CHAPTER 15
Using Transactions and Locks

About this chapter You can group SQL statements into units called transactions. Transactions
are simply groups of SQL statements with the property that either all or none
of the group is executed. You should design each transaction to perform a
task that changes your database from one consistent state to another. These
units play an important role in protecting your database from media and
system failures.

When several people use the same database at the same time, problems can
occur. Adaptive Server Anywhere uses transactions in conjunction with locks
to prevent or eliminate inconsistencies. A lock limits the access of other
transactions to a particular row of a table.

This chapter describes transactions and how to use them in applications. It
also describes the locking mechanisms at your disposal.

Contents

Topic Page
An overview of transactions 368
Introduction to concurrency 372
Typical inconsistencies 378
Correctness 380
How locking works 382
Isolation levels and consistency 386
Understanding and choosing isolation levels 389
How Adaptive Server Anywhere implements locking 408
Locking conflicts 416
Savepoints within transactions 418
Particular concurrency issues 419
Replication and concurrency 422
Summary 424

367

An overview of transactions

An overview of transactions

About transaction
processing

Who needs to
know about
transactions

Why transactions
are needed

Transactions are
logical units of
work

368

Adaptive Server Anywhere supports transaction processing, which ensures
that logically related commands are executed as a unit. Transactions are
fundamental to maintaining the accuracy of your data. Transactions are
essential to data recovery in the event of system failure and to the successful
interweaving of commands from concurrent users.

All developers must be concerned with correctness and concurrency. Even
single-user databases must be protected against data loss and may have
multiple applications connected to them, or may have multiple connections
from a single application. Understanding transactions will allow you to make
better use of the facilities provided by Sybase Adaptive Server Anywhere
database engines.

Transactions and locks are both needed to ensure that the data stored in a
database is entered accurately and stays correct. You will no doubt wish to
guard even a small personal database against corruption. If instead you are
building or administering a database for a large corporation, it may contain
the work of a thousand people and contain records, such as customer
information, vital to the livelihood of the corporation.

To ensure data integrity it is essential that you can identify states in which
the information in your database is stable and consistent. Regular backups
are essential, but you must be sure that the backup contains a consistent set
of information if it is to be of any use at a later date. You don't want to make
a backup when through someone's changes are only half inserted.

Likewise, the identification of consistent states is essential to managing the
work of concurrent users of your database. The database engine must be able
to execute the commands of multiple users simultaneous to give all prompt
service. Identifying distinct pieces of work facilitates the task of interleaving
the commands of the various users.

A transaction is a logical unit of work. Each is a sequence of logically
related commands which accomplish one task and transform the database
from one consistent state into another.

Transactions are atomic. Adaptive Server Anywhere executes all the
statements within a transaction as a unit. At the end of each transaction, you
commit your changes to make them permanent. If for any reason all the
commands in the transaction do not process properly, then any intermediate
changes are undone, or rolled back.

Chapter 15 Using Transactions and Locks

Example

Each transaction is
processed entirely
or not at all

Transactions are key to both the management of concurrent users and to the
protection of the database from media and system failures. Transactions
break the work of each user into small blocks. These blocks may be safely
interleaved and the completion of each block marks a point at which the
information is self-consistent

& For information about database backups and data recovery, see
"Backup and Data Recovery" on page 553.

& For further information about concurrent database usage, see
"Introduction to concurrency" on page 372

Suppose you worked for a bank and wished to transfer $1000 between two
people's accounts. You can accomplish the transfer by completing the
following two operations:

1 Debit the first person's account.

2 Credit the second person's account.

Under ordinary circumstances, these two operations will work perfectly, but
suppose that while you were in the middle of transferring the money, the
database system suddenly failed. You hope that either both commands were
executed and the money was transferred successfully, or that neither
command was executed. If only the first command completed, then the
information in the database would be inconsistent because $1000 would be
missing. It is unacceptable to leave the debit in the database without
recording the credit. Either both the debit and the credit must be processed,
or neither. In case of failure, the debit needs to be undone.

Transaction processing ensures that each transaction is processed in its
entirety or not at all. Transaction processing is fundamental to ensuring that a
database contains correct information. It addresses two distinct, yet related,
problems: data recovery and database consistency.

In the case of the transfer of funds, you can guard against corrupting the bank
records by grouping all the necessary commands in one transaction.

Using transactions

Starting
transactions

Adaptive Server Anywhere expects you to group your commands into
transactions. Knowing which commands or actions signify the start or end of
a transaction lets you take full advantage of this feature.

Transactions start with one of the following events:
¢ The first statement following a connection to a database

¢ The first statement following the end of a transaction

369

An overview of transactions

Completing
transactions

Options in
Interactive SQL

Transactions complete with one of the following events:
¢ A COMMIT statement makes the changes to the database permanent.

¢ A ROLLBACK statement undoes all the changes made by the
transaction.

¢ A statement with a side effect of an automatic commit is executed:
Database definition commands, such as ALTER, CREATE,
COMMENT, and DROP all have the side effect of an automatic
commit.

¢ A disconnection from a database performs an implicit rollback.

Interactive SQL provides you with two options which let you control when
and how transactions end:

¢ Ifyou set the option AUTO_COMMIT to ON, Interactive SQL
automatically commits your results following every successful statement
and automatically perform a ROLLBACK after each failed statement.

¢ The setting of the option COMMIT _ON_EXIT controls what happens to
uncommitted changes when you exit Interactive SQL. If this option is
set to ON (the default), Interactive SQL does a COMMIT; otherwise it
undoes your uncommitted changes with a ROLLBACK statement.

& Adaptive Server Anywhere also supports Transact-SQL commands,
such as BEGIN TRANSACTION, for compatibility with Sybase Adaptive
Server Enterprise. For further information, see "Transact-SQL
Compatibility" on page 781

& You may identify important states within a transaction and return to
them selectively using SAVEPOINTS. These are discussed further in section
"Savepoints within transactions" on page 418.

Transactions and data recovery

370

Suppose that a system failure or power outage suddenly takes your database
engine down. Adaptive Server Anywhere is carefully designed to protect the
integrity of your database in such circumstances. It provides you with a
number of independent means of restoring your database. For example, it
provides you with a log file which you may store on a separate drive so that
should the system failure damage one drive, you still have a means of
restoring your data.

Chapter 15 Using Transactions and Locks

In such circumstances, transaction processing allows the database server to
identify states in which your data is in a consistent state. Transaction
processing ensures that if, for any reason, a transaction is not successfully
completed, then the entire transaction is undone, or rolled back. The database
is left entirely unaffected by failed transactions.

Adaptive Server Anywhere's transaction processing ensures that the contents
of a transaction are processed securely, even in the event of a system failure
in the middle of a transaction.

& For a detailed description of data recovery mechanisms, see chapter
"Backup and Data Recovery" on page 553.

The remainder of this chapter is devoted to concurrency and consistency of
transactions.

371

Introduction to concurrency

Introduction to concurrency

Concurrency
means processing
more than one
transaction at the
same time

Why concurrency
benefits you

Example

372

Adaptive Server Anywhere can execute more than one transaction at the
same time. The term concurrency refers to this ability. Were it not for
special mechanisms within the database server, concurrent transactions could
interfere with each other to produce inconsistent and incorrect information.

A transaction is a logical unit of work. When a database engine executes
transactions sequentially, the database is advanced step by step from one
consistent state to the next.

To respond promptly to requests from various users, the database engine
must execute statements from other users without waiting for a first user to
complete a transaction. Without a control mechanism, the actions of the
various users could interfere with each other. For example, two users might
try to update the same price at the same time.

Individual users group their work into transactions which, when executed in
isolation, modify the database in a safe manner. When executing more than
one transaction at once, the database server must take precautions to
maintain this security and restrict interference between transactions.
Interference can cause the database to end up in a state which is not possible
to obtain by executing the separate transactions one at a time.

Transactions processed at the same time are said to be concurrent. While
executing the SQL statements which comprise one transaction, the database
engine can execute some or all of the statements in other transactions. All
Sybase database engines and servers can execute multiple transactions
concurrently.

Often, databases form common repositories of information and are shared by
a large number of people. These people may need frequent access to the
information as part of their jobs. To avoid impeding their work, the database
engine must be able to process many transactions at the same time.

Adaptive Server Anywhere allows many simultaneous connections to one
database. Usually, these connections are formed by separate users.
Concurrent transaction processing means not only that a database engine can
accept multiple connections, but that it can also process transactions from
more than one connected user or application simultaneously.

Consider a database for a department store. The database system must allow
many clerks to update customer accounts simultaneously. Each clerk must be
able to update the status of the accounts as they assist each customer. Each
clerk cannot afford to wait until no one else is using the database.

Chapter 15 Using Transactions and Locks

Who needs to
know about
concurrency

Concurrency is a concern to all database administrators and developers. Even
if you are working with a single-user database, you must be concerned with
concurrency. In addition to connections from multiple users, your Adaptive
Server Anywhere database can accept separate connections from multiple
applications and even multiple connections from a single application. These
applications and connections can interfere with each other in exactly the
same way as multiple users in a network setting.

Tutorial 1: The dirty read

The following tutorial demonstrates one type of inconsistency which can
occur when multiple transactions are executed concurrently. Two employees
at a typical small merchandising company both access the corporate database
at the same time. The first person is the company's Sales Manager. The
second is the Accountant.

The Sales Manager wants to increase the price of one of the tee shirts sold by
their firm by 95¢, but is having little trouble with the syntax of the SQL
language. At the very same time, unbeknownst to the Sales Manager, the
Accountant is trying to calculate the retail value of the current inventory to
include in a report he volunteered to bring to the next management meeting.

In this example, you will play the role of two people, both using the
demonstration database concurrently.

1 Start Interactive SQL.

2 Connect to the sample database: Select Connect from the Command
menu. Enter the user ID DBA and the password SQL. In the Advanced
tab of the connection window, name this connection Sales Manager.

User ID: DBA
Password: SQL
Connection Name: | Sales Manager

Database File: asademo

3 Start a second copy of Interactive SQL.

4 Again enter DBA and SQL as the user ID and password, but this time
name the connection Accountant. Click the OK button.

373

Introduction to concurrency

User ID: DBA
Password: SQL

Connection Name: | Accountant

5 Pretend you are the Sales Manager. You have decided to raise the price
of all the tee shirts by 95¢. In the window labeled "Sales Manager,"
execute the following commands:

SELECT id, name, unit price
FROM product;

UPDATE PRODUCT
SET unit price = unit price + 95

WHERE NAME = 'Tee Shirt';

id name unit_price
300 Tee Shirt 104.00
301 Tee Shirt 109.00
302 Tee Shirt 109.00
400 Baseball Cap 9.00
401 Baseball Cap 10.00
500 Visor 7.00
501 Visor 7.00
600 Sweatshirt 24.00
601 Sweatshirt 24.00
700 Shorts 15.00

You observe immediately that you should have entered 0.95 instead
of 95, but before you can fix your error, the accountant accesses the
database from another office.

6 The company's accountant is worried that too much money is tied up in
inventory. Pretend you are the accountant. In the window named
"Accountant," execute the following commands to calculate the total
retail value of all the merchandise in stock:

SELECT SUM(quantity * unit price)
AS inventory
FROM product;

374

Chapter 15 Using Transactions and Locks

inventory
21453.00

Unfortunately, this calculation isn't accurate. The Sales Manager
accidentally raised the price of the visor $95, and the result reflects this
erroneous price. This mistake demonstrates one typical type of
inconsistency known as a dirty read. You, as the Accountant, accessed
data which the Sales Manager has entered, but has not yet committed.

&> You can eliminate dirty reads and other inconsistencies explained
in "Isolation levels and consistency" on page 386.

7 Return to the role of Sales Manager. In the first window fix the error by
rolling back your first changes and entering the correct UPDATE
command. Check that your new values are correct.

ROLLBACK;

UPDATE product
SET unit price = unit price + 0.95

WHERE NAME = 'Tee Shirt';

id name unit_price
300 Tee Shirt 9.95

301 Tee Shirt 14.95

302 Tee Shirt 14.95

400 Baseball Cap 9.00
401 Baseball Cap 10.00

500 Visor 7.00
501 Visor 7.00
600 Sweatshirt 24.00
601 Sweatshirt 24.00
700 Shorts 15.00

8 The Accountant does not know that the amount he calculated was in
error. You can see the correct value by executing his SELECT statement
again in his window.

SELECT SUM(quantity * unit price)
AS inventory
FROM product;

375

Introduction to concurrency

inventory
6687.15

9 Finish the transaction in the Sales Manager's window. She would enter a
COMMIT statement to make his changes permanent, but you may wish
to enter a ROLLBACK, instead, to avoid changing the copy of the
demonstration database on your machine.

ROLLBACK;

The accountant unknowingly receives erroneous information from the
database because the database engine is processing the work of both the
Sales Manager and the Accountant simultaneously. The following section
introduces other types of inconsistencies and introduces means to eliminate
them.

Using locks to ensure consistency

Row-level locking

Some
inconsistency may
be tolerable

376

Adaptive Server Anywhere uses row-level locking to allow transactions to
execute concurrently without interference, or with limited interference. Any
transaction can acquire a lock to prevent other concurrent transactions from
modifying or even accessing a particular row. This row-level locking scheme
always stops some types of interference. For example, a transaction which is
updating a particular row of a table always acquires a lock on that row to
ensure that no other transaction can update or delete the same row at the
same time.

Inconsistency in the information an application sees is tolerable in some
cases. Therefore, you do not need to prohibit all forms of inconsistent
behavior in all cases. For this reason, Adaptive Server Anywhere grants you
control over the level of consistency required in the information any
transaction sees.

In the above example, you were able to observe the Sales Manager's
uncommitted results in the Accountant's window. This type of inconsistency
is known as a dirty read. You were able to observe this problem because
some locking features are turned off in the demonstration database allowing
this type of inconsistency to occur. Various locking options let you eliminate
such interference.

Chapter 15 Using Transactions and Locks

Improving concurrency

Transaction Size
Affects
Concurrency

Use fewer locks for
better concurrency

The way you group SQL statements into transactions can have significant
effects on data integrity and on system performance. If you make a
transaction too short and it does not contain an entire logical unit of work,
then inconsistencies can be introduced into the database. If you write a
transaction which is too long and contains several unrelated actions, then
there is greater chance that a ROLLBACK will unnecessarily undo work that
could have been committed quite safely into the database.

Locks obtained during a transaction are not released until a COMMIT or
ROLLBACK statement is issued. If your transactions are long and lock large
amounts of data, they can lower concurrency by preventing other
transactions from being processed simultaneously.

There are many factors which determine the appropriate length of a
transaction, depending on the type of application and the environment. Some
guidelines are given towards the end of this chapter.

The number of locks which your transactions place can affect the level of
concurrency which your database can support. Each lock limits the access to
some specific row of a table. If another transaction should require access to
the same row, then it may have to wait until your transaction completes. The
more locks you place, the more likely it is that other transactions will be
delayed. You should use sufficient locking to ensure the integrity of your
data, but it is good practice to use the lowest level of locking which will
suffice. Doing so allows your database to process transactions as quickly as
possible.

The locking scheme and the options which allow you to limit interference
and control locking are discussed in detail later in this chapter.

377

Typical inconsistencies

Typical inconsistencies

Adaptive Server Anywhere affords you control over the amount of locking it
uses to isolate transactions. For example, you can eliminate inconsistencies
such as the dirty read demonstrated in the previous example.

This section revisits the dirty read and introduces two other typical types of
inconsistencies which you may encounter. Knowledge of these
inconsistencies will help you select appropriate levels of isolation for the
transactions in your own databases.

It then proceeds to introduce a fourth type of inconsistency known as lost
updates. These are particularly interested to you if you use something known
as cursors in your SQL programs.

Three typical types of inconsistency

378

There are three typical types of inconsistency that can occur during the
execution of concurrent transactions. This list is not exhaustive as other types
of inconsistencies can also occur. These three types are mentioned in the ISO
SQL/92 standard and are important because behavior at lower isolation
levels is defined in terms of them.

You will recognize the first type as the one you demonstrated in the previous
tutorial.

¢ Dirtyread Transaction A modifies a row, but does not commit or roll
back the change. Transaction B reads the modified row. Transaction A
then either further changes the row before performing a COMMIT, or
rolls back its modification. In either case, transaction B has seen the row
in a state which was never committed.

¢ Non-repeatable read Transaction A reads a row. Transaction B then
modifies or deletes the row and performs a COMMIT. If transaction A
then attempts to read the same row again, the row will have been
changed or deleted.

¢ Phantom row Transaction A reads a set of rows that satisfy some
condition. Transaction B then executes an INSERT, or an UPDATE on a
row which did not previously meet A's condition. Transaction B
commits these changes. These newly committed rows now satisfy the
condition. Transaction A then repeats the initial read and obtains a
different set of rows.

Chapter 15 Using Transactions and Locks

Other types of inconsistencies can also exist. These three were chosen for the
ISO SQL/92 standard because they are typical problems and because it was
convenient to describe amounts of locking between transactions in terms of
them.

&~ Amounts of locking will be described further in "Isolation levels and
consistency" on page 386.

379

Correctness

Correctness

Serializable means
that concurrency
has added no
effect

Unserializable
schedules
introduce
inconsistencies

To process transactions concurrently, the database engine must execute some
component statements of one transaction, then some from other transactions,
before continuing to process further operations from the first. The order in
which the component operations of the various transactions are interwoven is
called the schedule.

Applying transactions concurrently in this manner can result in many
possible outcomes, including the three particular inconsistencies described in
the previous section. Sometimes, the final state of the database also could
have been achieved had the transactions been executed sequentially, meaning
that one transaction was always completed in its entirety before the next was
started. A schedule is called serializable whenever executing the
transactions sequentially, in some order, could have left the database in the
same state.

Serializability is the commonly accepted criterion for correctness. A
serializable schedule is accepted as correct because the database is not
influenced by the concurrent execution of the transactions.

Even when transactions are executed sequentially, the final state of the
database can depend upon the order in which these transactions are executed.
For example, if one transaction sets a particular cell to the value 5 and
another sets it to the number 6, then the final value of the cell is determined
by which transaction executes last.

Knowing a schedule is serializable does not settle which order transactions
would best be executed, but rather states that concurrency has added no
effect. Outcomes which may be achieved by executing the set of transactions
sequentially in some order are all assumed correct.

The three types of inconsistencies introduced in the previous section are
typical of the types of problems which appear when the schedule is not
serializable. In each case, the inconsistency appeared because the statements
were interleaved in such a way as to produce a result that would not be
possible if all transactions were executed sequentially. For example, a dirty
read can only occur if one transaction can select rows while another
transaction is in the middle of inserting or updating data.

Two-phase locking

380

Two-phase locking is important in the context of ensuring that schedules are
serializable. The two-phase locking protocol specifies a procedure each
transaction should follow.

Chapter 15 Using Transactions and Locks

The two-phase
locking protocol

This protocol is important because, if observed by all transactions, it will
guarantee a serializable, and thus correct, schedule. It may also help you
understand why some methods of locking permit some types of
inconsistencies.

1 Before operating on any row, a transaction must acquire a lock on that
TOow.

2 After releasing a lock, a transaction must never acquire any more locks.

In practice, a transaction normally holds locks until it terminates with either a
COMMIT or ROLLBACK statement. Releasing locks before the end of the
transaction disallows the operation of rolling back the changes whenever
doing so would necessitate operating on rows to return them to an earlier
state

The two-phase locking protocol allows the statement of the following
important theorem:

The two-phase locking theorem
If all transactions obey the two-phase locking protocol, then all possible
interleaved schedules are serializable.

In other words, if all transactions follow the two-phase locking protocol, then
none of the inconsistencies mentioned above are possible.

This protocol defines the operations necessary to ensure complete
consistency of your data, but you may decide that some types of
inconsistencies are permissible during some operations on your database.
Eliminating all inconsistency often means reducing the efficiency of your
database. Thus, Adaptive Server Anywhere affords you control the
correctness of each transaction through the use of various types of locking.

381

How locking works

How locking works

When the database engine processes a transaction, it can lock one or more
rows of a table. The locks maintain the reliability of information stored in the
database by preventing concurrent access by other transactions. They also
improve the accuracy of result queries by identifying information which is in
the process of being updated.

The Adaptive Server Anywhere engine places these locks automatically and
needs no explicit instruction. It holds all the locks acquired by a transaction
until the transaction is completed, for example by either a COMMIT or
ROLLBACK statement, with a single exception noted below.

The transaction that has access to the row is said to hold the lock. Depending
on the type of lock, other transactions may have limited access to the locked
row, or none at all.

Adaptive Server Anywhere allows users to determine the amount of locking
employed in each connection. The amount of locking controls the correctness
of the schedules. Unfortunately it also affects concurrency because locks
placed by one transaction may delay or obstruct the progress of another.

&~ Amounts of locking will be described further in "Isolation levels and
consistency" on page 386.

Objects that can be locked

382

Adaptive Server Anywhere uses row-level locking, meaning that each lock
locks a row, rather than always locking an entire page or range of rows.
Some transactions may require locks on many rows, or rows that meet a
specific criterion. To meet these requirements, locks can be placed on the
flowing objects.

¢ rows in tables A transaction can lock a particular row, for example, to
prevent another transaction from changing it.

¢ scan positions in either indexed or sequential scans Transactions
typically scan rows using the ordering imposed by an index, or scan
rows sequentially. In either case, a lock can be placed on the scan
position. For example, placing a lock in an index can prevent another
transaction from inserting a row with a specific value or range of values.

¢ table schemas A transaction can lock the schema of a table, preventing
other transactions from modifying the table’s structure.

Chapter 15 Using Transactions and Locks

Scan positions

Of these objects, the most intuitive are likely rows. It is understandable that a
transaction reading, updating, deleting, or inserting a row should limit the
simultaneous access to other transactions. Similarly, a transaction changing
the structure of a table, perhaps inserting a new column, could greatly impact
other transactions. In such a case, it is essential to limit the access of other
transactions to prevent errors.

A scan position is a location in an ordering of rows of a table. In this case,
there are only two possible types of ordering affected. First, rows can be
ordered through use of an index, based on a particular criterion established
when the index was constructed. Secondly, when performing a sequential
scan of a table, Adaptive Server Anywhere must select an order in which to
process the rows.

In the case of a sequential scan, the specific ordering is defined by the
internal workings of the database engine. You should not rely on the order of
rows in a sequential scan. From the point of view of scanning the rows,
however, Adaptive Server Anywhere treats the request similarly to an
indexed scan, albeit using an ordering of its own choosing. It can place locks
on positions in the scan as it would were it using an index.

Through locking a scan position, a transaction prevents some actions by
other transactions relating to a particular range of values in that ordering of
the rows. Phantom and anti-phantom locks are always placed on scan
positions.

For example, a transaction might delete a row, hence deleting a particular
primary key value. Until this transaction either commits the change or rolls it
back, it must protect its right to do either. In the case of a deleted row, it
must ensure that no other transaction can insert a row using the same primary
key value, hence making a rollback operation impossible. A lock on the scan
position this row occupied reserves this right while having the least impact
on other transactions.

The four types of locks

Adaptive Server Anywhere uses four distinct types of locks to implement its
locking scheme and ensure appropriate levels of isolation between
transactions:

¢ read lock (shared)

¢ phantom lock (shared)
¢ write lock (exclusive)
¢

anti-phantom lock (shared)

383

How locking works

Exclusive versus
shared locks

Which specific
locks conflict?

384

Each of these locks has a separate purpose. They work together and all are
needed. Each addresses a particular set of inconsistencies which would occur
in their absence. Depending on the isolation level you select, the database
server will use some or all of them to maintain the degree of consistency you
require.

These four types of locks each fall into one of two categories:

¢ Exclusive locks Only one transaction can hold an exclusive lock on the
row of a table at one time. No transaction can obtain an exclusive lock
while any other transaction holds a lock of any type on the same row.
Once a transaction acquires an exclusive lock, requests to lock the row
by other transactions will be denied.

Write locks are exclusive.

¢ Shared locks Any number of transactions may acquire shared locks on
any one row at the same time. Shared locks are sometimes referred to as
non-exclusive locks.

Read locks, phantom locks, and anti-phantom locks are shared.

Only one transaction should change any one row at one time. Otherwise, two
simultaneous transaction might try to change one value to two different new
ones. Hence, a write lock should be, and is, exclusive.

By contrast, no difficulty arises if more than one transaction wants to read a
row. Since neither is changing it, there is no conflict of interest. Hence, read
locks may be shared.

You may apply similar reasoning to phantom and anti-phantom locks. Many
transactions can prevent the insertion of a row in a particular scan position by
each acquiring an phantom lock. Similar logic applies for anti-phantom
locks. When a particular transaction requires exclusive access, it can easily
achieve exclusive access by obtaining both a phantom and an anti-phantom
lock on the same row. These locks to not conflict when they are held by the
same transaction.

The following table identifies the combination of locks that conflict.

read write phantom | anti-phantom
read conflict

write conflict conflict

phantom conflict
anti-phantom conflict

Chapter 15 Using Transactions and Locks

Uses for locks

These conflicts arise only when the locks are held by different transactions.
For example, one transaction can obtain both phantom and anti-phantom
locks on a single scan position to obtain exclusive access to a location.

The above types of locks have the following uses:

¢

A transaction acquires a write lock whenever it inserts, updates, or
deletes a row. No other transaction can obtain either a read or a write
lock on the same row when a write lock is set. A write lock is an
exclusive lock.

A transaction can acquire a read lock when it reads a row. Several
transactions can acquire read locks on the same row (a read lock is a
shared or nonexclusive lock). Once a row has been read locked, no other
transaction can obtain a write lock on it. Thus, a transaction can ensure
that no other transaction modifies or deletes a row by acquiring a read
lock.

A phantom lock is a shared lock placed on an indexed scan position to
prevent phantom rows. It prevents other transactions from inserting a
row into a table immediately before the row which is phantom locked.
Phantom locks for lookups using indexes require a read lock on each
row that is read, and one extra read lock to prevent insertions into the
index at the end of the result set. Phantom rows for lookups that do not
use indexes require a read lock on all rows in a table to prevent
insertions from altering the result set, and so can have a bad effect on
concurrency.

An anti-phantom lock is a shared lock placed on an indexed scan
position to reserve the right to insert a row. Once one transaction
acquires an anti-phantom lock on a row, no other transaction can acquire
a phantom lock on the same row. A read lock on the corresponding row
is always acquired at the same time as an anti-phantom lock to ensure
that no other process can update or destroy the row, thereby bypassing
the anti-phantom lock.

Adaptive Server Anywhere uses these four types of locks as necessary to
ensure the level of consistency that you require. You need not explicitly
request the use of a particular lock. You control the level of consistency, as is
explained in the next section. Knowledge of the types of locks will guide you
in choosing isolation levels and understanding the impact of each level on
performance.

385

Isolation levels and consistency

Isolation levels and consistency

There are four
isolation levels

Isolation levels and
dirty reads, non-
repeatable reads,
and phantom rows

386

Adaptive Server Anywhere allows you to control the degree to which the
operations in one transaction are visible to the operations in other concurrent
transactions. You do so by setting a database option called the isolation
level. Adaptive Server Anywhere has four different isolation levels that
prevent some or all inconsistent behavior. These four isolation levels are
numbered from 0 through 3. Level 3 provides the highest level of isolation.
At level 3, all schedules are serializable.

For example, you can set the isolation for the current connection to level 3 by
executing the following statement:

SET TEMPORARY OPTION ISOLATION LEVEL = 3

& For information about serializable schedules see "Correctness" on page
380.

Lower levels allow more inconsistencies, but you will find them useful when
you must give your database a high level of concurrency. Because
transactions at lower isolation levels use fewer locks, they tend to reduce
blocking. It is less likely that one transaction will need access to rows for
which another transaction has acquired a lock.

All isolation levels guarantee that each transaction will execute completely
or not at all, and that no updates will be lost. Adaptive Server Anywhere
therefore ensures recoverability at all times, regardless of the isolation level.

The isolation levels are different with respect to dirty reads, non-repeatable
reads, and phantom rows. The four isolation levels have different names
under ODBC, as shown in the bottom row of the table. An x means that the
behavior is prevented, and a v means that the behavior may occur.

Isolation level 0 1 2 3
Dirty reads v X X X
Non-repeatable reads | ¥ X X
Phantom rows v v X
SQLCA.lock RU RC RR TS

This table demonstrates two points:

¢ Each isolation level eliminates of the three typical types of
inconsistencies.

¢ Each level eliminates the types of inconsistencies eliminated at all lower
levels.

Chapter 15 Using Transactions and Locks

Isolation levels that
prevent lost
updates

Read locks prevent lost updates. When a transaction first reads a value, it
acquires a read lock on that row. Now, should another transaction also wish
to update the row, it must acquire a write lock on the row. Since write locks
are exclusive locks, the database server will not grant a write lock to a
transaction while any other transaction holds a read lock on the same row.
No updates can be lost.

Setting the isolation level

The isolation level is a database option. You change database options using
the SET OPTION statement. For example, the following command sets the
isolation level to 3, the highest level.

SET OPTION ISOLATION LEVEL = 3;

Each connection to the database has its own isolation level. In addition, the
database can store a default isolation level for each user or group. You can
change the isolation of your connection and the default level associated with
your user ID using the SET command. If you have permission, you can also
change the isolation level for other users or groups.

In fact, the above command changes both the isolation level for your present
connection, and also changes the default level associated with your user ID.
Thus, if you form a second connection after executing this command, the
isolation will initially be set to level 3.

When you connect to a database, the database server determines your initial
isolation level as follows:

1 A default isolation level may be set for each user and group. If a level is
stored in the database for your user ID, then the database server uses it.

2 Ifnot, the database server checks the groups to which you belong until it
finds a level. All users are members of the special group PUBLIC. If it
finds no other setting first, then Anywhere will use the level assigned to
that group.

Once connected to the database, you can change the isolation level for your
connection using the TEMPORARY option of the SET command.
Temporary options stay in effect only as long as you remain connected. They
do not change defaults stored for your user ID. They affect only the
connection in which the command is executed. To set your isolation level to
level 2 for the duration of your present session, you use the following
command.

SET TEMPORARY OPTION ISOLATION LEVEL = 2;

387

Isolation levels and consistency

To set the option for a group, prepend the name of the group and a period to
ISOLATION_LEVEL. For example, the following command sets the default
isolation for the special group PUBLIC.

SET OPTION PUBLIC.ISOLATION LEVEL = 3;

To change the default isolation level of a group you must have permission to
do so. Because the group PUBLIC is special, you must have dba privilege to
change settings associated with it.

Setting temporary options for the PUBLIC group has a special effect. The
setting stays in effect only as long as the present database engine remains in
operation. Should the database engine shut down, the original default will
appear when the database engine is restarted. Again, because PUBLIC is a
special group, you must have dba privilege to set its options.

& For further information about users and groups, please refer to
"Managing User IDs and Permissions" on page 575.

& For a description of the SET OPTION statement syntax, see "SET
OPTION statement" on page 553 of the book Adaptive Server Anywhere
Reference Manual

& You may wish to change the isolation level in mid-transaction if, for
example, just one table or group of tables requires serialized access. For
information about changing the isolation level with in a transaction, see
"Changing the isolation level within a transaction" on page 394.

Setting the isolation level from an ODBC-enabled application

388

ODBC uses the isolation feature to support assorted database lock options.
For example, in PowerBuilder you can use the Lock attribute of the
transaction object to set the isolation level when you connect to the database.
The Lock attribute is a string, and is set as follows:

// Set the lock attribute to read uncommitted
// in the default transaction object SQLCA.
SQLCA.lock = "RU"

When is Lock honored?

This option is honored only at the moment the CONNECT occurs.
Changes to the Lock attribute after the CONNECT have no effect on the
connection.

Chapter 15 Using Transactions and Locks

Understanding and choosing isolation levels

The choice of isolation level depends on the kind of task an application is
carrying out. This section gives some guidelines for choosing isolation
levels.

When you choose an appropriate isolation level you must balance the need
for consistency and accuracy in the information your transaction is using,
with the need for concurrent transactions to proceed unimpeded. If a
transaction involves only one or two specific values in one table, it is
unlikely to interfere as much with other processes as one which searches
many large tables and may need to lock many rows or entire tables and may
take a very long time to complete.

If your transactions is transferring money between bank accounts or even
checking account balances, you will likely want to do your utmost to ensure
that the information you return is correct. On the other hand, if just want a
rough estimate of the proportion of inactive accounts, then you may not care
whether your transaction waits for others or not and indeed may be willing to
sacrifice some accuracy to avoid interfering with other users of the database.

Furthermore, a transfer may affect only the two rows which contain the two
account balances, whereas all the accounts must be read in order to calculate
the estimate. For this reason, the transfer is less likely to delay other
transactions.

Adaptive Server Anywhere provides four levels of isolation: levels 0, 1, 2,
and 3. The third level provides complete isolation and ensures that
transactions are interleaved in such a manner that the schedule is serializable.

& For a discussion of serializable schedules and correctness please refer
to section "Correctness" on page 380.

Tutorial 2 — The non-repeatable read

The example in section "Introduction to concurrency" on page 372
demonstrated the first type of inconsistency, namely the dirty read. In that
example, an accountant made a calculation while the Sales Manager was in
the process of updating a price. The accountant's calculation used erroneous
information which the Sales Manager had entered and was in the process of
fixing.

The following example demonstrates one type of inconsistency, namely non-
repeatable reads. In this example, you will play the role of the same two
people, both using the demonstration database concurrently. The Sales
Manager wishes to offer a new sales price on plastic visors. The Accountant
wishes to verify the prices of some items that appear on a recent order.

389

Understanding and choosing isolation levels

This example begins with both connections at isolation level 1, rather than at
isolation level 0, which is the default for the demonstration database supplied
with Adaptive Server Anywhere. By setting the isolation level to 1, you
eliminate the type of inconsistency which the previous tutorial demonstrated,
namely the dirty read.

1
2

390

Start Interactive SQL.

Connect to the asademo database: Select Connect from the Command
menu. Enter the user ID DBA and the password SQL. In the Advanced
tab, name this connection Sales Manager.

User ID: DBA
Password: SQL
Connection Name: | Sales Manager

Database File: asademo

Start a second copy of Interactive SQL. Again, enter DBA and SQL as
the user ID and password, but this time name the connection
Accountant. Click the OK button.

User ID: DBA
Password: SQL

Connection Name: | Accountant

Set the isolation level to 1 for the Accountant's connection by executing
the following command.

SET TEMPORARY OPTION ISOLATION LEVEL = 1;

Set the isolation level to 1 in the Sales Manager's window by executing
the following command:

SET TEMPORARY OPTION ISOLATION LEVEL = 1;

The Accountant decides to list the prices of the visors. In the
Accountant's window, execute the following command:

SELECT id, name, unit price FROM product

Chapter 15 Using Transactions and Locks

id name unit_price
300 Tee Shirt 9.00

301 Tee Shirt 14.00

302 Tee Shirt 14.00

400 Baseball Cap 9.00
401 Baseball Cap 10.00
500 Visor 7.00
501 Visor 7.00

7 The Sales Manager decides to introduce a new sale price for the plastic
visor. In the Sales Manager's window, execute the following command:

SELECT id, name, unit price FROM product
WHERE name = 'Visor';

UPDATE product
SET unit price = 5.95 WHERE id = 501;

COMMIT;

id | name | unit_price
500 | Visor | 7.00

501 | Visor | 5.95

8 Compare the price of the visor in the Sales Manager's window with the
price for the same visor in the Accountant's window. The Accountant's
window still shows the old price, even though the Sales Manager has
entered the new price and committed the change.

This inconsistency is called a non-repeatable read, because if the
accountant did the same select a second time in the same transaction, he
wouldn't get the same results. Try it for yourself. In the Accountant's
window execute the select command again. Observe that the Sales
Manager's sale price now displays.

SELECT id, name, price
FROM products;

391

Understanding and choosing isolation levels

392

10

11

id name unit_price
300 Tee Shirt 9.00

301 Tee Shirt 14.00

302 Tee Shirt 14.00

400 Baseball Cap 9.00
401 Baseball Cap 10.00
500 Visor 7.00
501 Visor 5.95

Of course if the accountant had finished his transaction, for example by
issuing a COMMIT or ROLLBACK command before using the
SELECT again, it would be a different matter. The database is available
for simultaneous use by multiple users and it is completely permissible
for someone to change values either before or after the accountant's
transaction. The change in results is only inconsistent because it happens
in the middle of his transaction. Such an event makes the schedule
unserializable.

The accountant notices this behavior and decides that from now on he
doesn't want the prices changing while he looks at them. Repeatable
reads are eliminated at isolation level 2. Play the role of the accountant:

SET TEMPORARY OPTION ISOLATION LEVEL = 2;

SELECT id, name, unit price
FROM product;

The Sales Manager decides that it would be better to delay the sale on
the plastic visor until next week so that she won't have to give the lower
price on a big order that she's expecting will arrive tomorrow. In his
window, try to execute the following statements. The command will
start to execute, then his window will appear to freeze.

UPDATE product
SET unit price = 7.00 WHERE id = 501;

The database server must guarantee repeatable reads at isolation level 2.
To do so, it places a read lock on each row of the product table that the
accountant reads. When the Sales Manager tries to change the price
back, his transaction must acquire a write lock on the plastic visor row
of the product table. Since write locks are exclusive, his transaction must
wait until the Accountant's transaction releases its read lock.

The Accountant is finished looking at the prices. He doesn't want to risk
accidentally changing the database, so he completes his transaction with
a ROLLBACK statement.

Chapter 15 Using Transactions and Locks

Types of Locks
and different
isolation levels

ROLLBACK;

Observe that as soon as the database server executes this statement, the
Sales Manager's transaction completes.

id | name | unit_price
500 | Visor | 7.00
501 | Visor | 7.00

12 The Sales Manager can finish now. She wishes to commit his change to
restore the original price.

COMMIT;

When you upgraded the accountant's isolation from level 1 to level 2, the
database server used read locks where none were previously acquired. In
general, each isolation level is characterized by the types of locks needed and
by how locks held by other transactions are treated.

At isolation level 0, the database server needs only write locks. It makes use
of these locks to ensure that no two transactions make modifications which
conflict. For example, a level 0 transaction acquires a write lock on a row
before it updates or deletes it, and inserts any new rows with a write lock
already in place.

Level 0 transactions perform no checks on the rows they are reading. For
example, when a level 0 transaction reads a row, it doesn't bother to check
what locks may or may not have been acquired on that row by other
transactions. Since no checks are needed, level 0 transactions are particularly
fast. This speed comes at the expense of consistency. Whenever they read a
row which is write locked by another transaction, they risk returning dirty
data.

At level 1, transactions check for a write locks before they read a row.
Although one more operation is required, these transactions are assured that
all the data they read is committed. Try repeating the first tutorial with the
isolation level set to 1 instead of 0. You will find that the Accountant's
computation cannot proceed while the Sales Manager's transaction, which
updates the price of the tee shirts, remains incomplete.

When the Accountant raised his isolation to level 2, the database server
began using read locks. From then on, it acquired a read lock for his
transaction on each row that matched his selection.

393

Understanding and choosing isolation levels

Changing the isolation level within a transaction

You may not have thought about it, but in doing the above tutorial, you
demonstrated another important feature of Adaptive Server Anywhere,
namely that the isolation level may be changed in the middle of a transaction.
The accountant performed one SELECT, upgraded his isolation to level 2,
and then performed a second SELECT.

When you change the ISOLATION _LEVEL option in the middle of a
transaction, the new setting affects only the following:

¢ Any cursors opened after the change

¢ Any statements executed after the change

You may wish to change the isolation level during a transaction, as doing so
affords you control over the number of locks your transaction places. You
may find a transaction needs to read a large table, but perform detailed work
with only a few of the rows. If an inconsistency would not seriously affect
your transaction, set the isolation to a low level while you scan the large
table to avoid delaying the work of others.

You may also wish to change the isolation level in mid transaction if, for
example, just one table or group of tables requires serialized access.

Transaction blocking

394

In step 10 of the above tutorial, the Sales Manager's screen froze during the
execution of his UPDATE command. The database server began to execute
his command, then found that the Accountant's transaction had acquired a
read lock on the row that the Sales Manager needed to change. At this point,
the database server simply paused the execution of the UPDATE. Once the
Accountant finished his transaction with the ROLLBACK, the database
server automatically released his locks. Finding no further obstructions, it
then proceeded to complete execution of the Sales Manager's UPDATE.

In general, a locking conflict occurs when one transaction attempts to acquire
an exclusive lock on a row on which another transaction holds a lock, or
attempts to acquire a shared lock on a row on which another transaction
holds an exclusive lock. One transaction must wait for another transaction to
complete. The transaction which must wait is said to be blocked by another
transaction.

Chapter 15 Using Transactions and Locks

When the database server identifies a locking conflict which prohibits a
transaction from proceeding immediately, it can either pause execution of the
transaction, or it can terminate the transaction, roll back any changes, and
return an error. You control the route by setting the BLOCKING option.
When BLOCKING is set to ON, then the second transaction waits as in the
above tutorial

& For further information regarding the blocking option, see "The
BLOCKING option" on page 416.

Tutorial 3 — A phantom row

The following continues the same scenario. In this case, the Accountant
views the department table while the Sales Manager creates a new
department. You will observe the appearance of a phantom row.

If you have not done so, do steps 1 through 4 of the previous tutorial. These
steps describe how to open two copies of Interactive SQL.

1 Start two copies of Interactive SQL as in steps 1 through 3 of the
previous tutorial. Name one connection Sales Manager. Name the other
connection Accountant.

User ID: DBA

Password: SQL

Connection Name: | Sales Manager/
Accountant

Database File: asademo

2 Set the isolation level to 2 in the Sales Manager's window by executing
the following command.

SET TEMPORARY OPTION ISOLATION LEVEL = 2;

3 Set the isolation level to 2 for the Accountant's connection by executing
the following command.

SET TEMPORARY OPTION ISOLATION LEVEL = 2;

4 Inthe Accountant's window, enter the following command to list all the
department.

SELECT * FROM department
ORDER BY dept id;

395

Understanding and choosing isolation levels

396

dept_id dept_name dept_head_id
100 R&D 501

200 Sales 902

300 Finance 1293

400 Marketing 1576

500 Shipping 703

The Sales Manager decides to set up a new department to focus on the
foreign market. Philip Chin, who has number 129, will head the new
department.

INSERT INTO department
(dept id, dept name, dept head id)
VALUES (600, 'Foreign Sales', 129);

The final command creates the new entry for the new department. It
appears as a new row at the bottom of the table in the Sales Manager's
window.

The Accountant, however, is not aware of the new the new department.
At isolation level 2, the database server places locks to ensure that no
row changes, but places no locks that stop other transactions from
inserting new rows

The Accountant will only discover the new row if he should execute his
select command again. In the Accountant's window, execute the
SELECT statement again. You will see the new row appended to the
table.

SELECT * FROM department
ORDER BY dept id;

dept_id dept_name dept_head_id
100 R&D 501

200 Sales 902

300 Finance 1293

400 Marketing 1576

500 Shipping 703

600 Foreign Sales 129

Chapter 15 Using Transactions and Locks

The new row that appears is called a phantom row because, from the
Accountant's point of view, it appears like an apparition, seemingly from
nowhere. The Accountant is connected at isolation level 2. At that level,
the database server acquires locks only on the rows that he is using.
Other rows are left untouched and hence their is nothing to prevent the
Sales Manager from inserting a new row.

7 The Accountant would prefer to avoid such surprises in future, so he
raises the isolation level of his current transaction to level 3. Enter the
following commands for the Accountant.

SET TEMPORARY OPTION ISOLATION LEVEL = 3;

SELECT * FROM department
ORDER BY dept id;

8 The Sales Manager would like to add a second department to handle
sales initiative aimed at large corporate partners. Execute the following
command in the Sales Manager's window.

INSERT INTO department
(dept_id, dept name, dept head id)
VALUES (700, 'Major Account Sales', 902);

The Sales Manager's window will pause during execution. The
command is blocked by the Accountant's locks. Click the Stop button to
interrupt this entry.

9 To avoid changing the demonstration database that comes with Adaptive
Server Anywhere, you should roll back the insertion of the new
departments. Execute the following command in the Sales Manager's
window:

ROLLBACK;

When the Accountant raised his isolation to level 3 and again selected all
rows in the department table, the database server placed phantom locks on
each row in the table, and one extra phantom lock to avoid insertion at the
end of the table. When the Sales Manager attempted to insert a new row at
the end of the table, it was this final lock that blocked his command.

Notice that the Sales Manager's command was blocked even though the
Sales Manager is still connected at isolation level 2. the database server
places phantom locks, like read locks, as demanded by the isolation level and
statements of each transactions. Once placed, these locks must be respected
by all other concurrent transactions.

& Further information on the details of the locking methods employed by
Adaptive Server Anywhere is located in "How Adaptive Server Anywhere
implements locking" on page 408.

397

Understanding and choosing isolation levels

Tutorial 4 — Practical locking implications

398

The following continues the same scenario. In this tutorial, the Accountant
and the Sales Manager both have tasks that involve the sales order and sales
order items tables. The Accountant needs to verify the amounts of the
commission checks paid to the sales employees for the sales they made
during the month of April 1994. The Sales Manager, notices that a few
orders have not been added to the database and wants to add them.

Their work demonstrates phantom locking. When a transaction at isolation
level 3 selects rows which match a given criterion, the database server places
phantom locks to stop other transactions from inserting rows which would
also match. The number of locks placed on your behalf depends both on the
search criterion and on the design of your database.

If you have not done so, do steps 1 through 3 of the previous tutorial which
describe how to start two copies of Interactive SQL.

1 Start two copies of Interactive SQL as in steps 1 through 3 of the
previous tutorial. Name one connection Sales Manager. Name the other
connection Accountant.

User ID: DBA

Password: SQL

Connection Name: | Sales Manager/
Accountant

Database File: asademo

2 Set the isolation level to 2 in the Sales Manager's window by executing
the following command.

SET TEMPORARY OPTION ISOLATION LEVEL = 2

3 Set the isolation level to 2 for the Accountant's connection by executing
the following command.

SET TEMPORARY OPTION ISOLATION LEVEL = 2

4 Each month, the sales representatives are paid a commission which is
calculated as a percentage of their sales for that month. The Accountant
is preparing the commission checks for the month of April 1994. His
first task is to calculate the total sales of each representative during this
month.

Enter the following command in the Accountant's window. Prices, sales
order information, and employee data are stored in separate tables. Join
these tables using the foreign key relationships which link them to
combine these necessary pieces of information.

Chapter 15 Using Transactions and Locks

SELECT emp id, emp fname, emp lname,
SUM(sales order items.quantity * unit price)
AS "April sales"
FROM employee
KEY JOIN sales order
KEY JOIN sales order items
KEY JOIN product
WHERE '1994-04-01"' <= order date
AND order date < '1994-05-01'

GROUP BY emp id, emp fname, emp lname
emp_id | emp_fname emp_lname April sales

129 Philip Chin 2160.00
195 Marc Dill 2568.00
299 Rollin Overbey 5760.00
467 James Klobucher 3228.00
667 Mary Garcia 2712.00
690 Kathleen Poitras 2124.00
856 Samuel Singer 5076.00
902 Moira Kelly 5460.00
949 Pamela Savarino 2592.00
1142 Alison Clark 2184.00
1596 Catherine Pickett 1788.00

The Sales Manager notices a big order sold by Philip Chin was not
entered into the database. Philip likes to be paid his commission
promptly, so the Sales manager enters the missing order, which was

placed on April 25.

In the Sales Manager's window, enter the following commands. The
Sales order and the items are entered in separate tables because an one
order can contain many items. You should create the entry for the sales
order before you add items to it. To maintain referential integrity, the
database server won't allow a transaction which adds items to an order

which does not exist.

INSERT into sales_ order

VALUES

(2653,
'Central’',

174,

'1994-04-22",
129);

INSERT into sales order items

VALUES

COMMIT;

(2653, 1,

601, 100,

'rl',

'1994-04-25");

Understanding and choosing isolation levels

400

The Accountant has no way of knowing that the Sales Manager has just
added a new order. Had the new order been entered earlier, it would
have been included in the calculation of Philip Chin's April sales.

In the Accountant's window, calculate the April sales totals again. Use
the same command, but observe that Philip Chin's April sales changes to
$4560.00.

emp_id | emp_fname emp_lname April sales
129 Philip Chin 4560.00
195 Marc Dill 2568.00
299 Rollin Overbey 5760.00
467 James Klobucher 3228.00
667 Mary Garcia 2712.00
690 Kathleen Poitras 2124.00
856 Samuel Singer 5076.00
902 Moira Kelly 5460.00
949 Pamela Savarino 2592.00
1142 Alison Clark 2184.00
1596 Catherine Pickett 1788.00

Imagine that the Accountant now marks all orders placed in April to
indicate that commission has been paid. The order that the Sales
Manager just entered might be found in the second search and marked as
paid, even though it was not included in Philip's total April sales!

At isolation level 3, the database server places phantom locks to ensure
that no other transactions can add a row which matches the criterion of a
search or select.

First, roll back the insertion of Philip's missing order: Execute the
following statement in the Sales Manager's window.

In the Accountant's window, execute the following two statements.
ROLLBACK;
SET TEMPORARY OPTION ISOLATION LEVEL = 3;

In the Sales Manager's window, execute the following statements to
remove the new order.

DELETE FROM sales order items
WHERE id = 2653;

Chapter 15 Using Transactions and Locks

DELETE FROM sales order
WHERE id = 2653;

COMMIT;
10 In the Accountant's window, execute same query as before.

SELECT emp id, emp fname, emp lname,
SUM (sales_order items.quantity * unit price)
AS "April sales"
FROM employee
KEY JOIN sales order
KEY JOIN sales order items
KEY JOIN product
WHERE '1994-04-01"' <= order date
AND order date < '1994-05-01"'
GROUP BY emp id, emp fname, emp lname;

Because you set the isolation to level 3, the database server will
automatically place phantom locks to ensure that the Sales Manager
can't insert April order items until the Accountant finishes his
transaction.

11 Return to the Sales Manager's window. Again attempt to enter Philip
Chin's missing order.

INSERT INTO sales order
VALUES (2653, 174, '1994-04-22', 'rl',
'Central', 129);

The Sales Manager's window will hang; the operation will not complete.
Click Stop to interrupt this entry.

12 The Sales Manager can't enter the order in April, but you would think
that she could still enter it in May.

Change the date of the command to April 05 and try again.

INSERT INTO sales order
VALUES (2653, 174, '1994-05-05', 'rl',
'Central', 129);

The Sales Manager's window will hang again. Click Stop to interrupt
this entry. Although the database server places no more locks than
necessary to prevent insertions, these locks have the potential to
interfere with a large number of other transactions.

The database server places locks in table indices. For example, it places
a phantom lock in an index so a new row cannot be inserted immediately
before it. However, when no suitable index is present, it must lock every
row in the table.

In some situations, phantom locks may block some insertions into a
table, yet allow others.

401

Understanding and choosing isolation levels

13 The Sales Manager wishes to add a second item to order 2651. Use the
following command.

INSERT INTO sales order items
VALUES (2651, 2, 302, 4, '1994-05-22');

All goes well, so the Sales Manager decides to add the following item to
order 2652 as well.

INSERT INTO sales order items
VALUES (2652, 2, 600, 12, '1994-05-25");

The Sales Manager's window will hang. Click Stop to interrupt this
entry.

14 Conclude this tutorial by undoing any changes to avoid changing the
demonstration database. Enter the following command in the Sales
Manager's window.

ROLLBACK;
Enter the same command in the Accountant's window.
ROLLBACK;

You may now close both windows.

Reducing the impact of locking

402

You should avoid running transactions at isolation level 3 whenever
practical. They tend to place large number of locks and hence impact the
efficient execution of other concurrent transactions.

When the nature of an operation demands that it run at isolation level 3, you
can lower its impact on concurrency by designing the query to read as few
rows and index entries as possible. These steps will help the level 3
transaction run more quickly and, of possibly greater importance, will reduce
the number of locks it places.

In particular, you may find that adding an index may greatly help speed up
transactions, particularly when at least one of them must execute at isolation
level 3. An index can have two benefits:

¢ Orders can be located in an efficient manner

¢ Fewer locks may be needed for searches which make use of the index.

You should design your database with the operations that you wish it to
perform in mind. For example, if selections such as that used by the
Accountant are to be run at level 3 frequently, you might find it worthwhile
to index the order dates.

Chapter 15 Using Transactions and Locks

To execute each of your commands, the database server must decide which
information in the database to access and an order in which to retrieve it.
These plans are based both on general strategic principles as well as past
experience with your database. the database server provides you with
information about its plans. With this knowledge, you can more readily
anticipate which rows and indexes the database server will need to read and
hence which rows a particular statement is likely to lock.

& Further information on the details of the locking methods employed by
Adaptive Server Anywhere is located in "How Adaptive Server Anywhere
implements locking" on page 408.

& For information on performance and how Adaptive Server Anywhere
plans its access of information to execute your commands, refer to
"Monitoring and Improving Performance" on page 623.

Transactions for which no updates are lost

Example

Depending upon what level of locking you demand from the database server,
you can encounter other inconsistencies in addition to the three types of
inconsistencies introduced above. This section introduces one additional type
of inconsistency. It is of particular relevance to you if you make use of
cursors within your SQL programs.

Some applications require that no updates be lost. The following example
typifies the lost update problem.

Consider a sequence of instructions which could occur when two people put
money into the same account at about the same time.

The initial account balance is $1000, and two people (Alex and Ben, say) are
about to deposit money into it. Alex will deposit $2000, while Ben will
deposit $100.

1 Alex reads the account balance and finds it to be $1000.
2 Ben reads the account balance and finds it to be $1000.

3 Alex adds $2000 to the present balance of $1000 to calculate the new
account balance. He then updates the account balance to reflect his
deposit. He writes a new balance of $3000 into the database and
completes his transaction.

4 Ben adds $100 to the present account balance, which he has read as
$1000, to calculate the new account balance. He then updates the
account balance to reflect his deposit. He writes a balance of $1100 into
the database and completes his transaction.

403

Understanding and choosing isolation levels

Cursor stability
A cursor can hold

the result of a
SELECT

404

5 The final balance recorded after the two deposits is $1100. The $2000
deposit entered by Alex has been lost.

While both transactions are perfectly correct in themselves, the interaction
between the two creates an invalid result in the database, and Alex's update is
lost.

Adaptive Server Anywhere provides you with several means of eliminating
lost updates. You can execute such transactions at either isolation level 2
or 3, which guarantee repeatable reads. The next section describes another
option.

The database server allows you to return the results of a select in the form of
a data type called a cursor. A cursor is similar to a table, but has the
additional property that one row is identified as the present, or current row.
Various commands allow you to navigate through the rows of a cursor. For
example the FETCH command retrieves a row from the cursor and identifies
it as the current row. You can step through all the rows in a cursor by
repeatedly calling this command.

Cursors are of most use when you program procedures, or when you write
applications which access a database using embedded SQL. They are not as
useful when using Interactive SQL interactively.

The rows in a cursor, like those in a table, have no order associated with
them. The FETCH command steps through the rows, but the order may
appear random and can even be inconsistent. For this reason, you will
frequently wish to add an index and impose an order by appending a
ORDERED BY phrase to your SELECT statement.

& For further information on programming SQL procedures and cursors,
see "Using Procedures, Triggers, and Batches" on page 221.

The Adaptive Server Anywhere locking mechanism can achieve cursor
stability. Cursor stability ensures that no other transactions can modify
information which is contained in the present row of your cursor. The
information in a row of a cursor may be the copy of information contained in
a particular table or may be a combination of data from different rows of
multiple tables. More than one table will likely be involved whenever you
use a join or sub-selection within a SELECT statement.

The Adaptive Server Anywhere locking scheme assures cursor stability at
isolation levels 1 through 3. Cursor stability also eliminates lost updates.

Chapter 15 Using Transactions and Locks

Cursor stability at
isolation levels 1,
2,and 3

If you are writing SQL procedures or writing an application which makes use
of embedded SQL, you may wish to take advantage of cursor stability. No
row fetched through a cursor yields uncommitted data. No updates made
through a cursor will be lost. Adaptive Server Anywhere automatically
provides cursor stability at isolation levels 1, 2, and 3.

Early release of read locks—an exception

A transaction acquires a read lock on each row of a table which is read when
you have set the isolation to level 3. Ordinarily, a transaction never releases a
lock, once it has acquired it, before the end of the transaction. Indeed, it is
essential that a transaction does not release locks early if the schedule is to be
serializable.

Adaptive Server Anywhere always retains write locks until a transaction
completes. If it were to release a lock sooner, another transaction could
modify that row making it impossible to roll back the first transaction.

Read locks are never released either, except under one, special circumstance.
Under isolation level 1, transactions acquire a read lock on a row only when
it becomes the current row of a cursor. This lock eliminates lost updates by
assuring that no other transaction can modify that row. When, however, that
row is no longer current, the lock is released. This behavior is acceptable
because the database engine does not need to guarantee repeatable reads at
isolation level 1.

Typical transactions at various isolation levels

Typical level 0
transactions

Various isolation levels lend themselves to particular types of tasks. Use the
information below to help you decide which level is best suited to each
particular operation.

Transactions that involve browsing or performing data entry may last several
minutes, and read a large number of rows. If isolation level 2 or 3 is used,
concurrency can suffer. Isolation level of 0 or 1 is typically used for this kind
of transaction.

For example, a decision support application that reads large amounts of
information from the database to produce statistical summaries may not be
significantly affected if it reads a few rows that are later modified. If high
isolation is required for such an application, it may acquire read locks on
large amounts of data, not allowing other applications write access to it.

405

Understanding and choosing isolation levels

Typical level 1
transactions

Typical level 2
transactions

Typical level 3
transactions

Isolation level 1 is particularly useful in conjunction with cursors, because
this combination eliminates lost updates without greatly increasing locking
requirements. Adaptive Server Anywhere achieves this benefit through the
early release of read locks acquired for the present row of a cursor. These
locks must persist until the end of the transaction at either levels two or three
in order to guarantee repeatable reads.

For example, a transaction which updates inventory levels through a cursor is
particularly suited to this level, because each of the adjustments to inventory
levels as items are received and sold would not be lost, yet these frequent
adjustments would have minimal impact on other transactions.

At isolation level 2, rows which match your criterion cannot be changed by
other transactions. You can thus employ this level when you must read rows
more than once and rely that rows contained in your first result set won't
change.

Because of the relatively large number of read locks required, you should use
this isolation level with care. As with level 3 transactions, careful design of
your database and indices reduce the number of locks acquired and hence
can improve the performance of your database significantly.

Isolation level 3 is appropriate for transactions which demand the most in
security. The elimination of phantom rows lets you perform multi-step
operations on a set of rows without fear that new rows will appear partway
through your operations and corrupt the result.

However much integrity it provides, isolation level 3 demands respect when
used on large systems which must support a large number of concurrent
transactions. Adaptive Server Anywhere places more locks at this level than
at any other, raising the likelihood that one transaction will impede the
process of many others. You will thus likely wish to use lower isolation
levels wherever possible.

Improving concurrency at isolation levels 2 and 3

406

When you must make use of serializable transactions, design your database,
in particular the indices, with the business rules of your project in mind. You
may also improve performance by breaking large transactions into several
smaller ones, thus shortening the length of time that rows are locked.

Chapter 15 Using Transactions and Locks

Although serializable transactions have the most potential to block other
transactions, they are not necessarily less efficient. When processing these
transactions, Adaptive Server Anywhere can perform certain optimizations
which may improve performance, despite the increased number of locks. For
example, since all rows read must be locked whether or not they match the a
search criteria, the database server is free to combine the operation of reading
rows and placing locks.

407

How Adaptive Server Anywhere implements locking

How Adaptive Server Anywhere implements

locking

Often, the general information about locking provided in the earlier sections
will suffice to meet your needs. There are times, however, when you may
benefit from more knowledge of what goes on inside Adaptive Server
Anywhere when you perform basic types of operations. This knowledge will
provide you with a better basis from which to understand and predict
potential problems that users of your database may encounter.

The details of locking are best broken into two sections: what happens during
a INSERT, UPDATE, DELETE or SELECT and how the various isolation
levels affect the placement of read, phantom, and anti-phantom locks.

Although you can control the amount of locking that takes place within the
database server by setting the isolation level, there is a good deal of locking
that occurs at all levels, even at level 0. These locking operations are
fundamental. For example, once one transaction updates a row, no other
transaction must can modify the same row before the first transaction
completes. Without this precaution, you could not role back the first
transaction.

The locking operations which the engine performs at isolation level O are the
best to learn first exactly because they represent the foundation. The other
levels add locking features, but do not remove any present in the lower
levels. Thus, moving to higher isolation level adds operations not present in
lower levels and never removes any.

Locking during inserts

408

INSERT operations create new rows. Adaptive Server Anywhere employs
the following procedure to ensure data integrity.

1 Make a location in memory to store the new row. The location is
initially hidden from the rest of the database, so there is as yet no
concern that another transaction could access it.

2 Fill the new row with any supplied values.
3 Write lock the new row.

4 Place an anti-phantom lock in the table to which the row is being added.
Recall that anti-phantom locks are exclusive, so once the-anti-phantom
lock is acquired, no other transaction can block the insertion by
acquiring a phantom lock

Chapter 15 Using Transactions and Locks

Uniqueness

Orphans and

referential integrity

WAIT FOR
COMMIT

5 Insert the row into the table. Other transactions can now, for the first
time, see that the new row exists. They can't modify or delete it, though,
because of the write lock acquired earlier.

6 Update all affected indexes and verify both referential integrity and
uniqueness, where appropriate. Verifying referential integrity means
ensuring that no foreign key points to a primary key which does not
exist. Primary key values must be unique. Other columns may also be
defined to contain only unique values, and if any such columns exist,
uniqueness is verified.

7 The transaction can be committed provided referential integrity will not
be violated by doing so: record the operation in the transaction log file
and release all locks.

8 Insert other rows as required, if you have selected the cascade option,
and fire triggers.

You can ensure that all values in a particular column, or combination of
columns, are unique. database server always performs this task by building
an index for the unique column, even if you don't ask for an index explicitly.

In particular, all primary key values must be unique. database server
automatically builds an index for the primary key of every table. Thus, you
don't need to, and indeed shouldn't, explicitly ask database server to index a
primary key as you risk asking it to create a redundant index.

A foreign key is a reference to a primary key, usually in another table. When
that primary key doesn't exist, the offending foreign key is called an orphan.
Adaptive Server Anywhere automatically ensures that your database contains
no orphans. This process is referred to as verifying referential integrity.
The database server verifies referential integrity by counting orphans.

You can ask the database server to delay verifying referential integrity to the
end of your transaction. In this mode, you can insert one row which contains
a foreign key, then insert a second row which contains the missing primary
key. You must perform both operations in the same transaction. Otherwise,
the database server will not allow your operations.

To request that the database server delay referential integrity checks until
commit time, set the value of the option WAIT FOR COMMIT to ON. By
default, this option is OFF. To turn it on, issue the following command:

SET OPTION WAIT FOR COMMIT = ON;

Before committing a transaction, the database server verifies that referential
integrity is maintained by checking the number of orphans your transaction
has created. At the end of every transaction, that number must be zero.

409

How Adaptive Server Anywhere implements locking

Even if the necessary primary key exists at the time you insert the row, the
database server must ensure that it still exists when you commit your results.
It does so by placing a read lock on the target row. With the read lock in
place, any other transaction is still free to read that row, but none can delete
or alter it.

Locking during updates

410

The database server modifies the information contained in a particular record
using the following procedure.

1 Write lock the affected row.

2 Ifany entries changed are included in an index, delete each index entry
corresponding to the old values. Make a record of any orphans created
by doing so.

3 Update each of the affected values.

4 Ifindexed values were changed, add new index entries. Verify
uniqueness where appropriate and verify referential integrity if a
primary of foreign key was changed.

5 The transaction can be committed provided referential integrity will not
be violated by doing so: record the operation in the transaction log file,
including the previous values of all entries in the row, and release all
locks.

6 Cascade the insert or delete operations, if you have selected this option
and primary or secondary keys are affected.

You may be surprised to see that the deceptively simple operation of
changing a value in a table can necessitate a rather large number of
operations. The amount of work that the database server needs to do is much
less if the value you are changing is not part of a primary or foreign key. It is
lower still if it is not contained in an index, either explicitly or implicitly
because you have declared that attribute unique.

The operation of verifying referential integrity during an UPDATE operation
is no less simple than when the verification is performed during an INSERT.
In fact, when you change the value of a primary key, you may create
orphans. When you insert the replacement value, the database server must
check for orphans once more.

Chapter 15 Using Transactions and Locks

Locking during deletes

Phantom locks

The DELETE operation follows almost the same steps as the INSERT
operation, except in the opposite order.

1 Write lock the affected row.

2 Delete each index entry present for the any values in the row.
Immediately prior to deleting each index entry, acquire one or more
phantom locks as necessary to prevent another transaction inserting a
similar entry before the delete is committed. In order to verify referential
integrity, the database server also keeps track of any orphans created as
a side effect of the deletion.

3 Remove the row from the table so that it is no longer visible to other
transactions. The row cannot be destroyed until the transaction is
committed because doing so would remove the option of rolling back
the transaction.

4 The transaction can be committed provided referential integrity will not
be violated by doing so: record the operation in the transaction log file
including the values of all entries in the row, release all locks, and
destroy the row.

5 Cascade the delete operation, if you have selected this option and have
modified a primary or foreign key.

The database server must ensure that the DELETE operation can be rolled
back. It does so in part by acquiring phantom locks. These locks are not
exclusive, but deny other transactions the right to insert entries which make it
impossible to roll back the DELETE operation. For example, the row deleted
may have contained a primary key value for the table, or another unique
value. Were another transaction allowed to insert a row with the same value,
the DELETE could not be undone without violating the unique property of
the primary key or attribute.

Adaptive Server Anywhere enforces uniqueness constraints through indexes.
In the case of a simple table with only a one-attribute primary key, a single
phantom lock may suffice. Other arrangements can quickly escalate the
number of locks required. For example, the table may have no primary key
or other index associated with any of the attributes. Since the rows in a table
have no fundamental ordering, the only way of preventing inserts may be to
phantom lock the entire table.

411

How Adaptive Server Anywhere implements locking

Phantom locks and
read locks

Deleting a row can mean acquiring a great many locks. You can minimize
the effect on concurrency in your database in a number of ways. As
described earlier, indexes and primary keys reduce the number of locks
required because they impose an ordering on the rows in the table. the
database server takes advantage of these orderings. Instead of acquiring locks
on every row in the table, it can simply lock the next row. Without the index,
the rows have no order and thus the concept of a next row is meaningless.

The database server acquires phantom locks on the row following the row
deleted. Should you delete the last row of a table, then it simply places the
phantom lock on an invisible end row. In fact, if the table contains no index,
the number of phantom locks required is one more than the number of rows
in the table.

While one or more phantom lock excludes an anti-phantom lock, and one or
more read lock excludes a write lock, no interaction exists between
phantom/anti-phantom locks and read/write locks. For example, although a
write lock is exclusive and so can not be acquired on a row which contains
read locks, it can be acquired on a row which has only a phantom lock. More
options are open to the database server because of this flexible arrangement,
but it means that the engine must generally take the extra precaution of
acquiring a read lock when acquiring a phantom lock. Otherwise, there
another transaction could in effect remove the phantom lock by deleting the
row on which it was acquired.

Selecting at isolation level 0

No locking operations are required when executing a SELECT statement at
isolation level 0. Each transaction is not protected from changes introduced
by other transactions. It is the responsibility of the programmer or database
user to interpret the result of these queries with this limitation in mind.

Selecting at isolation level 1

412

You may be surprised to learn that Adaptive Server Anywhere uses almost
no more locks when running a transaction at isolation level 1 than it does at
isolation level 0. Indeed, the database server modifies its operation in only
two ways.

The first difference in operation has nothing to do with acquiring locks, but
rather with respecting them. At isolation level 0, a transaction is free to read
any row, whether or not another transaction has acquired a write lock on it.
By contrast, before reading each row an isolation level 1 transaction must
check whether a write lock is in place. It cannot read past any write-locked
rows because doing so might entail reading dirty data.

Chapter 15 Using Transactions and Locks

The second difference in operation creates cursor stability. Cursor stability is
achieved by acquiring a read lock on the current row of a cursor. This read
lock is released when the cursor is moved. More than one row may be
affected if the contents of the cursor is the result of a join. In this case, the
database server acquires read locks on all rows which have contributed
information to the cursor's current row and removes all these locks as soon as
another row of the cursor is selected as current. A read lock placed to ensure
cursor stability is the only type of lock that does not persist until the end of a
transaction.

Selecting at isolation level 2

At isolation level 2, Adaptive Server Anywhere modifies its procedures to
ensure that your reads are repeatable. If your SELECT command returns
values from every row in a table, then the database server acquires a read
lock on each row of a table as it reads it. If, instead, your SELECT contains a
WHERE clause, or other condition which restricts the rows to selected, then
the database server instead reads each row, tests the values in the row against
your criterion, and then acquires a read lock on the row if it meets your
criterion.

As at all isolation levels, the locks acquired at level 2 include all those set at
levels 1 and 0. Thus, cursor stability is again insured and dirty reads are not
permitted.

Selecting at isolation level 3

When operating at isolation level 3, Adaptive Server Anywhere is obligated
to ensure that all schedules are serializable. In particular, in addition to the
requirements imposed at each of the lower levels, it must eliminate phantom
TOWS.

To accommodate this requirement, the database server uses read locks and
phantom locks. When you make a selection, the database server acquires a
read lock on each row which contributes information to your result set.
Doing so ensures that no other transactions can modify that material before
you have finished using it.

413

How Adaptive Server Anywhere implements locking

This requirement is similar to the procedures that the database server engine
uses at isolation level 2, but differs in that a lock must be acquired for each
row read, whether or not it meets any attached criterion. For example, if you
select the names of all employees in the sales department, then the engine
must lock all the rows which contain information about a sales person,
whether the transaction is executing at isolation level 2 or 3. At isolation
level 3, however, it must also acquire read locks on each of the rows of
employees which are not in the sales department. Otherwise, someone else
accessing the database could potentially transfer another employee to the
sales department while you were still using your results.

The fact that a read lock must be acquired on each row whether or not it
meets your criterion has two important implications.

¢ The database server may need to place many more locks than would be
necessary at isolation level 2.

¢ The database server can operate a little more efficiently: It can
immediately acquire a read lock on each row at as it reads it, since the
locks must be placed whether or not the information in the row is
accepted.

The number of phantom locks the engine places can very greatly and
depends upon your criterion and on the indexes available in the table.
Suppose you select information about the employee with Employee ID 123.
If the employee id is the primary key of the employee table, then the
database server can economize its operations. It can use the index, which is
automatically built for a primary key, to locate the row efficiently. In
addition, there is no danger that another transaction could change another
Employee's ID to 123 because primary key values must be unique. The
engine can guarantee that no second employee is assigned that ID number
simply by acquiring a read lock on only the one row containing information
about the employee with that number.

By contrast, the database server would likely have to acquire many more
locks were you to, instead, select all the employees in the sales department.
Since any number of employees could be added to the department, the engine
will likely have to read every row in the employee table and test whether
each person is in sales. If this is the case, both read and phantom locks must
be acquired for each row.

Special optimizations

414

The previous sections describe the locks acquired when all transactions are
operating at a given isolation level. For example, when all transactions are
running at isolation level 2, locking is performed as described in the
appropriate section, above.

Chapter 15 Using Transactions and Locks

In practice, your database is likely to need to process multiple transactions
which are at different levels. A few transactions, such as the transfer of
money between accounts, must be serializable and so run at isolation level 3.
For other operations, such as updating an address or calculating average
daily sales, a lower isolation level will often suffice.

While the database server is not processing any transactions at level 3, it
optimizes some operations so as to improve performance. In particular, many
extra phantom and anti-phantom locks are often necessary to support a

level 3 transaction. Under some circumstances, the database server can avoid
either placing or checking for some types of locks when no level 3
transactions are present.

For example, the engine uses phantom locks to guard against two distinct
types of circumstances:

1 Ensure that deletes in tables with unique attributes can be rolled back.

2 Eliminate phantom rows in level 3 transactions.

If no level 3 transactions are using a particular table, then the database server
need not place phantom locks in the index of a table which contains no
unique attributes. If, however, even one level 3 transaction is present, all
transactions, even those at level 0, must place phantom locks so that the
level 3 transactions can identify their operations.

Naturally, the database server always attaches notes to a table when it
attempts the types of optimizations described above. Should a level 3
transaction suddenly start, you can be confident that the necessary locks will
be put in place for it.

You may have little control over the mix of isolation levels in use at one time
as so much will depend on the particular operations that the various users of
your database wish to perform. Where possible, however, you may wish to
select the time that level 3 operations execute because they have the potential
to cause significant slowing of database operations. The impact is magnified
because the database server is forced to perform extra operations for lower-
level operations.

415

Locking conflicts

Locking conflicts

When a transaction attempts to acquire a lock on a row, but is forbidden by a
lock held by another transaction, a locking conflict arises and the progress of
the transaction attempting to acquire the lock is impeded or blocked.

& The next section, "The BLOCKING option" on page 416," describes
transaction blocking.

&> "Transaction blocking and deadlock" on page 416 describes deadlock,
which occurs when two or more transactions are blocked by each other in
such a way that none can proceed.

The BLOCKING option

If two simultaneously transactions have each acquired a read lock on a single
row, the behavior when one of them attempts to modify that row depends on
the database setting BLOCKING. To modify the row, that transaction must
acquire a write lock, yet it cannot do so while the other transaction holds a
lock on the row.

¢ If BLOCKING is ON (the default setting), then the transaction that
attempts to write waits until the other transaction releases its read lock.
At that time, the write goes through.

¢ If BLOCKING has been set to OFF, then the transaction that attempts to
write receives an error.

When BLOCKING is set to OFF, the transaction terminates instead of
waiting and any changes it has made are rolled back. In this event, try
executing the transaction again, later.

Blocking is more /ikely to occur at higher isolation levels because more
locking and more checking is done. Higher isolation levels usually provides
less concurrency. How much less depends on the individual natures of the
concurrent transactions.

& For information about the BLOCKING option, see "BLOCKING
option" on page 145 of the book Adaptive Server Anywhere Reference
Manual.

Transaction blocking and deadlock

Transaction blocking can lead to deadlock, where a set of transactions arrive
at a state where none of them can proceed.

416

Chapter 15 Using Transactions and Locks

Reasons for
deadlocks

Determining who is
blocked

A deadlock can arise for two reasons:

¢ A cyclical blocking conflict Transaction A is blocked on transaction
B, and transaction B is blocked on transaction A. Clearly, more time will
not solve the problem, and one of the transactions must be canceled,
allowing the other to proceed. The same situation can arise with more
than two transactions blocked in a cycle.

¢ All active database threads are blocked When a transaction becomes
blocked, its database thread is not relinquished. If the database is
configured with three threads and transactions A, B, and C are blocked
on transaction D which is not currently executing a request, then a
deadlock situation has arisen since there are no available threads.

Adaptive Server Anywhere automatically cancels the last transaction that
became blocked (eliminating the deadlock situation), and returns an error to
that transaction indicating which form of deadlock occurred.

You can use the sa_conn_info system procedure to determine which
connections are blocked on which other connections. This procedure returns
a result set consisting of a row for each connection. One column of the result
set lists whether the connection is blocked, and if so which other connection
it is blocked on.

& For more information, see "sa_conn_info system procedure" on page
753 of the book Adaptive Server Anywhere Reference Manual

417

Savepoints within transactions

Savepoints within transactions

Adaptive Server Anywhere supports savepoints within a transaction.

A SAVEPOINT statement defines an intermediate point during a transaction.
You can undo all changes after that point using a ROLLBACK TO
SAVEPOINT statement. Once a RELEASE SAVEPOINT statement has
been executed or the transaction has ended, you can no longer use the
savepoint.

No locks are released by the RELEASE SAVEPOINT or ROLLBACK TO
SAVEPOINT commands: locks are released only at the end of a transaction.

Naming and Savepoints can be named and they can be nested. By using named, nested

nesting savepoints savepoints, you can have many active savepoints within a transaction.
Changes between a SAVEPOINT and a RELEASE SAVEPOINT can still be
canceled by rolling back to a previous savepoint or rolling back the
transaction itself. Changes within a transaction are not a permanent part of
the database until the transaction is committed. All savepoints are released
when a transaction ends.

Savepoints make use of the rollback log. They cannot be used in bulk
operations mode. There is very little additional overhead in using savepoints.

418

Chapter 15 Using Transactions and Locks

Particular concurrency issues

This section discusses the following particular concurrency issues:

¢

¢

"Primary key generation" on page 419

"Data definition statements and concurrency"” on page 420

Primary key generation

Example

You will encounter situations where the database should automatically
generate a unique number. For example, if you are building a table to store
sales invoices you might prefer that the database assign unique invoice
numbers automatically, rather than require sales staff pick them.

There are many methods for generating such numbers.

For example, invoice numbers could be obtained by adding 1 to the previous
invoice number. This method will not work when there is more than one
person adding invoices to the database. Two people may decide to use the
same invoice number.

There is more than one solution to the problem:

¢

Assign a range of invoice numbers to each person who adds new
invoices.

You could implement this scheme by creating a table with two columns
user name and invoice number. The table would have one row for each
user that adds invoices. Each time a user adds an invoice, the number in
the table would be incremented and used for the new invoice. In order to
handle all tables in the database, the table should have three columns:
table name, user name, and last key value. You should periodically
check that each person still has a sufficient supply of numbers.

Create a table with two columns: table name and last key value.

One row in this table would contain the last invoice number used. Each
time someone adds an invoice, establish a new connection, increment
the number in the table, and commit the change immediately. The
incremented number can be used for the new invoice. Other users will
be able to grab invoice numbers because you updated the row with a
separate transaction that only lasted an instant.

Probably the best solution is to use a column with a default value of
AUTOINCREMENT.

For example,

419

Particular concurrency issues

CREATE TABLE orders (
order id INTEGER NOT NULL DEFAULT AUTOINCREMENT,
order date DATE,
primary key(order id)

)

On INSERTS into the table, if a value is not specified for the
autoincrement column, a unique value is generated. If a value is
specified, it will be used. If the value is larger than the current maximum
value for the column, that value will be used as a starting point for
subsequent INSERTSs. The value of the most recently inserted row in an
autoincrement column is available as the global variable @@identity.

Unique values in replicated databases
Different techniques are required if you replicate your database and more
than one person can add entries which must later be merged.

&, See "Replication and concurrency" on page 422.

Autoincrement using PowerBuilder

Adaptive Server Anywhere supports an AUTOINCREMENT default
value on fields. However, this type of field cannot be used by a
PowerBuilder data window for primary key generation, because
PowerBuilder is unable to find the record after insertion. If a table in your
database is only added to from a PowerBuilder script, you may want to
use the AUTOINCREMENT default value mechanism.

Data definition statements and concurrency

420

The CREATE INDEX statement, ALTER TABLE statement, and DROP
statement are prevented whenever the statement affects a table that is
currently is used by another connection. These statements can be time
consuming and the database server will not process requests referencing the
same table while the command is being processed.

The CREATE TABLE statement does not cause any concurrency conflicts.

The GRANT statement, REVOKE statement, and SET OPTION statement
also do not cause concurrency conflicts. These commands affect any new
SQL statements sent to the database engine, but do not affect existing
outstanding statements.

GRANT and REVOKE for a user are not allowed if that user is connected to
the database.

Chapter 15 Using Transactions and Locks

Data definition statements and replicated databases
Using data definition statements in replicated databases requires special

care.
& See the separate manual entitled Data Replication with SOL Remote.

421

Replication and concurrency

Replication and concurrency

422

Some computers on your network might be portable computers that people
take away from the office or which are occasionally connected to the
network. There may be several database applications that they would like to
use while not connected to the network.

Database replication is the ideal solution to this problem. Using SQL
Remote, you can publish information in a consolidated, or master, database
to any number of other computers. You can control precisely the information
replicated on any particular computer. Any person can receive particular
tables, or even portions of the rows or columns of a table. By customizing
the information each receives, you can ensure that their copy of the database
is no larger than necessary to contain the information they require.

& Extensive information on replication is provided in the separate manual
entitled Data Replication with SOL Remote. The information in this section
is, thus, not intended to be complete. Rather, it introduces concepts related
directly to locking and concurrency considerations. For further, detail please
refer to the supplementary manual.

SQL Remote allows replicated databases to be updated from a central,
consolidated database, as well as updating this same central data as the
results of transactions processed on the remote machine. Since updates can
occur in either direction, this ability is referred to as bi-directional
replication.

Since the results of transactions can affect the consolidated database, whether
they are processed on the central machine or on a remote one, the effect is
that of allowing concurrent transactions.

Transactions may happen at the same time on different machines. They may
even involve the same data. In this case, though, the machines may not be
physically connected. No means may exist by which the remote machine can
contact the consolidated database to set any form of lock or identify which
rows have changed. Thus, locks can not prevent inconsistencies as they do
when all transactions are processed by a single engine.

An added complication is introduced by the fact that any given remote
machine may not hold a full copy of the database. Consider a transaction
executed directly on the main, consolidated database. It may affect rows in
two or more tables. The same transaction might not execute on a remote
database, as there is no guarantee that one or both of the affected tables is
replicated on that machine. Even if the same tables exist, they may not
contain exactly the same information, depending upon how recently the
information in the two databases has been synchronized.

Chapter 15 Using Transactions and Locks

Transaction log
based replication

To accommodate the above constraints, replication is not based on
transactions, but rather on operations. An operation is a change to one row
in a table. This change could be the result of an UPDATE, INSERT, or
DELETE statement. An operation resulting from an UPDATE or DELETE
identifies the initial values of each column and a transaction resulting from
an INSERT or UPDATE records the final values.

A transaction may result in none, one, or more than one operation. One
operation will never result from two or more transactions. If two transaction
modify a table, then two or more corresponding operations will result.

If an operation results from a transaction processed on a remote computer,
then it must be passed to the consolidated database so that the information
can be merged. If, on the other hand, an operation results from a transaction
on the consolidated computer, then the operation may need to be sent to
some remote sites, but not others. Since each remote site may contain a
replica of a portion of the complete database, SQL Remote knows to pass the
operation to a remote site only when it affects that portion of the database.

SQL Remote uses a transaction log based replication mechanism. When
you activate SQL Remote on a machine, it scans the transaction log to
identify the operations it must transfer and prepares one or more messages.

SQL Remote can pass these messages between computers using a number of
methods. It can create files containing the messages and store them in a
designated directory. Alternatively, SQL Remote can pass messages using
any of the most common messaging protocols. You likely can use your
present e-mail system.

Conflicts may arise when merging operations from remote sites into the
consolidated database. For example, two people, each at a different remote
site, may have changed the same value in the same table. Whereas the
locking facility built into Adaptive Server Anywhere can eliminate conflict
between concurrent transactions handled by the same engine, it is impossible
to automatically eliminate all conflicts between two remote users who both
have permission to change the same value.

As the database administrator, you can avoid this potential problem through
suitable database design or by writing conflict resolution algorithms. For
example, you can decide that only one person will be responsible for
updating a particular range of values in a particular table. If such a restriction
is impractical, then you can instead use the conflict resolution facilities of
SQL Remote to implement triggers and procedures which resolve conflicts in
a manner appropriate to the data involved.

& SQL Remote provides the tools and programming facilities you need to
take full advantage of database replication. For further information, see the
manual Data Replication with SQL Remote.

423

Summary

Summary

424

Transactions and locking are perhaps second only in importance to relations
between tables. While the integrity and performance of any database can
benefit from the judicious use of locking and careful construction of
transactions. Both are essential to creating databases which must execute
commands from a large number of people or processes simultaneously.

Transactions group SQL statements into logical units of work. You may end
each by either rolling back any changes you have made or by committing
these changes and so making them permanent.

Transactions are essential to data recovery in the event of system failure.
They also play a pivotal role in interweaving statements from concurrent
transactions.

To improve performance, multiple transactions must be executed
concurrently. Each transaction is composed of component SQL statements.
When two or more transactions are to be executed concurrently, the database
server must schedule the execution of the individual statements.
Simultaneously transactions have the potential to introduce new, inconsistent
results that could not arise were these same transactions executed
sequentially.

Many types of inconsistencies are possible, but four typical types are
particularly important because they are mentioned in the ISO SQL/92
standard and the isolation levels are defined in terms of them.

¢ Dirtyread One transaction reads data modified, but not yet committed,
by another.

¢ Non-repeatable read A transaction reads the same row twice and gets
different values.

¢ Phantom row A transaction selects rows, using a certain criterion,
twice and finds new rows in the second result set.

¢ Lost Update One transaction's changes to a row are completely lost
because another transaction is allowed to save an update based on earlier
data.

A schedule is called serializable whenever the effect of executing the
statements according to the schedule is the same as could be achieved by
executing each of the transactions sequentially. Schedules are said to be
correct if they are serializable. A serializable schedule will cause none of the
above inconsistencies.

Chapter 15 Using Transactions and Locks

Locking controls the amount and types of interference permitted. Adaptive
Server Anywhere provides you with four levels of locking: isolation levels
0, 1, 2, and 3. At the highest isolation, level 3, Adaptive Server Anywhere
guarantees that the schedule is serializable, meaning that the effect of
executing all the transactions is equivalent to running them sequentially.

Unfortunately, locks acquired by one transaction may impede the progress of
other transactions. Because of this problem, lower isolation levels are
desirable whenever the inconsistencies they may allow are tolerable.
Increased isolation to improve data consistency frequently means lowering
the concurrency, the efficiency of the database at processing concurrent
transactions. You must frequently balance the requirements for consistency
against the need for performance to determine the best isolation level for
each operation.

Conflicting locking requirements between different transactions may lead to
blocking or deadlock. Adaptive Server Anywhere contains mechanisms for
dealing with both these situations, and provides you with options to control
them.

Transactions at higher isolation levels do not, however, always impact
concurrency. Other transactions will be impeded only if they require access
to locked rows. You can improve concurrency through careful design of your
database and transactions. For example, you can shorten the time that locks
are held by dividing one transaction into two shorter ones, or you might find
that adding an index allows your transaction to operate at higher isolation
levels with fewer locks.

The increased popularity of portable computers will frequently mean that
your database may need to be replicated. Replication is an extremely
convenient feature of Adaptive Server Anywhere, but it introduces new
considerations related to concurrency. These topics are covered in a separate
manual.

425

Summary

426

