CHAPTER 16
Welcome to Java in the Database

About this chapter This chapter provides motivation and concepts for using Java in the database.

Adaptive Server Anywhere is a runtime environment for Java, or Java
platform. Java provides a natural extension to SQL, turning Adaptive Server
Anywhere into a platform for the next generation of enterprise applications.

Contents Topic Page
Introduction to Java in the database 430
Java in the database Q & A 433
A Java seminar 439
The Sybase runtime environment for Java 448
A Java in the database exercise 458

429

Introduction to Java in the database

Introduction to Java in the database

The SQLJ
proposed standard

Adaptive Server Anywhere is a runtime environment for Java. This means
that Java classes can be executed in the database server. Building a runtime
environment for Java classes into the database server provides powerful new
ways of managing and storing data and logic.

Java in the database offers the following:

¢ You can reuse Java components in the different layers of your
application—client, middle-tier, or server—and use them wherever
makes most sense to you. Adaptive Server Anywhere becomes a
platform for distributed computing.

¢ A more powerful language than stored procedures for building logic into
the database.

¢ Java classes become rich user-defined data types.
¢ Methods of Java classes provide new functions accessible from SQL.

¢ Java can be used in the database without jeopardizing the integrity,
security and robustness of the database.

The Adaptive Server Anywhere Java implementation is based on the SQLJ
Part 1 and SQLJ Part 2 proposed standards. SQLJ Part 1 provides
specifications for calling Java static methods as SQL stored procedures and
user-defined functions SQLJ Part 2 provides specifications for using Java
classes as SQL user-defined data types.

Learning about Java in the database

Java
documentation

430

Java is a relatively new programming language with a growing but still
limited knowledge base. This documentation is written not only for
experienced Java developers, but also for the many readers who are
unfamiliar with the language, its possibilities, its syntax and its use.

For those readers familiar with Java, there is much to learn about how to use
Java in a database. Sybase is not only extending the capabilities of the
database with Java, but also extending the capabilities of Java with the
database.

The following table outlines the documentation regarding the use of Java in
the database.

Chapter 16 Welcome to Java in the Database

Title

Purpose

"Welcome to Java in the
Database" on page 429 (this
chapter)

"Using Java in the Database"
on page 465

"Data Access Using JDBC"
on page 503

"Debugging Java in the
Database" on page 533

Adaptive Server Anywhere
Reference.

Reference guide to Sun's Java
API

Thinking in Java by Bruce
Eckel.

Using the Java documentation

Java concepts and how they are applied in
Adaptive Server Anywhere.

Practical steps to using Java in the database.

Accessing data from Java classes, including
distributed computing.

Testing and debugging Java code running in the
database.

The Reference Manual includes material on the
SQL extensions that support Java in the
database.

Online guide to Java API classes, fields and
methods. Available as Windows Help only.

Online book that teaches how to program in
Java. Supplied in Adobe PDF format in the

Jjxmp subdirectory of your Adaptive Server

Anywhere installation directory.

The following table is a guide to which parts of the Java documentation
apply to you, depending on your interests and background. It is meant to act
only as a guide and should not limit your efforts to learn more about Java in

the database.

If you ...

Consider reading ...

Are new to object-oriented programming.

Want an explanation of terms such as
instantiated, field and class method.

Are a Java developer who wants to just

get started.

Want to know the key features of Java in

the database.

"A Java seminar" on page 439
Thinking in Java by Bruce Eckel.

"A Java seminar" on page 439

"The Sybase runtime environment for
Java" on page 448

"A Java in the database exercise" on
page 458

"Java in the database Q & A" on page
433

431

Introduction to Java in the database

432

If you ...

Consider reading ...

Want to find out how to access data from
Java.

Want to prepare a database for Java.

Want a complete list of supported Java
APIs.

Are trying to use a Java API class and
need Java reference information.

Want to see an example of distributed
computing.

"Data Access Using JDBC" on page
503

"Java-enabling a database" on page
469

"Java class data types" on page 243
of the book Adaptive Server
Anywhere Reference Manual

The online guide to Java API classes
(Windows Help only).

"Creating distributed applications" on
page 527.

Chapter 16 Welcome to Java in the Database

Java in the database Q & A

This section describes the key features of Java in Adaptive Server Anywhere.

What are the key features of Java in the database?

All the following points are explained in detail in later sections.

¢

You can run Java in the database server An internal Java Virtual
Machine (VM) runs Java code in the database server.

You can call Java from SQL You can call Java functions (methods)
from SQL statements. Java methods provide a more powerful language
than SQL stored procedures for adding logic to the database.

You can access data from Java An internal JDBC driver lets you
access data from Java.

You can debug Java in the database You can use the Sybase Java
debugger to test and debug your Java classes in the database.

You can use Java classes as data types Every Java class installed
in a database becomes available as a data type that can be used as the
data type of a column in a table or a variable.

You can save Java objects in tables An instance of a Java class (a
Java object) can be saved as a value in a table. Java objects can be
inserted into a table, SELECT statements can be executed against the
fields and methods of objects stored in a table, and Java objects can be
retrieved from a table.

With this ability, Adaptive Server Anywhere becomes an object-
relational database, supporting objects while not degrading existing
relational functionality.

SQL is preserved The use of Java does not alter the behavior of
existing SQL statements or other aspects of non-Java relational database
behavior.

How do | store Java instructions in the database?

Java is an object-oriented language, so its instructions (source code) come in
the form of classes. In order to execute Java in a database, you write the Java
instructions outside the database, and compile them outside the database into
compiled classes (byte code), which are binary files holding Java
instructions.

433

Java in the database Q & A

You then install these compiled classes into a database. Once installed, these
classes can be executed in the database server.

Adaptive Server Anywhere is a runtime environment for Java classes, not a
Java development environment. You need a Java development environment,
such as Sybase Power]J or the Sun Microsystems Java Development Kit, to
write and compile Java.

How does Java get executed in a database?

Differences from a
standalone VM

Why Java?

434

Adaptive Server Anywhere includes a Java Virtual Machine (VM), which
runs in the database environment. The Sybase Java VM interprets compiled
Java instructions and runs them in the database server.

The Sybase Java VM supports public class and instance methods; classes
inheriting from other classes; packages; the Java API; and access to
protected, public and private fields. Some Java API functions that are not
appropriate in a server environment are not supported, including user
interface elements.

In addition to the VM, the SQL request processor in the database server has
been extended so that it can call into the VM to execute Java instructions. It
can also process requests from the VM, to enable data access from Java.

There is a difference between executing Java code using a standard VM such
as the Sun Java VM java.exe and executing Java code in the database. The
Sun VM is run from a command line, while the Adaptive Server Anywhere
Java VM is available at all times to perform a Java operation whenever it is
required as part of the execution of a SQL statement.

The Sybase Java interpreter cannot be accessed externally. It is only used
when the execution of a SQL statement requires a Java operation to take
place. The database server starts the VM automatically when needed: you do
not have to take any explicit action to start or stop the VM.

Java provides a number of features that make it ideal for use in the database:
¢ Thorough error checking at compile time.

¢ Built-in error handing with a well-defined error handling methodology.
¢ Built-in garbage collection (memory recovery).

¢ Elimination of many bug-prone programming techniques.

¢

Strong security features

Chapter 16 Welcome to Java in the Database

¢ Java code is interpreted, so no operations get executed without being
acceptable to the VM.

How do | use Java and SQL together?

A guiding principle for the design of Java in the database is that it provides a
natural, open extension to existing SQL functionality.

¢ Java operations are invoked from SQL Sybase has extended the
range of SQL expressions to include properties and methods of Java
objects, so that Java operations can be included in a SQL statement.

¢ Java classes become user-defined data types You store Java
classes using the same SQL statements as those used for traditional SQL
data types.

You can use classes that are part of the Java API; and classes created and
compiled by Java developers. The Java API classes are created and compiled
by Sun Microsystems and by Sybase.

What is the Java API?

The Java Application Programmer's Interface (API) is a set of classes created
by Sun Microsystems. It provides a range of base functionality that can be
used and extended by Java developers. It is at the core of 'what you can do'
with Java.

The Java API offers a tremendous amount of functionality in its own right. A
large portion of the Java API is built in to any database that is enabled to use
Java code. This exposes the majority of non-visual classes from the Java API
that should be familiar to developers currently using the Sun Microsystems
Java Development Kit (JDK).

& For a complete list of supported Java APIs, see "Built-in Java classes"
on page 243 of the book Adaptive Server Anywhere Reference Manual.

How do | access the Java API from SQL?

In addition to using the Java API in classes, it can be used in stored
procedures and SQL statements. You can treat the Java API classes as
extensions to the available built-in functions provided by SQL.

435

Java in the database Q & A

For example, the SQL function PI(*) returns the value for Pi. The Java API
class java.lang.Math has a parallel field named PI returning the same
value. But java.lang.Math also has a field named E that returns the
base of the natural logarithms, as well as a method that computes the
remainder operation on two arguments as prescribed by the IEEE 754
standard.

Other members of the Java API offer even more specialized functionality.
For example, java.util.Stack generates a last-in, first-out queue that
can store a list in an ordered manner; java.util.HashTable is used to
map values to keys; java.util.StringTokenizer breaks a string of
characters into individual word units.

Which Java classes are supported?

Not all Java API classes are supported in the database. Some classes, for
example the java.awt package that contains user interface components for
applications is not appropriate inside a database server. Other classes,
including parts of java.io, deal with writing information to disk, and this also
is not supported in the database server environment.

& For a list of supported and unsupported classes, see "Built-in Java
classes" on page 243 of the book Adaptive Server Anywhere Reference
Manual, and "Unsupported packages and classes" on page 250 of the book
Adaptive Server Anywhere Reference Manual.

How can | use my own Java classes in databases?

436

You can install your own Java classes into a database. For example a user-
created Employee class or Package class that a developer designed, wrote in
Java, and compiled with a Java compiler.

User-created Java classes can contain both information about the subject and
some computational logic. Once installed in a database, Adaptive Server
Anywhere lets you use these classes in all parts and operations of the
database and execute their functionality (in the form of class or instance
methods) as easily as calling a stored procedure.

Java classes not the same as stored procedures

This is not the same as writing stored procedures in Java. Stored
procedures are written in SQL. Java classes provide a more powerful
language than stored procedures, and yet can be called from client
applications in the same way that stored procedures are called.

Chapter 16 Welcome to Java in the Database

When a Java class gets installed in a database, it becomes available as a new
user-defined data type. A Java class can be used in any situation where built-
in SQL data types can be used: as a column type in a table or a variable type.

For example, if a class called Address has been installed into a database, a
column in a table called Addr can be of type Address, which means only
objects based on the Address class can be saved as row values for that
column.

Can | access data using Java?

The JDBC interface is an industry standard designed specifically to access
database systems. The JDBC classes are designed to connect to a database,
request data using SQL statements, and return result sets that can be
processed in the client application.

Normally, JDBC classes are used within a client application, and the
database system vendor supplies a JDBC driver that allows the JDBC classes
to establish a connection.

You can connect from a client application to Adaptive Server Anywhere via
JDBC, using jConnect or a JDBC/ODBC bridge. Adaptive Server Anywhere
also provides an internal JDBC driver, which permits Java classes installed
in a database to use JDBC classes that execute SQL statements.

Can | move classes from client to server?

This design allows you to create Java classes that can be moved between
levels of an enterprise application: the same Java class can be integrated into
either the client application, a middle tier, or the database—wherever it is
most appropriate.

A class that contains business logic, data or a combination of both, can be
moved to any level of the enterprise system, including the server. This allows
you complete flexibility to make the most appropriate use of resources.

This enables enterprise customers to develop their applications using a single
programming language in a multi-tier architecture with unparalleled
flexibility.

Can | create distributed applications?

You can create an application that has some pieces operating in the database
and some on the client machine. You can pass Java objects from the server to
the client. This includes objects stored in database tables.

437

Java in the database Q & A

&> For an example, see "Creating distributed applications" on page 527.

What can | not do with Java in the database?

438

Adaptive Server Anywhere is a runtime environment for Java classes, not a
Java development environment.

You cannot carry out the following tasks in the database:
¢ Edit class source files (* java files).
¢ Compile Java class source files (* java files).

¢ Execute Java APIs that are not supported, such as applet and visual
classes.

The Java classes used in Adaptive Server Anywhere must be written and
compiled using a Java application development tool, and then installed into a
database for use, testing, and debugging.

Chapter 16 Welcome to Java in the Database

A Java seminar

This section introduces key Java concepts. After reading this section you
should be able to examine Java code, such as a simple class definition or the
invocation of a method, and understand what is taking place.

Java examples directory

All complete classes used as examples in this document are located in the
Java examples directory, jxmp, which is a sub directory of your Adaptive
Server Anywhere installation directory.

Each Java class example is represented by two files: the Java class
declaration and the compiled version. The compiled version of the Java
class examples can be immediately installed to a database without
modification.

Object oriented and procedural languages

Java is based on
classes

If you are more familiar with procedural languages such as C, or the SQL
stored procedure language, than object-oriented languages, this section
explains some of the key similarities and differences between procedural and
object-oriented languages.

The main structural unit of code in Java is a class.

A Java class could be looked at as just a collection of procedures and
variables that have been grouped together because they all relate to a
specific, identifiable category.

However the manner in which a class gets used sets object oriented
languages apart from procedural languages. When an application written in a
procedural language is executed, it is typically loaded into memory once and
takes the user down a pre-defined course of execution.

In object-oriented languages such as Java, a class is used like a template: a
definition of potential program execution. Multiple copies of the class can be
created and loaded dynamically, as needed, with each instance of the class
capable of containing its own data, values and course of execution. Each
loaded class could be acted on or executed independently of any other class
loaded into memory.

A class that is loaded into memory for execution it is said to have been
instantiated. An instantiated class is called an object: it is an application
derived from the class that is prepared to hold unique values or have its
methods executed in a manner independent of other class instances.

439

A Java seminar

Understanding the Java class

Example

440

One way of understanding the concept of a class is to view it as an entity, an
abstract representation of a thing.

An Invoice class, for example, could be designed to mimic a paper invoice
such as those used every day in business operations. A paper invoice
contains certain information, like line-item details, who is being invoiced, the
date of the invoice, the payment amount and when payment is due. This is
information that could also be contained in an instance of an Invoice class.

In addition to just holding data, a class is capable of calculations and logical
operations. The Invoice class, for example, could be designed to calculate the
tax on a list of line items, and add it to the sub total to produce a final total.
This could be done for every Invoice object without user intervention.

Such a class could also ensure all essential pieces of information are added to
the Invoice and even indicate when payment is over due or partially paid.

A class combines data and functionality: the ability to hold information and
perform computational operations.

The following Java code declares a class called Invoice. This class
declaration would be stored in a file named /nvoice. java. It could then be
compiled into a Java class, using a Java compiler.

A note about compiling Java classes

Compiling a Java class declaration does not alter the class declaration: it
creates a new file with the same name but a different extension.
Compiling Invoice.java creates a file called Invoice.class that could be
used in a Java application and executed by a Java VM.

The Sun JDK tool for compiling class declarations is javac.exe.

public class Invoice {
// So far, this class does nothing and knows nothing

}

The class keyword is used, followed by the name of the class. There is an
opening and closing brace: everything declared between the braces, such as
fields and methods, becomes a part of the class.

In fact, no Java code exists outside class declarations. Even the Java
procedure that a Java interpreter runs automatically to create and manages
other objects — the main method that is often the start of your application
— is itself located within a class declaration.

Chapter 16 Welcome to Java in the Database

Java classes and objects

Methods and fields

Examples

A class is the template for what can be done, just as an invoice form is only
the template used to generate an invoice. A class defines what an object is
capable of doing just as an invoice form defines what information the invoice
should contain.

Information is not held in the class, an object is created based on the class
and the object is used to hold data or perform calculations or other
operations.

An object is said to be of type JavaClass, where JavaClass is the name of
the class upon which the object is based. An Invoice object is an instance of
the Invoice class. The class defines what the object is capable of but the
object is the incarnation of the class that gives the class meaning and
usefulness.

This is similar to the invoice example. The invoice form defines what all
invoices based on that form can accomplish. There is one form and zero or
many invoices based on the form. The form contains the definition but the
invoice does the work.

Similarly it is the Invoice object that gets created, stores information, is
stored, retrieved, edited, updated, and so on.

Just as one invoice template is used to create many invoices, with each
invoice separate and distinct from the other in its details, many objects can
be generated from one class.

A method is the part of the class that does something — a function that
performs a calculation or interacts with other objects — on behalf of the
class. Methods can accept arguments, and return a value to the calling
function. If no return value is needed, a method can return void. Classes can
have any number of methods.

A field is the part of class that ends up holding information. When an object
of type JavaClass is created, the fields in JavaClass are available to be
passed values unique to that object.

The following declaration of the class Invoice has four fields, corresponding
to information that might be contained on two line items on an invoice.

To declare a field in a class, state its type and then its name, followed by a
semicolon. Such a variable is a field if it is declared in the body of the class
and not within a method. (Declaring a variable within a method makes it a
part of the method, not the class.)

public class Invoice {

// Fields are things an Invoice object knows
public String lineItemlDescription;

441

A Java seminar

Adding methods

442

public int lineltemlCost;

public String lineItem2Description;
public int lineItem2Cost;

Another possible modification to the Invoice class is to include a method. A
method is declared by stating its return type, its name and what parameters it
takes (in this case, none). Like a class declaration, the method uses an
opening and closing brace to identify the body of the method where the code
goes.

public class Invoice ({

// Fields
public String linelItemlDescription;
public double lineltemlCost;

public String lineItem2Description;
public double linelItem2Cost;

// A method
public double totalSum() {
double runningsum;

runningsum lineltemlCost + lineIltem2Cost;
runningsum = runningsum * 1.15;

return runningsum;

}

Within the body of the totalSum method, a variable named
runningsun is declared. This is used first to hold the sub total of the first
and second line item cost. This sub total is then multiplied by 15 per cent
(the rate of taxation) to determine the total sum.

The local variable (as it is known within the method body) is then returned to
the calling function. When the totalSum method is invoked, it returns the
sum of the two line item cost fields plus the cost of tax on those two items.

Chapter 16 Welcome to Java in the Database

Instance methods and class methods

Examples

Most methods are used in association with an instance of a class. A
totalSum method in the Invoice class could calculate and add the tax, and
return the sum of all costs, but would only be useful if it is called in
conjunction with an Invoice object, one that had values for its line item
costs. The calculation can only be performed for an object, since the object,
not the class, contains the line items of the invoice. The class only defines
the capability of the object to have line items. Only the object has the data
needed to perform such a calculation.

Java methods are divided into two categories:

¢ Instance methods The totalSum method just added is an example
of an instance method, one that can only be used in a conjunction with
an object and object data

¢ Class methods Class methods are also called static methods. A class
method can be invoked without the need to first create an object. Only
the name of the class and method is required to invoke a class method.

Similar to instance methods, class methods accept arguments and return
values. Typically, class methods perform some sort of utility or
information function related to the overall functionality of the class.

The parseInt method of the java.lang. Integer class, which is
supplied with Adaptive Server Anywhere, is one example of a class method.
When given a string argument, the parseInt method returns the integer
version of the string.

For example given the string value "1", the parseInt method returns 1, the
integer value, without requiring an instance of the java.lang.Integer
class to first be created as illustrated by this Java code fragment.

String num = "1";
int i = java.lang.Integer.parselnt(num);

Fields can also be declared using the static Java keyword, which makes
them into class fields. A static class variable is like a global variable in
procedural languages, except that its value is pre-determined and cannot be
changed. A field whose name is all in capital letters is often a static variable
(class field).

The following version of the Invoice class now includes both an instance
method and a class method. The class method named rateOfTaxation
returns the rate of taxation used by the class to calculate the total sum of the
invoice.

443

A Java seminar

The advantage of making the rateOfTaxation method a class method
(as opposed to an instance method or field) is that other classes and
procedures can use the value returned by this method without having to
create an instance of the class first. Only the name of the class and method is
required to return the rate of taxation used by this class.

Making it a method, as opposed to a field, allows the application developer
to change how the rate is calculated without adversely effecting any objects,
applications or procedures that use its return value. Future versions of
Invoice could make the return value of the rateOfTaxation class
method based on a more complicated calculation without affecting other
methods that use its return value.

public class Invoice {

// Fields
public String linelItemlDescription;
public double lineltemlCost;

public String lineItem2Description;
public double lineltem2Cost;

// An instance method
public double totalSum() {
double runningsum;
double taxfactor = 1 + Invoice.rateOfTaxation();

runningsum lineltemlCost + lineIltem2Cost;
runningsum = runningsum * taxfactor;

return runningsum;

}

// A class method

public static double rateOfTaxation() {
double rate;
rate = .15;

return rate;

A Java glossary

The following items outline some of the details regarding Java classes. It is
by no means an exhaustive source of knowledge about the Java language but
may aid in the use of Java classes in Adaptive Server Anywhere.

444

Chapter 16 Welcome to Java in the Database

Public versus
private

Packages and the
protected modifier

Constructors

& For a thorough examination of the Java language, see the online book
Thinking in Java, by Bruce Eckel, included with Adaptive Server Anywhere
in the file jxmp\Tjava.pdf.

The visibility of a field, method or class to other Java objects and operations
is determined by what is known as an access modifier — essentially the
public, private or protected keyword used in front of any
declaration.

Fields can be declared private or public, meaning, respectively, their values
are available to code within the object, or to code/classes/objects both inside
and outside the object.

Methods can also be declared private or public. This has the same effect as if
it were a field being declared private or public.

Fields or methods declared as private cannot be manipulated or accessed by
methods outside the class.

Public fields or methods can be directly accessed by other classes and
methods. Public fields and methods represent everything the external users of
the class (including other classes) need to know or are allowed to know.

Protected fields or methods are accessible only to the following:
¢ Within their class
¢ Within subclasses that inherit from the their class.

¢ Within the package of which the class is a part.

A package is a grouping of classes that share a common purpose or category.
One member of a package has special privileges to access data and methods
in other members of the package, hence the protected access modifier.

A package is the Java equivalent of a library. It is a collection of classes,
which can be made available using the import statement. The following
Java statement imports the utility library from the Java API:

import java.util.*
Packages are typically held in Jar files, which have the extension .jar or .zip.

A constructor is a special method of a Java class that creates an instance of
the class and returns a reference to the newly-created Java object.

Classes can define their own constructors, including multiple, overriding
constructors. Which constructor is used is determined by which arguments
were used in the attempt to create the object. When the type, number and
order of arguments used to create an instance of the class match one of the
class's constructors, that constructor is used to create the object.

445

A Java seminar

Destructors

Other C++
differences

There is no such thing as a destructor method in Java (as there is in C++).
Java classes can define their own £inalize method for clean up operations
when an object is being discarded, but there is no guarantee that this method
will get called.

An object that has no references to it will be removed automatically by a
"garbage collection" process. This does not apply to objects stored as values
in a table.

Everything related to a class is contained within the boundaries of the class
declaration, including all methods and fields.

Classes can inherit only from one class. Java uses interfaces instead of
multiple-inheritance. A class can implement multiple interfaces, each
interface defines a set of methods and method profiles that must be
implemented by the class in order for the class to be compiled.

An interface is similar to an abstract class: it defines what methods and static
fields the class must declare. The implementation of the methods and fields
declared in an interface is located within the class that uses the interface: the
interface defines what the class must declare, it is up to the class to determine
how it is implemented.

Java error handling

446

Java error handling code is separate from the code for normal processing.

When an error occurs, an exception object representing the error is
generated. This is called throwing an exception. A thrown exception will
terminate a Java program unless it is caught and handled properly at some
level of the application.

Both Java API classes and custom-created classes can throw exceptions. In
fact, users can create their own exceptions classes, which can be thrown by
their own custom-created classes.

If there is no exception handler in the body of the method where the
exception occurred, then the search for an exception handler continues up the
call stack. If the top of the call stack is reached and no exception handler has
been found, the default exception handler of the Java interpreter running the
application is called and the program terminates.

In Adaptive Server Anywhere, if a SQL statement calls a Java method, and
an unhandled exception is thrown, a SQL error is generated.

Chapter 16 Welcome to Java in the Database

Error types in Java

All errors in Java are derived from two types of error classes: Exception
and Error. Usually, Exception-based errors are handled by error handling
code in your method body. Error type errors are reserved for internal errors
and resource exhaustion errors inside the Java run-time system.

Exception class errors are thrown and caught. Exception handling code is
characterized by try, catch and £inally code blocks.

A try block executes code that may generate an error. A catch block is
code that will execute if an error is generated (thrown) during the execution
of a try block.

A £inally block defines a block of code that executes regardless of
whether an error was generated and caught and is typically used for cleanup
operations. It is used for code that, under no circumstances, can be omitted.

Exception class errors are divided into two types: those that are runtime
exceptions and those that are not runtime exceptions.

Errors generated by the runtime system are known as implicit exceptions, in
that they do not have to be explicitly handled as part of every class or method
declaration.

For example an array out of bounds exception can occur whenever an array
is used, but the error does not have to be part of the declaration of the class
or method that uses the array.

All other exceptions are considered to be explicit. If the method being
invoked can throw an error, it must be explicitly caught by the class using the
exception throwing method, or this class must explicitly throw the error itself
by identifying the exception it may generate in its class declaration.

Essentially, explicit exceptions must be dealt with explicitly. A method must
declare all the explicit errors it throws, or catch all the explicit errors that
may be potentially thrown.

Non-runtime exceptions are checked at compile time. Runtime exceptions
are usually caused by errors in programming. Java catches many of such
errors during compilation, before the code is run.

Every Java method is given an alternative path of execution so that all Java
methods complete, even if they are unable to complete normally. If the type
of error that is thrown is not caught, it's passed to the next code block or
method in the stack.

447

The Sybase runtime environment for Java

The Sybase runtime environment for Java

Java version

This section describes the Sybase runtime environment for Java, and how it
differs from a standard Java runtime environment.

The Sybase Java VM executes a subset of JDK version 1.1.6.

Between release 1.0 of the Java Developer's Kit (JDK) and release 1.1,
several new APIs where introduced and a number were deprecated, that is,
the use of certain APIs became no longer recommended and support for them
may be dropped in future releases.

A Java class file that uses deprecated APIs generates a warning when it is
compiled, but does still execute on a Java virtual machine built to release 1.1
standards, such as the Sybase VM.

The internal JDBC driver supports JDBC version 1.1.

& For more information on the JDK 1.1 APIs that are supported, please
see "Built-in Java classes" on page 243 of the book Adaptive Server
Anywhere Reference Manual.

Java classes in the database

You can use the following kinds of sources for Java classes:
¢ The Sybase runtime Java classes.
¢ User-defined classes

¢ Table values

Sybase runtime Java classes

448

The Sybase runtime Java classes are the low-level classes installed to Java-
enable a database. These classes include a subset of the Java API.

Like all Java code, Java API functions take the form of classes. These classes
are specialized in that, at a low level, they have functionality that no user-
defined class could recreate. The Java API is always available to classes in
the database.

The Java API classes can be used as pre-defined functions that perform
specialized tasks.

Chapter 16 Welcome to Java in the Database

Another way to use the Java APIs is to incorporate them in user-created
classes: either inheriting their functionality from a Java API class or using it
within a calculation or operation in a method.

Some API classes Some Java API classes of interest include:

¢ Primitive Java data types All primitive (native) data types in Java
have a corresponding class. In addition to being able to create objects of
these types, the classes have additional, often useful functionality.

The Java integer data type has a corresponding class in
java.lang.Integer.

¢ The utility package The package java.util. * contains a number
of very helpful classes whose functionality has no parallel in the SQL
functions available in Adaptive Server Anywhere.

Some of the classes include:
¢ Hashtable which maps keys to values.

¢ StringTokenizer which breaks a String down into individual
words.

¢ Vector which holds an array of objects whose size can change
dynamically

¢ Stack which holds a last-in, first-out stack of objects.

¢ JDBC for SQL operations The package java.sql.* contains the
classes needed by Java objects to extract data from the database using
SQL statements.

API classes Unlike other Java classes, the Java API is not installed into the database.
outside the Rather, they are present as files on disk.
database

User-defined classes

User-defined classes are installed into a database using the INSTALL
statement.

Once installed, they are available from other classes in the database and are
available from SQL as user-defined data types.

& For information on installing classes, see "Installing Java classes into a
database" on page 474.

Table values

Instances of classes that have been saved as a value in a table can be
retrieved like any other data in a table.

449

The Sybase runtime environment for Java

For example, the following SQL statements would successfully return a
reference to an instance of a Java class called JClass. The statements assume
both the variable and the column named JCol are of type JClass; and the
correct instance, as specified by the WHERE clause of the query, had been
saved to the table named T1.

CREATE VARIABLE var JClass;
SET var = (SELECT JCol
FROM T1
WHERE JCol.empName = 'John Smith');

Java syntax in SQL statements

The following table illustrates how some aspects of Java syntax are carried
out when Java references are made from SQL.

Language feature

Java syntax

SQL syntax

"." dot operator

"." dot identifier
String literal (quotes)
Import statement

System.out.println(str)

"." (dot)
"." (dot)
"String"
import java package.*;

prints str to command line

>>or "." (dot)
'String'
Does not apply

prints str to server

window

The use of all the examples above, plus additional notes on Java syntax
usage, are explained in the following sections.

Identifying Java methods and fields

The dot in SQL

The dot in Java

450

In SQL statements, the dot is used to identify columns of tables, as in the
following query:

SELECT employee.emp id
FROM employee

The dot is also used in qualified object names to indicate object ownership:

SELECT emp id
FROM dba.employee

In Java instructions, the dot is used as an operator to invoke the methods
and fields of a Java class or object. It is also used as an identifier to identify
class name hierarchies, as in the fully qualified class name
java.util.Hashtable.

Chapter 16 Welcome to Java in the Database

Invoking Java
methods from SQL

The dot character gets used for two distinct purposes.

¢ As an identifier, the dot identifies the word that follows it as a name.
This helps locate the package, class or class method being referenced.

¢ As an operator, the dot causes a method to be invoked.

In the following Java code fragment, the dot is an identifier on the left hand
side of the first line of code. On right hand side of the first line, and on the
second line of code, it is an operator.

java.util.Random rnd = new java.util.Random() ;
int i = rnd.nextInt();

To indicate methods and fields of Java objects in a SQL statement, you can
use either the dot or the double right angle bracket (>>). The dot operator
looks more like Java, but the double right angle bracket is less ambiguous: it
cannot be confused with a database object.

To indicate class names, you must use the dot.

>> in SQL is not the same as >> in Java

The double right angle bracket operator is only used in SQL statements
where a Java dot operator is otherwise expected. Within a Java class, the
double right angle bracket is not a replacement for the dot operator and
has a completely different meaning in its role as the right bit shift
operator.

For example, the following batch of SQL statements is valid:

CREATE VARIABLE rnd java.util.Random;
SET rnd = NEW java.util.Random() ;
SELECT rnd>>nextInt () ;

The result of the SELECT statement is a randomly generated integer.

Using the variable created in the previous SQL code example, the following
SQL statement illustrates the correct use of a class method.

SELECT java.lang.Math.abs(rnd>>nextInt ());

In the above statement, abs is a method, but it is a class method. It is only the
name of the method at the end of the name of class. The dot preceding it is
only used for identification, therefore it is not substituted with a double right
angle bracket, as is the case for the nextInt() method.

The dot character is an operator when it is acting on an instance of a class.

For example the following code is valid, even though the ">>" substitute
operator is being used with a static method.

CREATE VARIABLE mth java.lang.Math;
SET mth = NEW java.lang.Math();

451

The Sybase runtime environment for Java

SELECT mth>>abs (rnd>>nextInt ()

This is successful because the target of the operation is an object, not a class.

Java is case sensitive

Data types

Java syntax works as you would expect it to, and SQL syntax is unaltered by
the presence of Java classes. This is true even if the same SQL statement
contains both Java and SQL syntax. It's a simple statement but with far-
reaching implications.

Java is case sensitive. The Java class FindOut is a completely different
class from the class Findout. SQL is case insensitive in many ways: the
case of SQL keywords and identifiers is ignored.

Java case sensitivity is preserved even when embedded in a SQL statement
that is case insensitive. The Java parts of the statement must be case
sensitive, even though the parts previous to and following the Java syntax
can be written in upper or lower case.

For example the following SQL statements will successfully execute because
the case of Java objects, classes and operators is respected, even though there
is variation in the case of the remaining SQL parts of the statement.

SeLeCt java.lang.Math.random() ;
When a Java class is used as a data type for a column, it is being used as a

user-defined SQL data type. However, it is still case sensitive. This
convention prevents ambiguities with Java classes that differ only in case.

Strings in Java and SQL

452

String literals are identified in Java by a set of double quotes, as in the
following Java code fragment.

String str = "This is a string";

In SQL, however, strings are marked by single quotes, and double quotes
indicate an identifier, as illustrated by the following SQL statement.

INSERT INTO TABLE DBA.tl
VALUES ('Hello')

You should always use the double quote in Java source code, and single
quotes in SQL statements.

For example, the following SQL statements are valid.

CREATE VARIABLE str char(20);
SET str = NEW java.lang.String('Brand new object')

Chapter 16 Welcome to Java in the Database

The following Java code fragment is also valid, if used within a Java class.

String str = new java.lang.String(
"Brand new object");

Printing to the command line

Printing to the command line is a quick method of checking variable values
and execution results at various points of code execution. When the method
in the second line of the following Java code fragment is encountered, the
string argument it accepts is printed out to the command line.

String str = "Hello world";
System.out.println(str);

In Adaptive Server Anywhere, this method causes the string argument to be
printed out to the server window.

Executing the above Java code within the database is the equivalent of the
following SQL statement.

MESSAGE 'Hello world'

Using the main method

When a class contains amain method that matches the following method
declaration, it is executed automatically by most Java run time environments,
such as the Sun Java interpreter. Normally, this static method will execute
when the class is loaded, without needing to be explicitly invoked.

public static void main(String args([]) { }

It is a useful class for testing the functionality of Java objects: you are always
guaranteed this method will be called first, when the Sun Java runtime
system is started.

In Adaptive Server Anywhere the main method is not automatically
invoked. In Adaptive Server Anywhere the Java runtime system is always
available. The functionality of objects and methods can be tested in an ad
hoc, dynamic manner using SQL statements. In many ways this is a far more
flexible method of testing Java class functionality.

453

The Sybase runtime environment for Java

Scope and persistence

SQL variables are persistent only for the duration of connection. This is
unchanged from previous versions of Adaptive Server Anywhere, and is
unaffected whether the type of the variable is a Java class or a native SQL
data type.

The persistence of Java classes is analogous to tables in a database: Tables
exist in the database until they are dropped, regardless of whether they hold
data or ever get used. Java classes that have been installed to a database are
similar: they are available for use until they are explicitly removed.

All installed Java classes are available until they are removed from the
database with a REMOVE statement.

& For more information on removing classes, see "REMOVE statement”
on page 530 of the book Adaptive Server Anywhere Reference Manual.

A class method in an installed Java class can be called at any time, from a
SQL statement. The following statement can be executed anywhere SQL
statements can be executed.

SELECT java.lang.Math.abs (-342)

A Java object is only available in two forms: as the value of a variable, or a
value in a table. The scope of a specific instance of a Java class is limited to:
whether or not it exists; and whether or not the field or method of the
variable or table that contains the instance can be accessed (as determined by
its access modifier: public, private or protected).

Java escape characters in SQL statements

454

In Java code, escape characters can be used to insert certain unique
characters into strings when a string is being declared. Consider the
following Java code, which inserts a new line and tab in front of a sentence
containing an apostrophe.

String str = "\n\t\This is the object\'s string
literal.";

The use of Java escape characters is permitted in Adaptive Server Anywhere
only when it is being used by Java classes.

From within SQL, however, the rules that apply to strings in SQL must be
followed.

For example, to pass a string value to a field using a SQL statement, the
following statement could be used, but the Java escape characters could not.

SET obj>>str = '\nThis is the object''s string field';

Chapter 16 Welcome to Java in the Database

& for more information on SQL string handling rules, see "Statement
elements" on page 180 of the book Adaptive Server Anywhere Reference
Manual.

Keyword conflicts

SQL keywords can conflict with the names of Java classes, including API
classes. This occurs when the name of a class, such as the Date class, which
is a member of the java.util. * package, is referenced. SQL reserves
the word Date for use as a keyword, even though it also the name of a Java
class.

When such ambiguities are encountered double quotes can be used to
identify that the word in question is not being used as the SQL reserved
word.

For example, the following SQL statement causes an error because Date is a
keyword and its use is reserved within SQL.

-- This statement is incorrect
CREATE VARIABLE dt java.util.Date

However the following two statements work correctly because the word Date
is quoted.

CREATE VARIABLE dt java.util."Date";
SET dt = NEW java.util."Date" (1997, 11, 22, 16, 11, 01)

The variable dt now contains the date: November 22, 1997, 4:11 p.m.

Use of import statements

It is common in a Java class declaration to include an import statement to
access other, external classes. This makes classes that are members of Java
package specified by the import statement available to the class being
declared using only abbreviated names. External classes can always be
accessed using a fully qualified name.

For example, the Stack class of the java.util package can be reference
in a class two ways:

¢ explicitly using the name java.util. Stack, or

¢ implicitly using the name Stack if class declaration contains the
following import statement.

import java.util.*;

455

The Sybase runtime environment for Java

Classes further up
in the hierarchy
must also be
installed.

All classes used in Adaptive Server Anywhere are compiled, therefore the
Java compiler has already checked if a reference to a class is properly
qualified.

The class being used within Adaptive Server Anywhere may or may not have
used an import statement, depending on the Java developer's design.

The only restriction on compiled classes is that a class referenced by another
class, either explicitly with a fully qualified name or implicitly using an
import statement, must also be installed in the database.

The import statement works as intended within compiled classes, however,
within the Adaptive Server Anywhere runtime environment, there is no
equivalent to the import statement. All class names used in SQL statements
or stored procedures must be fully qualified.

For example, to create a variable of type String, the class is referenced using
the fully qualified name: java.lang.String.

Using the CLASSPATH variable

CLASSPATH
ignored at runtime

CLASSPATH used
to install classes

456

The CLASSPATH environment variable is used by Sun's Java runtime
environment and by the Sun JDK Java compiler to locate the classes that are
referenced within Java code. A CLASSPATH variable provides the link
between Java code such as ...

import java.io.*
... and the actual file path or URL location of the classes being referenced.

For example, the above statement allows all the classes in the java.io
package to be referenced without a fully qualified name. Only the class name
is required in the following Java code to use classes from the java.io
package. The CLASSPATH environment variable on the system where the
Java class declaration is to be compiled must include the location of the java
directory, the root of the java.io package.

The CLASSPATH environment variable does not affect the Adaptive Server
Anywhere runtime environment for Java during the execution of Java
operations.

When a class is installed to a database, its full package name is retained, and
so the CLASSPATH environment variable is not used.

The CLASSPATH variable can, however, be used to locate a file during the
installation of classes. For example, the following statement installs a user-
created Java class to a database, but only specifies the name of the file, not
its full path and name. (Note that this statement involves no Java operations.)

INSTALL JAVA NEW

Chapter 16 Welcome to Java in the Database

Public fields

FROM FILE 'Invoice.class'

If the file specified is in a directory or zip file specified by the CLASSPATH
environmental variable, Adaptive Server Anywhere will successfully locate
the file and install the class.

It is a common practice in object oriented programming to define class fields
as private and make their values available only through public methods.

Many of the examples used in this documentation render fields as public so
that examples are more compact and easier to read. It is also the case,
however, that using public fields in Adaptive Server Anywhere does offer a
performance advantage over accessing public methods. However, in order to
update a field in a table, the class must have a method that sets the value of
the field.

The general convention followed in this documentation is that a user-created
Java class designed for use in Adaptive Server Anywhere exposes its main
values in its fields. Methods are used to contain computational automation
and logic that may act on these fields.

This applies to class-level variables only. Local variables, those declared
within methods only, do not have the public or private access modifiers.

457

A Java in the database exercise

A Java in the database exercise

Invoking Java operations from within a SQL environment will likely be new
to Java developers and database users alike.

This section is a primer for invoking Java operations on Java classes and
objects using SQL statements. The examples use the Invoice class created in
"A Java seminar" on page 439.

Case sensitivity

Java is case sensitive, so the portions of the following examples in this
section pertaining to Java syntax are written using the correct case. SQL
syntax is rendered in upper case.

A sample Java class

The following class declaration is used throughout all the following
examples.

Compiled code available

Source code and compiled versions of all Java classes outlined in the
documentation are included with Adaptive Server Anywhere. The file
Invoice.java, is available and can be compiled and installed into a
database.

public class Invoice {

// Fields
public String lineltemlDescription;
public double linelItemlCost;

public String lineltem2Description;
public double linelItem2Cost;

// An instance method
public double totalSum() {
double runningsum;

double taxfactor = 1 + Invoice.rateOfTaxation();

runningsum = lineItemlCost + lineItem2Cost;
runningsum = runningsum * taxfactor;

return runningsum;

458

Chapter 16 Welcome to Java in the Database

// A class method

public static double rateOfTaxation() {
double rate;
rate = .15;

return rate;

Caution: use a Java-enabled database

The following section assumes the database you are connected to is Java-
enabled. For more information, see "Java-enabling a database" on page
469.

Installing Java classes

Any Java class must be installed to a database before it can be used. You can
install classes from Sybase Central or Interactive SQL.

% To install the Invoice class to the sample database from Sybase
Central:

1 From Sybase Central, choose Tools> Connect> Adaptive Server
Anywhere.

2 Select the ASA 6.0 Sample data source, and connect.

3 Open the Java Objects folder and double click Add Java Class or Jar.
The Install a New Java Object wizard is displayed.

4 Select the Java Class File option, and click Next.

5 Use the Browse button to locate Invoice.class, which is in the jxmp
subdirectory of your Adaptive Server Anywhere installation directory.

% To install the Invoice class to the sample database from Interactive
SQL:

¢ Start Interactive SQL and connect to the ASA 6.0 Sample ODBC data
source. Enter the following SQL statement:

INSTALL JAVA NEW
FROM FILE 'path\jxmp\Invoice.class';

where path is your Adaptive Server Anywhere installation directory.

459

A Java in the database exercise

Notes

¢ At this point no Java operations have taken place. The class has been
installed into the database and is ready to be used as the data type of a
variable or column in a table.

¢ Changes made to the class file from now on are not automatically
reflected in the copy of the class in the database.

& For more information on installing classes, and for information on
updating an installed class, see "Installing Java classes into a database" on
page 474.

Creating SQL variables of Java class type

460

The following statement creates a SQL variable named Inv of type Invoice,
where Invoice is the Java class that you installed to a database.

CREATE VARIABLE Inv Invoice;

Once any variable has been created, it can only be passed as a value that is
the same data type as its declared data type. In this case, the variable Inv can
only contain a reference to an object of type Invoice.

Perform the following statement to identify the current value of the variable
Inv.

SELECT IFNULL (Inv, 'No object referenced',
'Variable not null: contains object reference')

The SQL IFNULL function accepts three arguments: the first is the variable
to be tested; the second is the expression selected if the value is NULL; the
third is the expression selected if the variable is not NULL.

At this point the variable Inv contains a NULL because no value has been
passed to it. The only value it could contain is an object reference where the
object is of type Invoice.

To pass a value to Inv, the default constructor of the Invoice class needs to
be invoked. The NEW keyword is used to indicate a constructor is being
invoked and an object reference is being returned.

SET Inv = NEW Invoice();

The Inv variable now has a reference to a Java object. To verify this a
number of select statements can be executed using the variable.

For example the following statement shows the variable contains a value.

SELECT IFNULL (Inv, 'No object referenced',
'Variable not null: contains object reference')

Chapter 16 Welcome to Java in the Database

The Inv variable should contain a reference to a Java object of type Invoice.
Using this reference, any of the object's fields can be accessed and its
methods can be invoked.

Invoking Java operations

Passing values to
fields

Invoking methods

Calling methods
versus referencing
fields

If a variable (or column value in a table) contains a reference to a Java
object, then the fields of the object can be passed values and its methods can
be invoked.

For example, a variable of type Invoice (a user-created class) that contains a
reference to an Invoice object will have four fields, the value of which can be
set using SQL statements.

The following SQL statements set the field values for just such a variable.

SET Inv>>lineltemlDescription = 'Work boots';
SET Inv>>lineltemlCost = '79.99';

SET Inv>>lineltem2Description = 'Hay fork';
SET Inv>>lineltem2Cost = '37.49';

Each line in the SQL statements above passes a value to a field in the Java
object referenced by Inv. This can be shown by performing a select
statement against the variable. Any of the following SQL statements return
the current value of a field in the Java object referenced by Inv.

SELECT Inv>>lineltemlDescription;
SELECT Inv>>lineltemlCost;
SELECT Inv>>lineltem2Description;
SELECT Inv>>lineltem2Cost;

Each line of the above lines can now be used as an expression in other SQL
statements. For example the following SQL statement can be executed if you
are currently connected to the sample database, asademo.db, and have
executed the above SQL statements.

SELECT * FROM PRODUCT
WHERE unit price < Inv>>linelItem2Cost;

The Invoice class has one instance method, which can be invoked when an
object of type Invoice has been created.

The following SQL statement invokes the totalSum() method of the object
referenced by the variable Inv. It returns the sum of the two cost fields plus
the tax charged on this sum.

SELECT Inv>>totalSum() ;

Notice the round brackets following the name of the method used in the
above SQL statement.

461

A Java in the database exercise

A key difference between the object's fields and its methods is that methods
are invoked which causes them to perform an action and return a value (even
if the value is void). Fields are referenced in order to access the values they
may contain.

The totalSum() method takes no arguments but returns a value. The brackets
are used even though the method takes no arguments because a Java
operation is being invoked.

As indicated by the Invoice class definition outlined at the beginning of this
section, the totalSum instance method makes use of the class method
rateOfTaxation.

This class method can be accessed directly from a SQL statement.

SELECT Invoice.rateOfTaxation();

Notice the name of the class is being used, not the name of a variable
containing a reference to an Invoice object. This is consistent with the
way Java handles class methods, even though it is being used in a SQL
statement. A class method can be invoked even if no object based on that
class has been instantiated.

Class methods do not require an instance of the class in order to work
properly, but they can still be invoked on an object. The following SQL
statement yields the same results as the previously executed SQL statement.

SELECT Inv>>rateOfTaxation();

Saving Java objects in tables

462

When a class is installed in a database, it is available as a new data type.
Columns in a table can be of type Javaclass where Javaclass is the name of
an installed Java class.

For example, using the Invoice class that was installed at the beginning of
this section, the following SQL statement can be executed.

CREATE TABLE T1 (
ID int,
JCol Invoice
)i

The column named JCol only accepts objects of type Invoice, which is an
installed Java class. This means only objects can be passed in as values in the
JCol column.

Chapter 16 Welcome to Java in the Database

There are at least two methods for creating a Java object and adding it to a
table as the value of a column. The first method, creating a variable, was
outlined in a previous section "Creating SQL variables of Java class type" on
page 460.

Assuming the variable Inv contains a reference to a Java object of type
Invoice, the following SQL statement will add a row to the table T1.

INSERT INTO T1
VALUES(1, Inv);

An object has been added to the table T1. Select statements can be issued
involving the fields and methods of the objects in the table.

For example the following SQL statement will return the value of the field
lineltem1Description for all the objects in the table T1 (right now, there
should only be one object in the table).

SELECT ID, JCol>>lineltemlDescription
FROM T1;

Similar select statements involving other fields and methods of the object can
be executed.

A second method for creating a Java object and adding it to a table involves
the following expression, which always creates a Java object and returns a
reference to it:

NEW Javaclassname ()

This expression can be used in a number of ways. For example, the following
SQL statement creates a Java object and inserts it into the table T1.

INSERT INTO T1
VALUES (2, NEW Invoice());

The following SQL statement verifies that these two objects have been saved
as values of column JCol in the table T1.

SELECT ID, JCol>>totalSum()
FROM tl

The results of the JCol column (the second row returned by the above
statement) should be 0, because the fields in that object have no values and
the totalSum method is a calculation of those fields.

463

A Java in the database exercise

Returning an object using a query

464

An object can also be retrieved from a table that has a Java class as the type
of one of its columns. In the following series of statements a new variable is
created and passed a value (it can only contain an object reference where the
object is of type Invoice). The object reference passed to the variable was
generated using the table T1.

CREATE VARIABLE InvZ2 Invoice;

SET Inv2 = (select JCol from Tl where ID = 2);

SELECT IFNULL (Inv2, 'No object referenced',
'Variable not null: contains object reference');

SET Inv2>>lineltemlDescription = 'Sweet feed';

SET Inv2>>lineltem2Description = 'Drive belt';

Take note that the value for the 1ineItemlDescription field and
lineItem2Description have been changed in the variable Inv2 but
not in the table that was the source for the value of this variable.

This is consistent with the way SQL variables are currently handled: the
variable Inv contains a reference to a Java object. The value in the table that
was the source of the variable's reference is not altered until an UPDATE
SQL statement is executed.

