CHAPTER 14

Ensuring Data Integrity

About this chapter This chapter describes the facilities in Adaptive Server Anywhere for
ensuring that the data in your database is valid and reliable. Building
integrity constraints right into the database is the surest way to make sure
your data stays in good shape.

Several types of integrity constraints can be enforced. You can ensure
individual entries are correct by imposing constraints and CHECK conditions
on tables and columns. Setting column properties by choosing an appropriate
data type or setting special default values assists this task.

The SQL statements in this chapter use the CREATE TABLE statement and
ALTER TABLE statement, basic forms of which were introduced in
"Working with Database Objects" on page 65.

Contents .
Topic Page
Data integrity overview 348
Using column defaults 352
Using table and column constraints 356
Enforcing entity and referential integrity 360
Integrity rules in the system tables 365

347

Data integrity overview

Data integrity overview

For data to have integrity means that the data is valid—correct and
accurate—and that the relational structure of the database is intact. The
relational structure of the database is enforced through referential integrity
constraints. These are rules that maintain the consistency of data between
tables.

Adaptive Server Anywhere supports stored procedures and JDBC, which
allow you detailed control over how data gets entered into the database. You
can also create triggers: custom procedures stored in the database that are
invoked automatically when a certain action, such as an update of a
particular column, is carried out.

& Procedures and triggers are discussed in "Using Procedures, Triggers,
and Batches" on page 221.

How data can become invalid

Incorrect
information

Duplicated data

Foreign key
relations
invalidated

348

Here are a few examples of how the data in a database may become invalid if
proper checks are not made. Each of these examples can be prevented by
facilities described in this chapter.

¢ A sales transaction takes place, but the operator entering the date of the
transaction does so incorrectly

¢ A zero is missed off a salary entry, making an employee's salary ten
times too small

¢ A new department has been created, with dept_id 200, and needs to be
added to the department table of the organization's database—but two
people enter this information into the table

¢ In areorganization, the department identified by dept_id 300 is closed
down.

Each employee record for employees in this department is given a new
dept_id entry, and then the department 300 row is deleted from the
department table. But one employee was missed, and still has dept_id
300 in their record.

Chapter 14 Ensuring Data Integrity

Integrity constraints belong in the database

Build integrity
constraints into
database

In order to ensure that the data in a database are valid, you need to formulate
checks that define valid and invalid data and design rules to which data must
adhere. The rules to which data must conform are often called business
rules. The collective name for checks and rules is constraints.

Constraints built into the database itself are inherently more reliable than
those built into client applications, or spelled out as instructions to database
users. Constraints built into the database are part of the definition of the
database itself and enforced consistently across all applications.

Setting a constraint once, in the database, imposes it for all subsequent
interactions with the database, no matter from what source. In contrast,
constraints built into client applications are vulnerable every time the
software is altered, and may need to be imposed in several applications, or
several places in a single client application.

How database contents get changed

Information in database tables is changed by submitting SQL statements
from client applications. Only a few SQL statements actually modify the
information in a database.

¢ Information in a row of a table may be updated, using the UPDATE
statement.

¢ An existing row of a table may be deleted, using the DELETE
statement.

¢ A new row may be inserted into a table, using the INSERT statement.

Data integrity tools

Defaults

To assist in maintaining data integrity, you can use defaults, data constraints,
and constraints that maintain the referential structure of the database.

You can assign default values to columns, to make certain kinds of data entry
more reliable. For example:

¢ A column can have a current date default for recording the date of
transactions with any user or client application action.

¢ A particular kind of default allows column values to be incremented
automatically whenever a new row is entered. Items such as purchase
orders, for example, can be guaranteed unique sequential numbers in this
way without any user action.

349

Data integrity overview

Constraints

Entity and
referential integrity

Triggers for
advanced integrity
rules

350

& These and other column defaults are discussed in "Using column
defaults" on page 352.

You can use several types of constraints on the data in individual columns or
tables. For example:

¢ A NOT NULL constraint prevents a column from containing a null
entry.

¢ Columns can have CHECK conditions assigned to them, to ensure that a
particular condition is met by every item in the column. You could
ensure, for example, that salary column entries are within a specified
range, protecting against user error when typing in new values.

¢ CHECK conditions can be made on the relative values in different
columns, to ensure, for example, that in a library database a
date_returned entry is later than a date_borrowed entry.

¢ More sophisticated CHECK conditions can be enforced using a trigger.
Triggers are discussed in "Using Procedures, Triggers, and Batches" on
page 221.

These and other table and column constraints are discussed in "Using table
and column constraints" on page 356. Column constraints can be inherited
from user-defined data types.

The information in relational database tables is tied together by the relations
between tables. These relations are defined by the primary keys and foreign
keys built in to the database design. The following integrity rules maintain
the structure of the database:

¢ Entity integrity Keeps track of the primary keys. It guarantees that
every row of a given table can be uniquely identified by a primary key
that guarantees IS NOT NULL.

¢ Referential integrity Keeps track of the foreign keys that define the
relationships between tables. It guarantees that all foreign key values
either match a value in the corresponding primary key or contain the
NULL value if they are defined to allow NULL.

& For more information about enforcing referential integrity, see
"Enforcing entity and referential integrity" on page 360. For more
information about designing appropriate primary and foreign key relations,
see "Designing Your Database" on page 323.

You can also use triggers to maintain data integrity. A trigger is a procedure
stored in the database that is executed automatically whenever the
information in a specified table is altered. Triggers are a powerful
mechanism for database administrators and developers to ensure that data is
kept reliable.

Chapter 14 Ensuring Data Integrity

& For a full description of triggers, see "Using Procedures, Triggers, and
Batches" on page 221.

SQL statements for implementing integrity constraints

The following SQL statements are used to implement integrity constraints:

¢ CREATE TABLE statement This statement is used to implement
integrity constraints as the database is being created.

¢ ALTER TABLE statement This statement is used to add integrity
constraints to an existing database, or to modify constraints for an
existing database.

¢ CREATE TRIGGER statement This statement is used to create
triggers to enforce more complex business rules.

&~ For full descriptions of the syntax of these statements, see "SQL
Statements" on page 339 of the book Adaptive Server Anywhere Reference
Manual.

351

Using column defaults

Using column defaults

Supported default
values

Column defaults automatically assign a specified value to particular columns
whenever a new row is entered into a database table, without any action on
the part of the client application, as long as no value is specified by the client
application. If the client application does specify a value for the column, it
overrides the column default value.

Column defaults are useful for automatically filling columns with
information, such as the date or time a row is inserted, or the user ID of the
person entering the information.

Using column defaults encourages data integrity, but does not enforce it.
Defaults can always be overridden by client applications.

The following default values are supported:

¢ A string specified in the CREATE TABLE statement or ALTER
TABLE statement

¢ A number specified in the CREATE TABLE statement or ALTER
TABLE statement

¢ An automatically incremented number: one more than the previous
highest value in the column

The current date, time, or timestamp
The current user ID of the database user

A NULL value

* & o o

A constant expression, as long as it does not reference database objects.

Creating column defaults

Example

352

Column defaults can be created at the time a table is created, using the
CREATE TABLE statement, or added at a later time using the ALTER
TABLE statement.

The following statement adds a condition to an existing column named id in
the sales_order table, so that it is automatically incremented (unless a value
is specified by a client application):

ALTER TABLE sales order

MODIFY id DEFAULT AUTOINCREMENT

& Each of the other default values is specified in a similar manner. For a
detailed description of the syntax, see "CREATE TABLE statement" on page
415 of the book Adaptive Server Anywhere Reference Manual.

Chapter 14 Ensuring Data Integrity

Modifying and deleting column defaults

Column defaults can be changed or removed by using the same form of the
ALTER TABLE statement as used to create defaults. The following
statement changes the default value of a column named order_date from its
current setting to CURRENT DATE:

ALTER TABLE sales order
MODIFY order date DEFAULT CURRENT DATE

Column defaults are removed by modifying them to be NULL. The
following statement removes the default from the order_date column:

ALTER TABLE sales order
MODIFY order date DEFAULT NULL

Working with column defaults in Sybase Central

All adding, altering, and deleting of column defaults in Sybase Central is
carried out in the Type tab of the column properties sheet.

< To display the property sheet for a column:

1 Connect to the database.

2 Click the Tables folder for that database, and click the table holding the
column you want to change.

3 Double-click the Columns folder to open it, and double-click the column
to display its property sheet.

& For more information, see the Sybase Central online Help.

Current date and time defaults

Useful examples of
current date default

For columns with the DATE, TIME, or TIMESTAMP data type, the current
date, current time, or current timestamp may be used as a default. The default
specified must be compatible with the column's data type.

The following are just a few examples of when a current date default would
be useful:

¢ To record dates of phone calls in a contact database
¢ To record the dates of orders in a sales entry database

¢ To record the date a book is borrowed in a library database

353

Using column defaults

Current timestamp

The current timestamp is used for similar purposes to the current date
default, but when greater accuracy is required. For example, a user of a
contact management application may have several contacts with a single
customer in one day: the current timestamp default would be useful to
distinguish these contacts.

The current timestamp is also useful when the sequence of events is
important in a database, as it records a date and the time down to a precision
of millionths of a second.

& For more information about timestamps, times, and dates, see "SQL
Data Types" on page 219 of the book Adaptive Server Anywhere Reference
Manual.

The user ID default

Assigning a DEFAULT USER to a column is an easy and reliable way of
identifying the person making an entry in a database. This information may
be required, for example, when salespeople are working on commission.

Building a user ID default into the primary key of a table is a useful
technique for occasionally connected users. These users can make a copy of
tables relevant to their work on a portable computer, make changes while not
connected to a multiuser database, and then apply the transaction log to the
server when they return. Incorporating their user ID into the primary key of
the table helps to prevent conflicts during the update.

The autoincrement default

354

The autoincrement default is useful for numeric data fields. It assigns each
new row a value one greater than that of the previous highest value in the
column. Autoincrement columns can be used to record purchase order
numbers, to identify customer service calls, or other entries where an
identifying number is required, but the value of the number itself has no
meaning.

Autoincrement columns are typically primary key columns or columns
constrained to hold unique values (see "Enforcing entity integrity" on page
360). It is highly recommended that the autoincrement default not be used in
cases other than these, as doing so can adversely affect the database
performance.

One case when an autoincrement default does not adversely affect
performance is when the column is the first column of an index. This is
because the server uses an index or key definition to find the highest value.

Chapter 14 Ensuring Data Integrity

The next value to be used for each column is stored as a long integer (4
bytes). Using values greater than (2**31 - 1), that is, large double or numeric
values, may cause wraparound to negative values, and AUTOINCREMENT
should not be used in such cases.

& A column with the AUTOINCREMENT default is referred to in
Transact-SQL applications as an IDENTITY column. For information on
IDENTITY columns, see "The special IDENTITY column" on page 799.

The NULL default

For columns that allow NULL values, specifying a NULL default is exactly
the same as not specifying a default at all. A NULL value is assigned to the
column if no value is explicitly assigned by the client when inserting the
row.

NULL defaults are typically used when information for some columns is
optional or not always available and is not required for the data in the
database be correct.

& For more information on the NULL value, see "NULL value" on page
213 of the book Adaptive Server Anywhere Reference Manual.

String and number defaults

A specific string or number can be specified as a default value, as long as the
column holds a string or number data type. You must ensure that the default
specified can be converted to the column's data type.

Default strings and numbers are useful when there is a typical entry for a
given column. For example, if an organization has two offices: the
headquarters in city_1 and a small office in city_2, you may want to set a
default entry for a location column to city 1, to make data entry easier.

Constant expression defaults

A constant expression can be used as a default value, as long as it does not
reference database objects. This allows column defaults to contain entries
such as the date fifteen days from today, which would be entered as

. DEFAULT (dateadd(day, 15, getdate()))

355

Using table and column constraints

Using table and column constraints

The CREATE TABLE statement and ALTER TABLE statement can specify
many different attributes for a table. Along with the basic table structure
(number, name and data type of columns, name and location of the table),
you can specify other features that allow control over data integrity.

Caution

Altering tables can interfere with other users of the database. Although
the ALTER TABLE statement can be executed while other connections are
active, it is prevented if any other connection is using the table to be
altered. For large tables, ALTER TABLE is a time-consuming operation,
and no other requests referencing the table being altered are allowed
while the statement is being processed.

This section describes how to use constraints to help ensure that the data
entered in the table is correct.

Using CHECK conditions on columns

Example 1

Example 2

356

A CHECK condition can be applied to values in a single column, to ensure
that they satisfy rules. These rules may be rules that data must satisfy in
order to be reasonable, or they may be more rigid rules that reflect
organization policies and procedures.

You use a CHECK condition to ensure that the values in a column satisfy
some definite criterion.

CHECK conditions on individual column values are useful when only a
restricted range of values are valid for that column. Here are some examples:

¢ You can enforce a particular formatting requirement. If a table has a
column for phone numbers you may wish to ensure that they are all
entered in the same manner. For North American phone numbers, you
could use a constraint such as the following:

ALTER TABLE customer
MODIFY phone
CHECK (phone LIKE ' () - ')

¢ You can ensure that the entry matches one of a limited number of
values. For example, to ensure that a city column only contains one of a
certain number of allowed cities (say, those cities where the organization
has offices), you could use a constraint like the following:

ALTER TABLE office
MODIFY city

Chapter 14 Ensuring Data Integrity

Example 3

CHECK (city IN ('city 1', 'city 2', 'city 3'))

¢ By default, string comparisons are case insensitive unless the database is
explicitly created as a case-sensitive database.

¢ You can ensure that a date or number falls in a particular range. For
example, you may want to require that the start_date column of an
employee table must be between the date the organization was formed
and the current date. This could be achieved as follows:

ALTER TABLE employee

MODIFY start date

CHECK (start date BETWEEN '1983/06/27'
AND CURRENT DATE)

¢ You can use several date formats: the YYYY/MM/DD format used in
this example has the virtue of always being recognized regardless of the
current option settings.

Column CHECK tests only fail if the condition returns a value of FALSE. If
a value of UNKNOWN is returned, the change is allowed.

Column CHECK conditions in previous releases

There is a change in the way that column CHECK conditions are held in
this release. In previous releases, column CHECK conditions were
merged together with all other CHECK conditions on a table into a single
CHECK condition. Consequently, they could not be individually replaced
or deleted. In this release, column CHECK conditions are held
individually in the system tables, and can be replaced or deleted
individually. Column CHECK conditions added before this release are
still held in a single table constraint, even if the database is upgraded.

Column CHECK conditions from user-defined data types

You can attach CHECK conditions to user-defined data types. Columns
defined on those data types inherit the CHECK conditions. A CHECK
condition explicitly specified for the column overrides that from the user-
defined data type.

When defining a CHECK condition on a user-defined data type, any variable
prefixed with the @ sign is replaced by the name of the column when the
CHECK condition is evaluated. For example, the following user-defined data
type accepts only positive integers:

CREATE DATATYPE posint INT
CHECK (@col > 0)

357

Using table and column constraints

Any variable name prefixed with @ could be used instead of @col. Any
column defined using the posint data type accepts only positive integers
unless the column itself has a CHECK condition explicitly specified.

An ALTER TABLE statement with the DELETE CHECK clause deletes all
CHECK conditions from the table definition, including those inherited from
user-defined data types.

& For information on user-defined data types, see "User-defined data
types" on page 241 of the book Adaptive Server Anywhere Reference
Manual.

Working with column constraints in Sybase Central

All adding, altering, and deleting of column constraints in Sybase Central is
carried out in the Constraints tab of the column properties sheet.

To display the property sheet for a column:
1 Connect to the database.

2 Click the Tables folder for that database, and click the table holding the
column you wish to change.

3 Double-click the Columns folder to open it, and double-click the column
to display its property sheet.

& For more information, see the Sybase Central online Help.

Using CHECK conditions on tables

358

A CHECK condition can be applied as a constraint on the table, instead of on
a single column. Such CHECK conditions typically ensure that two values in
arow being entered or modified have a proper relation to each other. Column
CHECK conditions are held individually in the system tables, and can be
replaced or deleted individually. This is more flexible behavior, and CHECK
conditions on individual columns are recommended where possible.

For example, in a library database, the date_returned column for a
particular entry must be later than (or the same as) the date_borrowed entry:

ALTER TABLE loan
ADD CHECK (date returned >= date borrowed)

Chapter 14 Ensuring Data Integrity

Modifying and deleting CHECK conditions

There are several ways to alter the existing set of CHECK conditions on a
table.

¢ You can add a new CHECK condition to the table or to an individual
column, as described above.

¢ You can delete a CHECK condition on a column by setting it to NULL.
The following statement removes the CHECK condition on the phone
column in the customer table:

ALTER TABLE customer
MODIFY phone CHECK NULL

¢ You can replace a CHECK condition on a column in the same way as
adding a CHECK condition. The following statement adds or replaces a
CHECK condition on the phone column of the customer table:

ALTER TABLE customer
MODIFY phone
CHECK (phone LIKE ' - - ')

¢ There are two ways of modifying a CHECK condition defined on the
table, as opposed to a CHECK condition defined on a column:

¢ You can add a new CHECK condition using ALTER TABLE with
an ADD table-constraint clause.

¢ You can delete all existing CHECK conditions, including column
CHECK conditions, using ALTER TABLE DELETE CHECK, and
then add in new CHECK conditions.

All CHECK conditions on a table, including CHECK conditions on all its
columns and CHECK conditions inherited from user-defined data types, are
removed using the ALTER TABLE statement with the DELETE CHECK
clause, as follows:

ALTER TABLE table name
DELETE CHECK

Deleting a column from a table does not delete CHECK conditions
associated with the column that are held in the table constraint. If the
constraints are not removed, any attempt to query data in the table will
produce a column not found error message.

Table CHECK conditions fail only if a value of FALSE is returned. If a
value of UNKNOWN is returned, the change is allowed.

359

Enforcing entity and referential integrity

Enforcing entity and referential integrity

The relational structure of the database enables information within the
database to be identified by the personal server, and ensures that
relationships between tables, described in the database structure, are properly
upheld by all the rows in each table.

Enforcing entity integrity

Example 1

Example 2

When a row is inserted or is updated, the database server ensures that the
primary key for the table is still valid: that each row in the table is uniquely
identified by the primary key.

The employee table in the sample database uses an employee ID as the
primary key. When a new employee is added to the table, the database server
checks that the new employee ID value is unique and is not NULL.

The sales_order_items table in the sample database uses two columns to
define a primary key.

This table holds information about items ordered. One column contains an id
specifying an order, but there may be several items on each order, so this
column by itself cannot be a primary key. An additional line_id column
identifies which line corresponds to the item. The columns id and line_id,
taken together, specify an item uniquely, and form the primary key.

If a client application breaches entity integrity

360

Entity integrity requires that each value of a primary key be unique within
the table, and that there are no NULL values. If a client application attempts
to insert or update a primary key value, and provides values that are not
unique, entity integrity would be breached.

If an attempt to breach entity integrity is detected, the new information is not
added to the database. Instead, the client application receives an error.

It is up to the application programmer to decide how to present this
information to the user and enable the user to take appropriate action. The
appropriate action is usually just to provide a different, unique, value for the
primary key.

Chapter 14 Ensuring Data Integrity

Primary keys enforce entity integrity

Once the primary key for each table is specified, no further action is needed
by client application developers or by the database administrator to maintain
entity integrity.

The primary key for a table is defined by the table owner when the table is
created. If the structure of a table is modified at a later date, the primary key
may also be redefined.

Some application development systems and database design tools allow you
to create and alter database tables. If you are using such a system, you may
not have to enter the CREATE TABLE or ALTER TABLE command
explicitly: the application generates the statement itself from the information
you provide.

& For information on creating primary keys, see "Creating primary and
foreign keys" on page 74. For the detailed syntax of the CREATE TABLE
statement, see "CREATE TABLE statement" on page 415 of the book
Adaptive Server Anywhere Reference Manual. For information about
changing table structure, see the "ALTER TABLE statement" on page 351 of
the book Adaptive Server Anywhere Reference Manual.

Enforcing referential integrity

Example 1

A foreign key relates the information in one table (the foreign table) to
information in another (referenced or primary) table. A particular column,
or combination of columns, in a foreign table is designated as a foreign key
to the primary table.

For the foreign key relationship to be valid, the entries in the foreign key
must correspond to the primary key values of a row in the referenced table.
Occasionally, some other unique column combination may be referenced,
instead of a primary key.

The sample database contains an employee table and a department table. The
primary key for the employee table is the employee ID, and the primary key
for the department table is the department ID.

One of the items of information about each employee is the department ID of
the department to which they belong. In the employee table, the department
ID is called a foreign key for the department table; each department ID in
the employee table corresponds exactly to a department ID in the department
table.

361

Enforcing entity and referential integrity

Example 2

The foreign key relationship is a many-to-one relationship. Several entries in
the employee table have the same department ID entry, but the department
ID is the primary key for the department table, and so is unique. If a foreign
key were able to reference a column in the department table containing
duplicate entries, there would be no way of knowing which of the rows in the
department table is the appropriate reference.

Suppose the database also contained an office table, listing office locations.
The employee table might have a foreign key for the office table that
indicates where the employee's office is located. The database designer may
wish to allow for an office location not being assigned at the time the
employee is hired. In this case, the foreign key is optional and should allow
the NULL value to indicate that it is optional when the office location is
unknown or when the employee does not work out of an office. A foreign
key that is not optional is called mandatory.

Foreign keys enforce referential integrity

Like primary keys, foreign keys are created using the CREATE TABLE
statement or ALTER TABLE statement.

Once a foreign key has been created, the column or colums in the key can
contain only values that are present as primary key values in the table
associated with the foreign key.

& For information on creating foreign keys, see "Creating primary and
foreign keys" on page 74.

Losing referential integrity

362

Referential integrity can be lost in the following ways:

¢ Ifaprimary key value is updated or deleted, all those foreign keys
referencing it would be left in an invalid state.

¢ Ifanew row is added to the foreign table, and a value is entered for the
foreign key that has no corresponding primary key value, the database
would be left in an invalid state.

Adaptive Server Anywhere provides protection against both types of
integrity loss.

Chapter 14 Ensuring Data Integrity

If a client application breaches referential integrity

Example

If a client application updates or deletes a primary key value in a table, and if
that primary key value is referenced by a foreign key elsewhere in the
database, there is a danger of a breach of referential integrity.

If the server allowed the primary key to be updated or deleted, and made no
alteration to the foreign keys that referenced it, the foreign key reference
would be invalid. Any attempt to use the foreign key reference, for example
in a SELECT statement using a KEY JOIN clause, would fail, as no
corresponding value in the referenced table would exist.

While breaches of entity integrity are generally straightforward for Adaptive
Server Anywhere to handle, simply by refusing to enter the data and
returning an error message, potential breaches of referential integrity are
more complicated.

There are several options available to ensure that referential integrity is
maintained. These options are called referential integrity actions.

Referential integrity actions

The simplest way to maintain referential integrity when a referenced primary
key is updated or deleted is to disallow the update or delete.

Often it is also possible to take an action on each foreign key to maintain
referential integrity. The CREATE TABLE and ALTER TABLE statements
allow database administrators and table owners to specify what action should
be taken on foreign keys that reference a modified primary key.

Each of the available referential integrity actions may be specified separately
for updates and deletes of the primary key:

¢ RESTRICT Generate an error if an attempt is made to modify a
referenced primary key value, and do not carry out the modification.
This is the default referential integrity action.

¢ SETNULL Set all foreign keys that reference the modified primary
key to NULL.

¢ SET DEFAULT Set all foreign keys that reference the modified
primary key to the default value for that column (as specified in the table
definition).

¢ CASCADE When used with ON UPDATE, update all foreign keys that
reference the updated primary key to the new value. When used with
ON DELETE, delete all rows containing foreign keys that reference the
deleted primary key.

363

Enforcing entity and referential integrity

Referential integrity actions are implemented using system triggers. The
trigger is defined on the primary table, and is executed using the permissions
of the owner of the primary table.

Referential integrity checking

Using a database
option to control
check time

364

For foreign keys defined to RESTRICT operations that would violate
referential integrity, checks are carried out by default at the time a statement
is executed. If you specify a CHECK ON COMMIT clause, then the checks
are carried out only when the transaction is committed.

The setting of the WAIT FOR COMMIT database option controls the
behavior when a foreign key is defined to restrict operations that would
violate referential integrity. This option is overridden by the CHECK ON
COMMIT clause.

With the default, wait_for_commit set to OFF, an operation that would
leave the database inconsistent is not allowed to execute. For example, a
DELETE operation of a department that has employees in it is not allowed.
The statement:

DELETE FROM department
WHERE dept id = 200

gives the error primary key for row in table 'department' is referenced in
another table.

If wait_for_commit is set to ON, referential integrity is not checked until a
commit is executed. If the database is in an inconsistent state, the commit is
not allowed and an error is reported. In this mode, a department with
employees could be deleted. However, the change could not be committed to
the database until one of the following actions is taken:

¢ The employees belonging to that department are also deleted or
reassigned.

¢ This search condition can also be used on a SELECT statement to select
the rows that violate referential integrity.

¢ The dept_id row is inserted back into the department table.
¢ The transaction is rolled back to undo the DELETE operation.

Chapter 14 Ensuring Data Integrity

Integrity rules in the system tables

All the information about integrity checks and rules in a database is held in

the following system tables:

System table

Description

SYS.SYSTABLE

SYS.SYSTRIGGER

SYS.SYSFOREIGNKEYS

SYS.SYSCOLUMNS

CHECK constraints are held in the view_def
column of SYS.SYSTABLE. For views, the
view_def holds the CREATE VIEW command
that created the view. You can check whether a
particular table is a base table or a view by looking
at the table_type column, which is BASE or
VIEW.

Referential integrity actions are held in
SYS.SYSTRIGGER. The referential_action
column holds a single character indicating whether
the action is cascade (C), delete (D), set null (N),
or restrict (R). The event column holds a single
character specifying the event that causes the
action to occur: a delete (D), insert (I), update (U),
or update of column-list (C). The trigger_time
column shows whether the action occurs after (A)
or before (B) the triggering event.

This view presents the foreign key information
from the two tables SYS.SYSFOREIGNKEY and
SYS.SYSFKCOL in a more readable format.

This view presents the information from the
SYS.SYSCOLUMN table in a more readable
format. It includes default settings and primary
key information for columns.

& For a description of the contents of each system table, see "System
Tables" on page 771 of the book Adaptive Server Anywhere Reference
Manual. You can use Sybase Central or Interactive SQL to browse these

tables and views.

365

Integrity rules in the system tables

366

