CHAPTER 19

Debugging Java in the Database

About this chapter This chapter describes how to use the Sybase Java debugger to assist in
developing Java in the database.
Contents .
Topic Page
Introduction to debugging Java 534
A debugging tutorial 536
Using the debugger 544

533

Introduction to debugging Java

Introduction to debugging Java

With Java in the database, you can add complex classes into your database.
In order to test these classes and to fix problems with them, you can use the
Sybase Java debugger.

This chapter describes how to set up and use the Java debugger.

How the debugger works

The Java debugger is a Java application that runs on a client machine. It
connects to the database using the Sybase jConnect JDBC driver.

The debugger debugs classes running in the database. You can step through
the source code for the files as long as you have the Java source code on the
disk of your client machine. (Remember, the compiled classes are installed
into the database, but the source code is not).

Requirements for using the Java debugger

You need the following in order to use the Java debugger:

¢ A Java runtime environment The Java debugger is a client
application running on your machine. You need a Java runtime
environment such as the Sun Microsystems Java Runtime Environment
or the full Sun Microsystems JDK on your machine in order to run the
debugger.

¢ Sybase jConnect The debugger connects to the database using the
Sybase jConnect JDBC driver. It requires features supported by
jConnect that may not be supported by other JDBC drivers. Sybase
jConnect is included with Adaptive Server Anywhere.

¢ Source code You need the source code for your application on your
client machine.

¢ Permissions In order to use the debugger, you must either have DBA
authority or be granted permissions in the SA DEBUG group. This
group is added to all databases when the database is created.

What you can do with the debugger

You can carry out many tasks with the Sybase Java debugger, including the
following:

534

Chapter 19 Debugging Java in the Database

Trace execution Step line by line through the code of a class running
in the database. You can also look up and down the stack of functions
that have been called.

Set breakpoints Run the code until you hit a breakpoint, and stop at
that point in the code.

Set break conditions Breakpoints include lines of code, but you can
also specify conditions when the code is to break. For example, you can
stop at a line the tenth time it is executed, or only if a variable has a
particular value. You can also stop whenever a particular exception is
thrown in the Java application.

Browse classes You can browse through the classes installed into the
database.

Inspect and set variables You can inspect the values of variables
alter their value when the execution is stopped at a breakpoint.

Inspect and break on expressions You can inspect the value of a
wide variety of expressions.

535

A debugging tutorial

A debugging tutorial

This section takes you through a simple debugging session.

Prepare the database

To prepare the sample database for this tutorial, you should run the script
jdemo.sql, which installs the Java examples into the database. The class we
use in this tutorial is the JDBCExamples class.

& For instructions on how to install the Java examples, see "Installing the
Java examples" on page 466.

& For a discussion of the JDBCExamples class and its methods, see
"Data Access Using JDBC" on page 503.

Prepare to run the Java debugger

Before you can run the debugger, you should ensure that your CLASSPATH
environment variable can locate the classes it requires.

% To set your CLASSPATH environment variable:

1 The Sybase Java debugger is the file Debug.jar, installed in the Java
subdirectory of your Adaptive Server Anywhere installation directory. If
it is not already present, add this file to your CLASSPATH environment
variable.

2 The debugger uses the Sybase jConnect JDBC driver to connect to the
database. Sybase jConnect is the file jdbcdrv.zip in the Java subdirectory
of your Adaptive Server Anywhere installation directory. If it is not
already present, add this file also to your CLASSPATH environment
variable.

Your CLASSPATH environment variable may look as follows after adding
these files:

path\Java\Debug. jar;path\Java\jdbcdrv.zip; \jdkl.1.3\1ib\
classes.zip

where path is your Adaptive Server Anywhere installation directory.

Now you are ready to start the debugger.

536

Chapter 19 Debugging Java in the Database

Start the Java debugger

The debugger runs on your client machine. As it is a Java application itself; it
is run using your Java Virtual machine.

You can start the Java debugger from the command line or from Sybase
Central.

< To start the Java debugger from Sybase Central:

1 Start Sybase Central (Windows Edition) and open the Utilities folder,
under Adaptive Server Anywhere.

2 Double-click the Java debugger icon in the right panel.

% To start the Java debugger from a system prompt:

1 From a system command prompt, change directory to your Adaptive
Server Anywhere installation directory.

2 Enter the following command to run the Java VM (java.exe) using the
debugger class:

java sybase.vm.Debug
The sybase. vm.Debug class is held in the Debug.jar file.

When you have started the Java debugger, the Connection window appears:

537

A debugging tutorial

EiConnection =] B3
URL:

I e e |

User: Disconnect |

Password:

Wiaiting far a v .

k| 0 R] | |
Attt b |

You can now connect to a database from the debugger.

Connect to the sample database

To connect to a database, you need to supply a URL, a user ID, and a
password. This section describes by example how to connect.

« To connect to the sample database from the debugger:

1 Start a personal database server on the sample database. You can do this
from the Start menu or by entering the following command at a system
prompt:

dbeng6 -c 8M path\asademo.db
where path is your Adaptive Server Anywhere installation directory.
2 In the Java debugger, enter the following URL:
jdbc:sybase:Tds:localhost:2638

&> The meaningsof the components of this URL are described in
"Supplying a URL for the server" on page 525.

538

Chapter 19 Debugging Java in the Database

Attach to a VM

.
o

3

Enter the user ID DBA and the password SQL and click Connect to
connect to the database.

Once the connection is established, the debugger window displays the
message Waiting for a VM. This is because no VM is currently running in the
database under the dba user ID. If the dba user ID had one or more current
connections carrying out Java operations, one VM for each connection would
be listed in the VM list box.

Here, we start a VM for the dba user ID. You cannot start Java execution
from the debugger. To start a VM you must carry out a Java operation from
another connection under the same user ID.

To attach to a VM:

1

With the debugger running, connect to the sample database from
Interactive SQL as user ID DBA.

Execute some Java code using the following statement:

SELECT JDBCExamples.Query ()

The Sybase Java VM starts in order to retrieve the Java objects from the
table. The debugger immediately stops execution of the Java code. You
will see that the command in ISQL does not complete (the EXECUTE
button is grayed out, and no result set is displayed).

The debugger Connection window lists the VM in its list of available
VMs.

In the debugger Connection window, click the VM and click ATTACH TO
VM. The debugger attaches to the VM and the Source window appears.
At this point the Connection window disappears.

The Source window is empty. The next step is to enable the Source
window to show the source code for the method. The source code is
available on disk.

Load source code into the debugger

The debugger looks in a set of locations for source code files (with .java
extension). You need to add the jxmp subdirectory of your installation
directory to the list of locations, so that the code for the class currently being
executed in the database is available to the debugger.

539

A debugging tutorial

+ To add a source code location to the debugger:

1

From the Source window, select File> Source Path. The Source Path
window displays.

From the Source Path window, select Path> Add. Enter the following
location into the text box:

path\jxmp

where path is the name of your Adaptive Server Anywhere installation
directory.

The source code for the JDBCExamples class displays in the window,
with the first line of the Query method highlighted. The Java debugger
has stopped execution of the code at this point.

E3Source [[O] x|
File FRun Break Calls ‘Window Help
136 stwt. getitring (2, nawme ; j
137 Integer IRows = new Integer(stwt.executeUpdate()):
135
139 /¢ Print the mumber of rows updated
l4n dyaten. out.println(IRows. coftring() + " row inserted”):
141 L
14z catch [Exception e)
143 System. out.println("Error: " + e.getMessage()):
144 e.printitackTrace() ;
145 }
l4as 1
147
145
149 public static int Query i) §
int max price 0z J
151 tryf
152 contr = DriverManager.getConnection| ™"):
=

You can now close the Source Path window.

Step through source code

540

You can step through source code in the Java debugger in several ways. In
this section we illustrate the different ways you can step through code using
the Query method.

When execution pauses at a line until you provide further instructions, we
say that the execution breaks at the line. The line is a breakpoint. Stepping
through code is a matter of setting explicit or implicit breakpoints in the
code, and executing code to that breakpoint.

Chapter 19 Debugging Java in the Database

Examples

Options

Following the previous section, the debugger should have stopped execution
of JDBCExamples.Query at the first statement:

Here are some example steps you can try:

1 Step to the next line Press F7 to step to the next line in the current
method. Try this two or three times.

2 Run to a selected line Select the following line (line 284) using the
mouse, and press F6 to run to that line and break:

max price = price;

3 Set a breakpoint and execute to it Select the following line (line
292) and press F9 to set a breakpoint on that line:

return max price;

An asterisk appears in the left hand column to mark the breakpoint.
Press F5 to execute to that breakpoint.

4 Experiment Try different methods of stepping through the code. End
with F5 to complete the execution.

When you have completed the execution, the Interactive SQL Data
window displays the value 24.

The complete set of options for stepping through source code are displayed
on the Run menu. They include the following:

Function Shortcut | Description
key
Run F5 Continue running until the next breakpoint,

until the Stop item is selected, or until
execution finishes.

Step Over F7 or Step to the next line in the current method. If
SPACE the line steps into a different method, step over
the method, not into it. Also, step over any
breakpoints within methods that are stepped

over.

Step Into F8ori Step to the next line of code. If the line steps
into a different method, step into the method.

Step Out F11 Complete the current method, and break at the
next line of the calling method.

Stop Break execution.

Run to Selected F6 Run until the currently selected line is executed
and then break.

Home F4 Select the line where the execution is broken.

541

A debugging tutorial

Inspecting and modifying variables

You can inspect the values of both local variables (declared in a method) and
class static variables in the debugger.

Inspecting local You can inspect the values of local variables in a method as you step through
variables the code, to better understand what is happening. You must have compiled
the class with the javac —g option to do this.

% To inspect and change the value of a variable:

1 Set a breakpoint at the first line of the JDBCExamples.Query
method. This line is as follows:

int max price = 0

2 In Interactive SQL, enter the following statement again to execute the
method:

SELECT JDBCExamples.Query ()
The query executes only as far as the breakpoint.

3 Press F7 to step to the next line. The max_price variable has now
been declared and initialized to zero.

4 From the Source window, select Window> Locals. The Local window
appears.

The Locals window shows that there are several local variables. The
max_price variable has a value of zero. All others are listed as not in
scope, which means they are not yet initialized.

5 Inthe Source window, press F7 repeatedly to step through the code. As
you do so, the values of the variables appear in the Locals window.

If a local variable is not a simple integer or other quantity, then as soon
as it is set a + sign appears next to it. This means the local variable has
fields that have values. You can expand a local variable by double-

clicking the + sign or setting the cursor on the line and pressing ENTER.

6 Complete the execution of the query to finish this exercise.

Modifying local You can also modify values of variables from the Locals window.
variables

% To modify a local variable:

1 Inthe debugger Source window, set a breakpoint at the following line in
the Query method of the JDBCExamples class:

int max price = 0

2 Step past this line in the execution.

542

Chapter 19 Debugging Java in the Database

Open the Locals window. Select the max price variable, and select
Local>Modify. Alternatively, you can set the cursor on the line and
press ENTER.

Enter a value of 45 in the text box, and click OK to confirm the new
value. The max price variable is set to 45 in the Locals window.

From the Source window, press F5 to complete execution of the query.
In the Interactive SQL Data window, the value 45 is returned from the
function.

Inspecting static You can also inspect the values of class-level variables (static variables).

variables

< To inspect a static variable:

1

From the debugger Source window, select Window> Classes. The
Classes window is displayed.

Select a class in the left hand box. The methods and static variables of
the class are displayed in the right hand boxes.

Select Static> Inspect. The Inspect window is displayed. It lists the
variables available for inspection.

543

Using the debugger

Using the debugger

This section describes how to accomplish tasks using the Java debugger.

Starting the debugger

The debugger is the Jar file Debug.jar, installed into your Adaptive Server
Anywhere installation directory. This jar file contains many classes. To start
the debugger you invoke the sybase.vm.Debug class, which has a
main method.

< To start the debugger:

1 Ensure that Debug.jar and jdbcdrv.zip are in your CLASSPATH
environment variable.

2 Enter the following command at the command line:

java sybase.vm.Debug

Connecting to a When you start the debugger in the simple manner described above, you
database on need to provide entries into the text boxes in order to connect to a database.
startup You can also supply additional command-line arguments to the debugger to

connect on startup.
You can specify these connection parameters in the following ways:

¢ Connection string format You can provide a —c command-line
switch followed by a connection string consisting of the parameters
URL, UID and PWD:

java sybase.vm.Debug -c "uid=dba;pwd=sqgl"

The UID and PWD connection parameters represent the user ID and
password, respectively. The URL in this connection string may make
use of the following default behavior:

¢ FullURL You can provide a full URL of the form
jdbc:sybase:Tds:machine-name:port.

¢ machine-name:port You can omit the jdbc:sybase:Tds portion
of the URL.

¢ Default port If you do not specify a port number, 2638 is used as
the default.

¢ Default machine name If you do not specify a machine name,
localhost is used as the default.

544

Chapter 19 Debugging Java in the Database

¢ Default URL You can omit the URL entirely, and the above
defaults are used to construct a default URL.

¢ Individual parameters You can provide the following parameters, in

order:
¢ url
¢ userID

¢ password

For example, the following command (entered all on one line) connects
to a server on the current machine, using user ID DBA and password
SQL:

java sybase.vm.Debug jdbc:sybase:Tds:localhost:2638
DBA SQL

Compiling classes for debugging

Java compilers such as the Sun Microsystems javac compiler can compile
Java classes at different levels of optimization. You can opt to compile Java
code so that information used by debuggers is retained in the compiled class
files.

If you compile your source code without using switches for debugging, you
can still step through code and use breakpoints. However, you cannot inspect
the values of local variables.

To compile classes for debugging using the javac compiler, use the —g
command-line option:

javac -g ClassName.java

Attaching to a VM

When you connect to a database from the debugger, the Connection window
shows all currently active VMs under the user ID. If there are none, the
debugger goes into wait mode. Wait mode works like this:

¢ Eachtime a new VM is started, it shows up in the list.

¢ You may either choose to debug a VM, or wait for another one to
appear.

545

Using the debugger

¢ Once you have passed on a VM, you lose your chance to debug that
VM. If you then decide to attach to the VM, you must disconnect from
the database and reconnect. At this time, the VM appears as a currently
active VM and you can attach.

The Source window

The Source window serves the following purposes:

¢ Itdisplays Java source code, with line numbers and breakpoint
indicators (an asterisk in the left column).

¢ It displays execution status in the status box at the bottom of the
window.

¢ It provides access to other debugger windows from the menu.

EiSource =] B3
File Run Break Calls ‘Window Help
136 stuwt.setitring (2, name); j
137 Integer IRows = new Integer| stmt.executelpdate(] 1:
138
139 A4 Print the number of rows updated
140 Systew. out.println(IRows. toStringl) + ™ row inserted™):
141 1
142 catch | Exception e) |
143 Systewm.out.println("Error: " + e.getMessagei));
144 e.printitackTrace():
145 1
148 i
147
143
149 public static int Query () |
int max price J
151 tryd
152 cort = DriverManager.getConnection(™" J»
[

The debugger windows

The debugger has the following windows:
¢ Breakpoints window Displays the list of current breakpoints.

¢ Calls window Displays the current call stack.

546

Chapter 19 Debugging Java in the Database

¢ Classes window Displays a list of classes currently loaded in the VM.
In addition, this window displays a list of methods for the currently
selected class and a list of static variables for the currently selected
class. In this window you can set breakpoints on entry to a method or
when a static variable is written.

¢ Connection window The Connection window is shown when the
debugger is started. You can display it again if you wish to disconnect
from the database.

¢ Exceptions window You can set a particular exception on which to
break, or choose to break on all exceptions.

¢ Inspection window Displays current static variables, and allows you
to modify them. You can also inspect the value of a Java expression,
such as the following:

¢ Local variables
¢ Static variables
¢ Expressions using the dot operator
¢ Expressions using subscripts []
¢ Expressions using parentheses, arithmetic, or logical operators.
For example, the following expressions could be used:
x[1i].field
q+ 1
i ==
(i + 1)*3

¢ Locals window Displays current local variables, and allows you to
modify them.

¢ Status window Displays messages describing the execution state of
the VM.

Setting breakpoints

When you set a breakpoint in the debugger, the VM stops execution at that
breakpoint. Once execution is stopped, you can inspect and modify the
values of variables and other expressions in order to better understand the
state of the program. You can then trace through execution step by step to
identify problems.

Setting breakpoints in the proper places is a key to efficiently pinpointing the
problem execution steps.

547

Using the debugger

The Java debugger allows you to set breakpoints not only on a line of code,
but on many other conditions. This section describes how to set breakpoints
using different conditions.

Breaking on a line number

When you break on a particular line of code, execution stops whenever that
line of code is executed.

To set a breakpoint on a particular line:
¢ Inthe Source window, select the line and press F9.

Alternatively, you can double-click a line.

When a breakpoint is set on a line number, the breakpoint is shown in the
Source window by an asterisk in the left hand column. If the Breakpoints
window is open, the method and line number is displayed in the list of
breakpoints.

You can toggle the breakpoint on and off by repeatedly double-clicking or
pressing F9.

Breaking on a class method

548

When you break on a method, the break point is set on the first line of code
in the method that contains an executable statement.

< To set a breakpoint on a class method:

1 From the Source window, choose Break> New. The Break At window
is displayed.

2 Enter the name of a method in which you wish execution to stop. For
example

JDBCExamples.Query

stops execution whenever the JDBCExamples.Query method is
entered.

When a breakpoint is set on a method, the breakpoint is shown in the Source
window by an asterisk in the left hand column of the line where the
breakpoint actually occurs. If the Breakpoints window is open, the method is
displayed in the list of breakpoints.

Chapter 19 Debugging Java in the Database

Using counts with breakpoints

Example

Count is
decremented

If you set a breakpoint on a line that is in a loop, or in a method that is
frequently invoked, you may find that the line is executed many times before
the condition you are really interested in takes place. The debugger allows
you to associate a count with a breakpoint, so that execution stops only when
the line is executed a set number of times.

To associate a count with a breakpoint:

1 From the Source window, select Break> Display. The Breakpoints
window is displayed.

2 In the Breakpoints window, click a breakpoint to select it.

3 Select Break> Count. A window is displayed with a field for entering a
number of iterations. Enter an integer value. The execution will stop
when the line has been executed the specified number of times.

This example assumes you have run the tutorial described in "A debugging
tutorial" on page 536.

The JDBCExamples . Query method used in the tutorial has a loop in it:

while(result.next ()) {
int price = result.getInt(2);
if (price > max price) {

max_price = price ;
}
The lines inside this loop are executed ten times. You can set a breakpoint on
the if statement and associate a count of two with it. Then execute the query
to stop at the breakpoint.

The count is decremented each time the line of code is executed. A side
effect of this is that once the breakpoint is reached, the count is set to zero.

Using conditions with breakpoints

.

3

0

The debugger allows you to associate a condition with a breakpoint, so that
execution stops only when the line is executed and the condition is met.

To associate a condition with a breakpoint:

1 From the Source window, select Break> Display. The Breakpoints
window is displayed.

2 In the Breakpoints window, click a breakpoint to select it.

549

Using the debugger

Example

3 Select Break>Condition. A window is displayed with a field for
entering an expression. The execution will stop when the condition is
true.

The expressions used here are the same as those that can be used in the
Inspection window, and include the following;:

¢ Local variables
Static variables

¢

¢ Expressions using the dot operator
¢ Expressions using subscripts []

¢

Expressions using parentheses, arithmetic, or logical operators.

This example assumes you have run the tutorial described in "A debugging
tutorial" on page 536.

The JDBCExamples . Query method used in the tutorial has a loop in it:

while(result.next ()) {
int price = result.getInt(2);
if (price > max price) {

max_price = price ;

}

The lines inside this loop are executed ten times. You can set a breakpoint on
the i £ statement and associate the following condition with it:

price > 10

Then execute the query to stop at the breakpoint whenever the price is
greater than $10.

Breaking when execution is not interrupted

550

With a single exception, breakpoints can only be set when program
execution is interrupted. If you clear all breakpoints, and run the program
you are debugging to completion, you can no longer set a breakpoint on a
line or at the start of a method. Also, if a program is running in a loop,
execution is continuing and is not interrupted.

To debug your program under either of these conditions, select Run> Stop
from the Source window. This stops execution at the next line of Java code
that is executed. You can then set breakpoints at other points in the code.

