | integer | — | not null | None
dept_name char 40 not null None

null None

dept head id | integer

If you specify NOT NULL, a column value must be supplied for every row
in the table.

345

Designing the database table properties

346

