CHAPTER 2
Connecting to a Database

About this chapter This chapter describes how client applications connect to databases. It
contains information about connecting to databases from ODBC applications
and application development systems, as well as from Embedded SQL
applications.

& For information on connecting to a database from Sybase Open Client
applications, see "Adaptive Server Anywhere as an Open Server" on page
815. For information on connecting via JDBC, see "Data Access Using
JDBC" on page 503.

Contents Topic Page
Introduction to connections 32
Simple connection examples 35
Working with ODBC data sources 42
Connection parameters 46
Troubleshooting connections 49
Using integrated logins 58

31

Introduction to connections

Introduction to connections

How connections
are established

32

Any client application that uses a database must establish a connection to
that database before any work can be done.

Once the connection is established, it forms a channel through which all of
your activity from the client application takes place. For example, your
permissions to carry out actions on the database are determined by your user
ID—and the database server has your user ID because it is part of the request
to establish a connection.

To establish a connection, the client application calls functions in one of the
Adaptive Server Anywhere interfaces. Adaptive Server Anywhere provides
the following interfaces:

¢ ODBC ODBC connections are discussed in this chapter.

¢ Embedded SQL Embedded SQL connections are discussed in this
chapter.

¢ Sybase Open Client Open Client connections are not discussed in this
chapter. For information on connecting from Open Client applications,
see "Adaptive Server Anywhere as an Open Server" on page 815.

¢ JDBC JDBC connections are not discussed in this chapter. For
information on connecting via JDBC, see "Data Access Using JDBC" on
page 503.

The interface uses connection information included in the call from the client
application, perhaps together with information held on disk in a file data
source, to locate and connect to a server running the required database. The
following figure is a simplified representation of the pieces involved.

Interface
library

Chapter 2 Connecting to a Database

What to read

If you want... Consider reading...

Some examples to get started quickly "Simple connection examples" on
page 35.

To learn about data sources "Working with ODBC data sources"
on page 42

To learn what connection parameters are "Connection parameters" on page 46.

available

To see an in-depth description of how "Troubleshooting connections" on

connections are established page 49.

Connection parameters specify connections

Representing
connection strings

When an application connects to a database, it uses a set of connection
parameters to define the connection. Connection parameters include
information such as the server name, the database name, and a user ID.

Each connection parameter is specified as a keyword-value pair, of the form
parameter=value. For example, the password connection parameter for the
default password is specified as follows:

Password=sqgl

Connection parameters are assembled into connection strings. In a
connection string, each connection parameter is separated by a semicolon, as
follows:

ServerName=asademo; DatabaseName=asademo

This chapter has many examples of connection strings. For ease of reading,
connection parameters in this chapter are generally represented in the
following form:

parameterl=valuel
parameter2=value?2

This is equivalent to the following connection string:

parameterl=valuel;parameter2=value?

A connection string must be entered on a single line, with the parameter
settings separated by semicolons.

33

Introduction to connections

Connection parameters are passed as connection strings

34

Connection parameters are passed to the interface library as a connection
string. This string consists of a set of parameters, separated by semicolons:

parameterl=value;parameterl=valuel; ...

In general, the connection string built up by an application and passed to the
interface library does not correspond directly to the way a user enters the
information. Instead, a user may fill in a dialog box, or the application may
read connection information from an initialization file.

Many of the Adaptive Server Anywhere utilities accept a connection string
as the -c command-line option and pass the connection string on to the
interface library without change. For example, the following is a typical
Collation utility (dbcollat) command line (which should be entered all on one
line):
dbcollat -c "uid=dba;pwd=sqgl;dbn=asademo"
c:\temp\asademo.col

Interactive SQL connection strings

Interactive SQL processes the connection string internally. These utilities
do not simply pass on the connection parameters to the interface library.
Do not use Interactive SQL to test command strings from a command
prompt.

Chapter 2 Connecting to a Database

Simple connection examples

Who should read
this section?

Although the connection model for Adaptive Server Anywhere is
configurable, and can become complex, in many cases connecting to a
database is very simple.

This section describes some simple cases of applications connecting to an
Adaptive Server Anywhere database. When you are getting started, this
section may be all you need.

& For more detailed information on available connection parameters and
their use, see "Connection parameters" on page 46.

Connecting to the sample database from Interactive SQL

Many examples and exercises throughout the documentation start by
connecting to the sample database from Interactive SQL. Here is how to
carry out this step:

« To connect to the sample database from Interactive SQL:

1 Start Interactive SQL You can do this as follows:

¢ From the Windows 95 or Windows NT Start menu, choose Sybase
> Adaptive Server Anywhere > Interactive SQL.

¢ In Windows 3.x, chose Interactive SQL from the Adaptive Server
Anywhere program group.

¢ Type dbisql at a system command prompt.
A connection window is displayed.

2 Connect From the ODBC data source list, select ASA 6.0 Sample.
You can leave all the other fields empty. Click OK to start the database
server and connect to the database.

Connecting to an embedded database

An embedded database is designed for use by a single application, runs on
the same machine as the application, and is largely hidden from the
application user.

When an application uses an embedded database, the personal server is
generally not running when the application connects. In this case, you can
start the database using the connection string. You can do this in one of the
following ways:

35

Simple connection examples

¢ Specify the database file in the DatabaseFile (DBF) parameter of the
connection string.

Using the DBF The following connection parameters show how the sample database could
parameter be loaded as an embedded database:

dbf=path\asademo.db

uid=dba

pwd=sqgl

where path is the name of your Adaptive Server Anywhere installation
directory.

The DBF parameter specifies the database file to be used. If no server is
running, one is started. If one or more servers are running, the database is
loaded onto the default server.

When there are no more connections to the database (generally when the
application that started it disconnects) the database is unloaded. If the server
was started by the connection, it is stopped once the database is unloaded.

Using the Start The following connection parameters show how you can customize the
parameter startup of the sample database as an embedded database. This is useful if you
wish to use command-line options, such as the cache size:

Start=dbeng6 -c 8M
dbf=path\asademo.db
uid=dba
pwd=sqgl

Extra cache needed for Java

If you are using Java in an embedded database, you should use the start
line to provide more than the default cache size. For development
purposes, a cache size of 8§ Mb is sufficient.

Example: In this example, the sample database is used as an embedded database within
connecting from Interactive SQL. This example assumes that you have no SQLCONNECT
Interactive SQL environment variable set.

+ To connect to an embedded database from Interactive SQL.:

1 Start Interactive SQL with no databases running. You can use either of
the following ways:

¢ From the Windows 95 or Windows NT Start menu, choose Sybase
> Adaptive Server Anywhere > Interactive SQL.

¢ In Windows 3.x, chose Interactive SQL from the Adaptive Server
Anywhere program group.

¢ Type dbisql at a system command prompt.
36

Chapter 2 Connecting to a Database

When Interactive SQL starts, it is not connected to any database.

2 Type CONNECT in the command window, and press F9 to execute the
command. The connection dialog displays.

3 Ifyou have an ODBC data source for your database, you can select that
data source

4 Enter DBA as the user ID and SQL as the password. Then click the
Database tab. Enter the full path of the sample database in the Database
File field. For example, if your installation directory is c:\sybaselasa6
you should enter the following:

c:\sybase\asa6\asademo.db

5 Leave all other fields blank, and click OK. Adaptive Server Anywhere
starts up and loads the sample database, and Interactive SQL connects to
the database.

Connecting using a data source

You can save sets of connection parameters in a data source. Data sources
can be used by ODBC and Embedded SQL applications. You can create data
sources from the ODBC Administrator.

Here, we show how to connect to the sample database from Interactive SQL
using a data source

% To connect using a data source:

1 Start Interactive SQL with no databases running. You can use either of
the following ways:

¢ Type dbisql at a system command prompt, or

¢ From the Windows 95 or Windows NT Start menu, choose
Sybase> Adaptive Server Anywhere> Interactive SQL.

¢ In Windows 3.x, chose Interactive SQL from the Adaptive Server
Anywhere program group.

When Interactive SQL starts, it is not connected to any database.

2 Type CONNECT in the command window, and press F9 to execute the
command. The connection dialog displays.

3 Enter DBA as the user ID and SQL as the password. Select ASA 6.0
sample from the drop-down list of ODBC data sources.

37

Simple connection examples

The sample data

source

4 Leave all other fields blank, and click OK. Adaptive Server Anywhere
starts up and loads the sample database, and Interactive SQL connects to
the database.

The ASA 6.0 Sample data source holds a set of connection parameters,
including the database file and a Start parameter to start the database.

Connecting to a server on a network

Specifying the
server

38

To connect to a database running on a network server somewhere on a local
or wide area network, the client software must be able to locate the database
server. Adaptive Server Anywhere provides a network library (a DLL or
shared library) that handles this task.

Any network connection is made over a network protocol. Several protocols
are supported, including TCP/IP, IPX, and NetBIOS.

& For a full description of client/server communications over a network,
see "Client/Server Communications" on page 685.

Interface Network

DLL DLL

Network

Adaptive Server Anywhere server names must be unique on a local domain
for a given network protocol. The following connection parameters provide a
simple example for connecting to a server running elsewhere on a network:

eng=svr name
dbn=db name
uid=user id
pwd=password
CommLinks=all

The client library first looks for a personal server of the given name, and then
looks on the network for a server of the specified name.

Chapter 2 Connecting to a Database

Specifying the
protocol

& The above example finds any server started using default port number.
However, you can start servers using other port numbers and in this case you
need to provide more information in the CommLinks parameter. For
information, see "CommLinks connection parameter" on page 43 of the book
Adaptive Server Anywhere Reference Manual.

If several protocols are available, you can instruct the network library which
ones to use to improve performance. The following parameters use only the
TCP/IP protocol:

eng=svr name
dbn=db name
uid=user id
pwd=password
CommLinks=tcpip

The network library searches for a server by broadcasting over the network.
This can be a time-consuming process. Once a server is located, its name and
network address are stored by the client library in a file. This entry is reused
for subsequent connection attempts to that server using the specified
protocol. This can make subsequent connections many times faster than a
connection achieved by broadcast.

& Many other connection parameters are available to assist Adaptive
Server Anywhere in locating a server efficiently over a network. For more
information see "Network communications parameters" on page 54 of the
book Adaptive Server Anywhere Reference Manual.

Using default connection parameters

Default database
server and
database

Default database
server

Many connection parameters can be left unspecified, using default behavior
to make a connection. You should be cautious about relying on default
behavior in production environments, especially if you distribute your
application to customers who may install other Adaptive Server Anywhere
applications on their machine.

If a single personal server is running, and it has loaded a single database, you
can connect using entirely default parameters:

uid=user id

pwd=password

If more than one database is loaded on a single personal server, you need to
specify the database you wish to connect to, but you can leave the server as a
default:

dbn=db_name
uid=user id
pwd=password

39

Simple connection examples

Default database

No defaults

If more than one server is running, you need to specify which one you wish
to connect to. If only one database is loaded on that server, you do not need
to specify the database name. The following connection string connects to a
named server, using the default database:

eng=server name
uid=user id
pwd=password

The following connection string connects to a named server, using a named
database:

eng=server name
dbn=db name
uid=user id
pwd=password

& For more information about default behavior, see "Troubleshooting
connections" on page 49.

Connecting from Adaptive Server Anywhere utilities

How database
tools obtain
connection
parameter values

40

All Adaptive Server Anywhere database utilities that communicate with the
server (rather than acting directly on database files) do so using Embedded
SQL. They follow the procedure outlined in "Troubleshooting connections"
on page 49 when connecting to a database.

Many of the administration utilities obtain the values of the connection
parameters in the following way:

1 Ifthere are values specified on the command line, those values are used
for the connection parameters. For example, the following command
starts a backup of the default database on the default server using the
user [D DBA and the password SQL:

dbbackup -c "uid=dba;pwd=sgl" c:\backup

2 Ifany command line values are missing, the application looks at the
setting of the SQLCONNECT environment variable. This variable is not
set automatically by Adaptive Server Anywhere.

& For a description of the SQLCONNECT environment variable, see
"Environment variables" on page 5 of the book Adaptive Server
Anywhere Reference Manual.

3 If parameters are not set in the command line, or the SQLCONNECT
environment variable, then the application prompts for a user ID and
password to connect to the default database on the default server.

Chapter 2 Connecting to a Database

& For a description of command line switches for each database tool, see
chapter "Database Administration Utilities" on page 63 of the book Adaptive
Server Anywhere Reference Manual.

41

Working with ODBC data sources

Working with ODBC data sources

Where data
sources are held

Embedded SQL
can use data
sources

The Open Database Connectivity (ODBC) interface is defined by
Microsoft Corporation, and is a standard interface for connecting client
applications to database management systems in the Windows and Windows
NT environments. Many client applications, including application
development systems, use the ODBC interface to access a wide range of
database systems.

Adaptive Server Anywhere can use ODBC data sources on UNIX as well as
on Windows operating systems. For information, see "Using ODBC data
sources on UNIX" on page 44.

When you connect to a database using ODBC, you do so using an ODBC
data source. The data source contains a set of connection parameters. You
need an ODBC data source on the client computer for each database to which
you wish to connect.

You can store a set of Adaptive Server Anywhere connection parameters as
an ODBC data source. Data sources can be stored in the system registry or
as files.

If you have a data source, your connection string can simply name the data
source to use:

¢ Datasource You can reference a data source in the registry using the
DSN connection parameter:

DSN=my data source

¢ File data source You can reference a data source held in a file using
the FileDSN connection parameter:

FileDSN=mysource.dsn
Embedded SQL applications such as Interactive SQL and the other Adaptive

Server Anywhere database administration utilities can also use ODBC data
sources, even though they are not ODBC applications.

Creating an ODBC data source

.
o

42

For Windows operating systems, the ODBC Administrator provides a central
place for managing ODBC data sources. You can start the ODBC
Administrator from your Adaptive Server Anywhere program group.

To create an ODBC data source:
1 Start the ODBC Administrator. From the User DSN tab, click Add.

Chapter 2 Connecting to a Database

2 Select Adaptive Server Anywhere 6.0 from the list of drivers, and click
FINISH. The Adaptive Server Anywhere ODBC Configuration window is
displayed.

Q0BT Conbguiniios e Adnpivon Sarear Somypse i

O0BC Lo | Desabese | Mook | Advanced

Dot girsics
- L= |

DEinpton |

Traralsicr fiho Transdwiors
Eghact

Ispimiipn leramt |

™ Whcso ok SEpkealon s S in SOLEISHEL)
[~ Presssnt chrenr niot copah b smorne:
M Doy sutoCommiunbl s mant dosa

Crmecabe Curoy Behevonr
" Heem = {equined Al

Tt Cnmreschicn |

| QK | Cancal |

Many of the fields in this window are optional. Click the question mark
at the top right of the window and click an entry field to find more
information about that field.

3 When you have specified the parameters you need, click OK to close the
window and create the data source.

You can edit a data source by selecting a data source from the list in the
ODBC administrator window and clicking Configure.

Creating a File Data Source

Data sources are stored in the system registry. File data sources are an
alternative, which are stored as files. File data sources typically have the
extension .dsn. They consist of sections, each section starting with a name
enclosed in square brackets. DSN files are very similar in layout to
initialization files.

43

Working with ODBC data sources

File data sources
can be distributed

One benefit of file data sources is that you can distribute the file to users. If
the file is placed in the default location for file data sources, it is picked up
automatically by ODBC. In this way, managing connections for many users
can be made simpler.

Embedded SQL applications can also use ODBC file data sources.

< To create an ODBC file data source:

1 Start the ODBC Administrator. From the File DSN tab, click Add.

2 Select Adaptive Server Anywhere 6.0 from the list of drivers, and click
Next.

3 Follow the instructions to create the data source

Using ODBC data sources on UNIX

On UNIX operating systems, ODBC data sources are held in a file named
.odbc.ini. A sample file is as follows:

[My Data Source]
ENG=myserver
CommLinks=tcpip
UID=dba

PWD=sqgl

The database server looks for this file as follows:

¢ The ODBCINI environment variable

¢ The ODBCHOME and HOME environment variables
¢ The user's home directory

¢ The path.

Using ODBC data sources on Windows CE

Data source
location

44

Windows CE does not provide an ODBC driver manager or an ODBC
Administrator. On this platform, Adaptive Server Anywhere uses ODBC
data sources stored in files. You can specify either the DSN or the FileDSN
keyword to use these data source definitions—on Windows CE (only) these
are synonyms.

The data source files are searched for in the following locations:

1 The directory from which the ODBC driver (dbodbc6.dll) was loaded.
This is usually the Windows directory.

Chapter 2 Connecting to a Database

2 The directory specified in Location key of the Adaptive Server
Anywhere section of the registry. This is usually the same as the
Adaptive Server Anywhere installation directory. The default
installation directory is:

\Program Files
\Adaptive Server Anywhere 6.0
\Windows

Each data source itself is held in a file. The file has the same name as the
data source, with an extension of . dsn.

&> For more information about file data sources, see "Creating a File Data
Source" on page 43.

45

Connection parameters

Connection parameters

The Adaptive Server Anywhere connection parameters are listed in the
following table.

& For a full description of each of these connection parameters, see
"Connection and Communication Parameters" on page 39 of the book
Adaptive Server Anywhere Reference Manual.

Parameter Short Argument
form
Agent Agent String (Any or Server)
AutoStart AStart Boolean
Autostop AStop Boolean
CommBufferSize CBSize Integer
CommBufferSpace CBSpace | Integer
CommLinks Links String
ConnectionName * CON String
DatabaseFile DBF String
DatabaseName DBN String
DatabaseSwitches DBS String
DataSourceName DSN String
Debug DBG Boolean
DisableMultiRowFetch DMRF Boolean
EncryptedPassword ENP Encrypted string
Encryption ENC Boolean
EngineName / ServerName ENG String
FileDataSourceName FileDSN String
Integrated INT Boolean
LivenessTimeout LTO Integer
Logfile LOG String
Password ** PWD String
StartLine Start String
Unconditional UNC Boolean
Userid ** UID String

* Not used by ODBC connections
46

Chapter 2 Connecting to a Database

Notes

** Verbose form of keyword not used by ODBC connection parameters

Boolean values Boolean (true or false) arguments are either YES,
ON, 1, or TRUE if true, or NO, OFF, 0, or FALSE if false.

Case sensitivity Connection parameters and their values are case
insensitive.

The connection parameters used by the interface library can be obtained
from the following places (in order of precedence):

¢ Connection string Parameters can be passed explicitly in the
connection string.

¢ SQLCONNECT environment variable Connection parameters
can be stored in the SQLCONNECT environment variable.

¢ Datasources Parameters can be stored in ODBC data sources.

¢ Compatibility data source A special data source is available for
compatibility with SQL Anywhere Version 5 client/server
connections.

Character set restrictions The server name must be composed of
characters in the range 1 to 127 of the ASCII character set. There is no
such limitation on other parameters.

&> For more information on the character set issues, see "Connection
strings and character sets" on page 299.

Priority The following rules govern the priority of parameters:

¢ The entries in a connect string are read left to right If the same
parameter is specified more than once, the last one in the string is
used.

¢ Ifastring contains a data source or file data source entry, the profile
is read from the configuration file, and the entries from the file are
used if they are not already set. That is, if a connection string
contains a data source name and sets some of the parameters
contained in the data source explicitly, then in case of conflict the
explicit parameters are used.

Connection parameter priorities

Connection parameters often provide more than one way of accomplishing a
given task. This is particularly the case with embedded databases, where a
database server is started by the connection string.

47

Connection parameters

For example, if your connection will start a database, you can specify the
database name using the DBN connection parameter or using the DBS
parameter.

Here are some recommendations and notes for situations where connection
parameters conflict:

¢ Specify database files using DBF You can specify a database file on
the Start parameter or using the DBF parameter. It is recommended that
you use the DBF parameter.

¢ Specify database names using DBN You can specify a database
name on the Start parameter, the DBS parameter, or using the DBN
parameter. It is recommended that you use the DBN parameter.

¢ Use the Start parameter to specify cache size Even though you use
the DBF connection parameter to specify a database file, you may still
want to tune the way in which it starts. You can use the Start parameter
to do this.

A particular example is if you are using the Java features of Adaptive
Server Anywhere. In that case, you should provide additional cache
memory on the Start parameter. The following sample set of embedded
database connection parameters describes a connection that may use
Java features:

DBF=path\asademo.db
DBN=Sample
ENG=Sample Server
UID=dba

PWD=sqgl
Start=dbeng6 -c 8M

48

Chapter 2 Connecting to a Database

Troubleshooting connections

Who needs to read
this section?

In many cases, establishing a connection to a database is straightforward
using the information presented in the first part of this chapter.

However, if you are having problems establishing connections to a server,
you may need to understand the process by which Adaptive Server
Anywhere establishes connections in order to resolve your problems. This
section describes how Adaptive Server Anywhere connections work.

Only read it if you need it
If you have no problem establishing connections to your database, you do
not need to read this section.

The procedure the software follows is exactly the same for each of the
following types of client application:

¢ ODBC Any ODBC application using the SQLDriverConnect
function, which is the common method of connection for ODBC
applications. Many application development systems, such as Powersoft
PowerBuilder and Power++, belong to this class of application.

¢ Embedded SQL Any client application using Embedded SQL and
using the recommended function for connecting to a database
(db_string_connect).

The SQL CONNECT statement is available for Embedded SQL
applications and in Interactive SQL. It has two forms: CONNECT AS...
and CONNECT USING... The CONNECT USING statement uses
db_string_connect. All the database administration tools, including
Interactive SQL, use db_string_connect.

The steps in establishing a connection

In order to establish a connection, Adaptive Server Anywhere carries out the
following steps:

1 Locate the interface library The client application must locate the
ODBC driver or Embedded SQL interface library.

2 Assemble a list of connection parameters Connection parameters
may be provided in several places, such as data sources, a connection
string assembled by the application, and an environment variable. The
parameters are assembled into a single list.

49

Troubleshooting connections

3 Locate a server Using the connection parameters, a database server
must be located on your machine or over a network.

4 Locate the database Once the server is located, the database to which
you wish to connect must be located.

5 Start a personal server If no server can be located, Adaptive Server
Anywhere will attempt to start a personal database server and load the
database.

Each of these steps is described in detail in the following sections.

Locating the interface library

ODBC driver
location

Embedded SQL
interface library
location

50

The client application makes a call to one of the Adaptive Server Anywhere
interface libraries. In general, the location of this DLL or shared library is
transparent to the user. Here we describe how the library is located, in case
of problems.

For ODBC, the interface library is also called an ODBC driver. An ODBC
client application calls the ODBC driver manager, and the driver manager
locates the Adaptive Server Anywhere driver.

The ODBC driver manager looks in the supplied data source in the odbc.ini
file or registry to locate the driver. When you create a data source using the
ODBC Administrator, Adaptive Server Anywhere fills in the current location
for your ODBC driver.

Embedded SQL applications call the interface library by name. The name of
the Adaptive Server Anywhere Embedded SQL interface library is as
follows:

¢ Windows NT and Windows 95 dblib6.dl!
¢ Windows 3.x dblib6w.dll
¢ UNIX dblib6 with an operating-system-specific extension.

The locations that are searched depend on the operating system:

¢ PC operating systems In PC operating systems such as Windows and
Windows NT, files are looked for in the current directory, in the system
path, and in the Windows and Windows\system directories.

¢ UNIX operating systems In UNIX, files are looked for in the system
path and the user path.

Chapter 2 Connecting to a Database

When the library is
located

Once the interface library is located, a connection string is passed to it. The
interface library uses the connection string to assemble a list of connection
parameters, which it uses to establish a connection to a server. The following
section describes how the list of connection parameters is assembled.

Assembling a list of connection parameters

The following figure illustrates how the interface libraries assemble the list
of connection parameters they will use to establish a connection.

v

Read Read parameters

parameters from
the connection
string

SQLCONNECT

not already
specified from

Yes

s there a data
source in the
parameter list?

No

Does the data
source exist?

Yes

Failure Yes

Read parameters
not already
specified from the
data source

Is there a
compatibility data
source?

No

Connection
parameters
complete

Notes

Key points from the figure are as follows:

¢ Precedence Parameters held in more than one place are subject to the

following order of precedence:
Connection string > SQLCONNECT > data source

That is, if a parameter is supplied in a data source and in a connection
string, the connection string value overrides the data source value.

¢ Failure Failure at this stage occurs only if a data source that does not

exist in the client connection file is specified in the connection string or
SQLCONNECT.

51

Troubleshooting connections

¢ Common parameters Depending on other connections already in use,
some connection parameters may be ignored. These include the

following:

¢ Autostop Ignored if the database is already loaded.

¢ CommLinks The specifications for a network protocol are
ignored if another connection has already set parameters for that
protocol.

¢ CommBufferSize Ignored if another connection has already set
this parameter.

¢ CommBufferSpace Ignored if another connection has already set
this parameter.

¢ Unconditional Ignored if the database is already loaded or the

server is already running.

When the list of connection parameters is complete, it is used by the
interface library to attempt to connect.

Locating a server

52

The next step in establishing a connection is to attempt to locate a server. If
the connection parameter list includes a server name (ENG parameter), a
search is carried out first for a personal server of that name. Following that, a
search is carried out over a network. If no ENG parameter is supplied, a
default server is looked for.

Chapter 2 Connecting to a Database

Notes

rNo

s'there a persona
server named

ENG?

e ports specifi
in CommLinks
eady available?

Is there a default
personal server?

Yes

Locate
database on
server

Yes

Yes No

Start up required
network protocol
ports

b

Attempt to locate
a server named
ENG using
available ports

Can a server be
located?

No

Attempt to start a
personal server

& If a server is located, the next step is to locate or load the required
database on that server. For information, see "Locating the database" on page

5

4.

& Ifno server is located, the next step is to attempt to start a personal
server. For information, see "Starting a personal server" on page 55.

¢

For local connections, locating a server is simple. For connections over a
network, you can use the CommULinks parameter to tune the search in
many ways by supplying network communication parameters.

The network search involves a search over one or more of the protocols
supported by Adaptive Server Anywhere. For each protocol, the network
library starts a single port. A single port is used for all connections over
that protocol at any one time.

53

Troubleshooting connections

¢ A set of network communication parameters can be specified for each
network port in the argument to the CommLinks parameter. These
parameters are used only when the port is first started. If a particular
network port is already started, any connection parameters for that port
in CommLinks are ignored.

¢ Each attempt to locate a server (the local attempt and the attempt for
each network port) involves two steps. The first is to look in the server
name cache to see if a server of that name is available. The second is to
use the available connection parameters to attempt a connection.

Locating the database

If a server is successfully located, the next step is to locate the database. The
following figure illustrates how databases are located:

Attempt to
connect

Is there a default
database running?

Failure

a database

running whose
ame is the root o
DBF?

Attempt to
connect

Attempt to
connect

Yes
T

Load and attempt to
connect

Failure

54

Chapter 2 Connecting to a Database

Starting a personal server

If no server can be located, the interface libraries attempt to start a personal
server using other parameters. The Start and DBF parameters can be used to
start a personal server.

Reread connection
parameters and start
again

Is there a STAR
parameter?

Yes
Is there a DBF

No Yes*

parameter?

Yes .
Failure

Attempt to start a
personal server on
the file

Does it contain
dbcli6 and no data
source?

No

Use the START
parameter

* Unusual condition: Version 5
connections only

The START parameter takes one of two kinds of argument:

¢ Personal server command line To start a personal server.

¢ Client compatibility command line For compatibility with Version 5
applications, a client executable command line is accepted.

If a START parameter is not available, there is an attempt to start a personal
server on the file indicated by the DBF. If an ENG parameter is supplied in
addition to a DBF parameter, it is used as the name of the server.

Server name caching for faster connections

The network libraries look for a database server on a network by
broadcasting over the network using the CommULinks connection parameter.

55

Troubleshooting connections

Tuning the
broadcast

Caching server
information

How the cache is
used

The CommLinks parameter takes as argument a string that lists the
protocols to use and, optionally for each protocol, a variety of network
communication parameters that tune the broadcast.

& For a complete listing of network communications parameters, see
"Network communications parameters" on page 54 of the book Adaptive
Server Anywhere Reference Manual.

Broadcasting over large networks to search for a server of a specific name
can be time-consuming. To speed up network connections (except for the
first connection to a server), when a server is located, the protocol it was
found on and its address are saved to a file.

The server information is saved in a file named asasrv.ini, in your Adaptive
Server Anywhere executable directory. The file contains a set of sections,
each of the following form:

[Server name]
Link=protocol name
Address=address string

When a connection specifies a server name, and a server with that name is
not found, the network library looks first in the server name cache to see if
the server is known. If there is an entry for the server name, an attempt is
made to connect using the link and address in the cache. If the server is
located using this method, the connection is much faster, as no broadcast is
involved.

If the server is not located using cached information, the connection string
information and CommULinks parameter are used to search for the server
using a broadcast. If the broadcast is successful, the server name entry in the
named cache is overwritten.

Cache precedes CommLinks
If a server name is held in the cache, the cache entry is used before the
CommLinks string.

Interactive SQL connections

56

The Interactive SQL utility has a different behavior from the default
Embedded SQL behavior when a CONNECT statement is issued while
already connected to a database. If no database or server is specified in the
CONNECT statement, Interactive SQL connects to the current database,
rather than to the default database. This behavior is required for database
reloading operations.

Chapter 2 Connecting to a Database

& For an example, see "CONNECT statement”" on page 381 of the book
Adaptive Server Anywhere Reference Manual.

Testing that a server can be found

Examples

The dbping command-line utility is provided to help in troubleshooting
connections. In particular, you can use it to test if a server with a particular
name is available on your network.

The dbping utility takes a connection string as a command-line option, but by
default only those pieces required to locate a server are used. It does not
attempt to start a server.

The following command line tests to see if a server named Waterloo is
available over a TCP/IP connection:

dbping -c "eng=Waterloo;CommLinks=tcpip"

The following command tests to see if a default server is available on the
current machine.

dbping

& For more information on dbping options, see "The DBPing utility" on
page 78 of the book Adaptive Server Anywhere Reference Manual.

57

Using integrated logins

Using integrated logins

Operating systems
supported

Benefits of an
integrated login

The integrated login feature allows you to maintain a single user ID and
password for both database connections and operating system and/or network
logins. This section describes the integrated login feature.

Integrated login capabilities are available for the Windows NT server only. It
is possible for Windows 95 clients as well as Windows NT clients to use
integrated logins to connect to a network server running on Windows NT.

An integrated login is a mapping from one or more Windows NT user
profiles to an existing user in a database. A user who has successfully
navigated the security for that user profile and logged in to their machine can
connect to a database without providing an additional user ID or password.

To accomplish this, the database must be enabled to use integrated logins and
a mapping must have been granted between the user profile used to log in to
the machine and/or network, and a database user.

Using an integrated login is more convenient for the user and permits a
single security system for database and network security. Its advantages
include:

¢ When connecting to a database using an integrated login, the user does
not need to enter a user ID or password.

¢ Ifyou use an integrated login, the user authentication is done by the
operating system, not the database: a single system is used for database
security and machine or network security.

¢ Multiple user profiles can be mapped to a single database user ID.

¢ The name and password used to login to the Windows NT machine do
not have to match the database user ID and password.

Caution

Integrated logins offer the convenience of a single security system but
there are important security implications which database administrators
should be familiar with.

& For more information about security and integrated logins, see
"Security concerns: unrestricted database access" on page 62.

Using integrated logins

58

Several steps must be implemented in order to connect successfully via an
integrated login.

Chapter 2 Connecting to a Database

« To use an integrated login:

1 Enable the integrated login feature in a database by setting the value of
the LOGIN_MODE database option to either Mixed or Integrated (the
option is case insensitive), in place of the default value of Standard.
This step requires DBA authority).

2 Create an integrated login mapping between a user profile and an
existing database user. This can be done using a SQL statement or a
wizard in Sybase Central.

3 Connect from a client application in such a way that the integrated login
facility is triggered.

Each of these steps is described in the sections below.

Enabling the integrated login feature

The LOGIN_MODE database option determines whether the integrated login
feature is enabled. As database options apply only to the database in which
they are found, different databases can have a different integrated login
setting even if they are loaded and running within the same server.

The LOGIN_MODE database option accepts one of following three values
(which are case insensitive).

¢ Standard This is the default setting, which does not permit integrated
logins. An error occurs if an integrated login connection is attempted.

¢ Mixed With this setting, both integrated logins and standard logins are
allowed.

¢ Integrated With this setting, all logins to the database must be made
using integrated logins.

Caution
Setting the LOGIN MODE database option to Integrated restricts
connections to only those users who have been granted an
integrated login mapping. Attempting to connect using a user ID
and password generates an error. The only exception to this are
users with DBA authority (full administrative rights).

Example The following SQL statement sets the value of the LOGIN MODE database
option to Mixed, allowing both standard and integrated login connections:

SET OPTION Public.LOGIN MODE = Mixed

59

Using integrated logins

Creating an integrated login

User profiles can only be mapped to an existing database user ID. When that
database user ID is removed from the database, all integrated login mappings
based on that database user ID are automatically removed.

A user profile does not have to exist for it to be mapped to a database user
ID. More than one user profile can be mapped to the same user ID.

Only users with DBA authority are able to create or remove an integrated
login mapping.

An integrated login mapping is made either using a wizard in Sybase Central
or a SQL statement.

< To map an integrated login from Sybase Central:

1
2

Connect to a database as a user with DBA authority.

Open the Integrated Logins folder for the database, and double-click
Add Integrated Login. The Integrated Login wizard is displayed.

On the first page of the wizard, enter the name of the system (computer)
user for whom the integrated login is to be created. You can either select
a name from the list or enter a name.

Also, select the database user ID this user maps to. The wizard displays
the available database users. You must select one of these. You cannot
add a new database user ID.

Follow the remaining instructions in the Wizard.

< To map an integrate login using a SQL statement:

¢

The following SQL statement allows Window NT users dmelanso and
bhay to log in to the database as the user DBA, without having to know
or provide the DBA user ID or password.

GRANT INTEGRATED LOGIN
TO dmelanso, bhay
AS USER dba

Connecting from a client application

A client application can connect to a database using an integrated login in
one of the following ways:

¢

60

Set the INTEGRATED parameter in the list of connection parameters to
yes.

Chapter 2 Connecting to a Database

Interactive SQL
Examples

Integrated logins
via ODBC

¢ Specify neither a user ID nor a password in the connection string or
connection dialog. This method is available only for Embedded SQL
applications, including the Adaptive Server Anywhere administration
utilities.

If INTEGRATED=yes is specified in the connection string, an integrated
login is attempted. If the connection attempt fails and the LOGIN. MODE
database option is set to Mixed, the server attempts a standard login.

If an attempt to connect to a database is made without providing a user ID or
password, an integrated login is attempted. The attempt succeeds or fails
depending on whether the current user profile name matches an integrated
login mapping in the database.

For example, a connection attempt using the following Interactive SQL
statement will succeed, providing the user has logged on with a user profile
name that matches a integrated login mapping in a default database of a
server:

CONNECT USING 'INTEGRATED=yes'
The following Interactive SQL statement...

CONNECT
...can connect to a database if all the following are true:
¢ A server is currently running.

¢ The default database on the current server is enabled to accept integrated
login connections.

¢ An integrated login mapping has been created that matches the current
user's user profile name.

¢ Ifthe user is prompted with a dialog box by the server for more
connection information (such as occurs when using the Interactive SQL
utility), the user clicks OK without providing more information.

A client application connecting to a database via ODBC can use an
integrated login by including the Integrated parameter among other attributes
in its Data Source configuration.

Setting the attribute Integrated=yes in an ODBC data source causes
database connection attempts using that DSN to attempt an integrated login.
If the LOGIN_MODE database option is set to Standard, the ODBC driver
prompts the user for a database user ID and password.

61

Using integrated logins

Security concerns: unrestricted database access

The integrated login feature works by using the login control system of
Windows NT in place of the Adaptive Server Anywhere security system.
Essentially, the user passes through the database security if they can log in to
the machine hosting the database, and if other conditions, outlined in "Using
integrated logins" on page 58, are met.

If the user successfully logs in to the Windows NT server as "dsmith", they
can connect to the database without further proof of identification provided
there is either an integrated login mapping or a default integrated login user
ID.

When using integrated logins, database administrators should give special
consideration to the way Windows NT enforces login security in order to
prevent unwanted access to the database.

In particular, be aware that by default a "Guest" user profile is created and
enabled when Windows NT Workstation or Server is installed.

Caution
Leaving the user profile Guest enabled can permit unrestricted access to a
database being hosted by that server.

If the Guest user profile is enabled and has a blank password, any attempt to
log in to the server will be successful. It is not required that a user profile
exist on the server, or that the login ID provided have domain login
permissions. Literally any user can log in to the server using any login ID
and any password: they are logged in by default to the Guest user profile.

This has important implications for connecting to a database with the
integrated login feature enabled.

Consider the following scenario, which assumes the Windows NT server
hosting a database has a "Guest" user profile that is enabled with a blank
password.

¢ Anintegrated login mapping exists between the user dsmith and the
database user ID DBA. When the user dsmith connects to the server
with her correct login ID and password, she connects to the database as
DBA, a user with full administrative rights.

But anyone else attempting to connect to the server as "dsmith" will
successfully log in to the server regardless of the password they provide
because Windows NT will default that connection attempt to the "Guest"
user profile. Having successfully logged in to the server using the
"dsmith" login ID, the unauthorized user successfully connects to the
database as DBA using the integrated login mapping.

62

Chapter 2 Connecting to a Database

Disable the Guest user profile for security

The safest integrated login policy is to disable the "Guest" user profile on
any Windows NT machine hosting an Adaptive Server Anywhere
database. This can be done using the Windows NT User Manager utility.

Setting temporary public options for added security

Setting the value of the LOGIN_MODE option for a given database to
Mixed or Integrated using the following SQL statement permanently
enables integrated logins for that database.

SET OPTION Public.LOGIN MODE = Mixed

If the database is shut down and restarted, the option value remains the same
and integrated logins are still enabled.

Changing the LOGIN MODE option temporarily will still allow user access
via integrated logins. The following statement will change the option value
temporarily:

SET TEMPORARY OPTION Public.LOGIN MODE = Mixed

If the permanent option value is Standard, the database will revert to that
value when it is shut down.

Setting temporary public options can be considered an additional security
measure for database access since enabling integrated logins means that the
database is relying on the security of the operating system on which it is
running. If the database is shut down and copied to another machine (such as
a user's machine) access to the database reverts to the Adaptive Server
Anywhere security model and not the security model of the operating system
of the machine where the database has been copied.

& For more information on using the SET OPTION statement see "SET
OPTION statement" on page 553 of the book Adaptive Server Anywhere
Reference Manual.

Network aspects of integrated logins

If the database is located on a network server, then one of two conditions
must be met for integrated logins to be used:

¢ The user profile used for the integrated login connection attempt must
exist on both the local machine and the server. As well as having
identical user profile names on both machines, the passwords for both
user profiles must also be identical.

63

Using integrated logins

For example, when the user jsmith attempts to connect using an
integrated login to a database loaded on network server, identical user
profile names and passwords must exist on both the local machine and
application server hosting the database. jsmith must be permitted to
login to both the local machine and the server hosting the network
server.

¢ Ifnetwork access is controlled by a Microsoft Domain, the user
attempting an integrated login must have domain permissions with the
Domain Controller server and be logged in to the network. A user
profile on the network server matching the user profile on the local
machine is not required.

Creating a default integrated login user

64

A default integrated login user ID can be created so that connecting via an
integrated login will be successful even if no integrated login mapping exists
for the user profile currently in use.

For example, if no integrated login mapping exists for the user profile name
JSMITH, an integrated login connection attempt will normally fail when
JSMITH is the user profile in use.

However, if you create a user ID named Guest in a database, an integrated
login will successfully map to the Guest user ID if no integrated login
mapping explicitly identifies the user profile JSMITH.

The default integrated login user permits anyone attempting an integrated
login to successfully connect to a database if the database contains a user ID
named Guest. The permissions and authorities granted to the newly-
connected user are determined by the authorities granted to the Guest user
ID.

