CHAPTER 20

Backup and Data Recovery

About this chapter

Contents

This chapter explains how to use transaction log files to protect your data,
how to back up your database files and the log file, and the recovery
procedures for system and media failures.

Topic Page
System and media failures 554
Database logs 555
Using a transaction log mirror 560
Backing up your database 565
Recovery from system failure 569
Recovery from media failure 572

553

System and media failures

System and media failures

Recovery from
failure

Make regular
backups

554

Adaptive Server Anywhere has features to protect your data from two
categories of computer failure: system failure and media failure.

¢ System Failure A system failure occurs when the computer or
operating system goes down while there are partially completed
transactions. This could occur when the computer is inappropriately
turned off or rebooted, when another application causes the operating
system to crash, or because of a power failure.

¢ Media Failure A media failure occurs when the database file, the file
system, or the device storing the database file becomes unusable.

When failures occur, the recovery mechanism treats transactions properly, as
atomic units of work: any incomplete transaction is rolled back and any
committed transaction is preserved in the transaction log. This ensures that
even in the event of failure, the data in your database remains in a consistent
state.

You should make regular backups of your database files so that you can
recover your database in the case of a media failure. The transaction log
(which you should store on a separate device from the database for greater
security) is used to recover information put into the database since the last
full backup.

Chapter 20 Backup and Data Recovery

Database logs

The following logs protect your data from system and media failure.
¢ The checkpoint log.
¢ The rollback log.

¢ The transaction log.

All of these logs play a role in data recovery. Each database running on a
server has its own checkpoint log, rollback log, and transaction log.
Optionally, you can also maintain a mirror of the transaction log for greater
protection of vital data.

The checkpoint log

Checkpoint log
purpose

Reasons for a
checkpoint

The checkpoint log is used during database recovery after a system failure or
improper shutdown of the server. The checkpoint log is stored in the
database file.

A database file is composed of pages. Before a page is updated (made dirty),
a copy of the original is always made. The copied pages are the checkpoint
log.

Dirty pages are not written immediately to the database file on disk. For
improved performance, they are cached in memory and only written to the
database file when the cache is full or the server has no pending requests. A
checkpoint is a point at which all dirty pages are written to disk. Following a
checkpoint, the checkpoint log is deleted.

A checkpoint can occur for several reasons:
¢ The server is shut down

¢ The amount of time since the last checkpoint exceeds the database
option CHECKPOINT TIME

¢ The estimated time to do a recovery operation exceeds the database
option RECOVERY TIME

¢ The server is idle long enough to write all dirty pages
¢ A transaction issues a CHECKPOINT statement

¢ The server is running without a transaction log, and a transaction is
committed

555

Database logs

Checkpoint priority

The priority of writing dirty pages to the disk increases as the time and the
amount of work since the last checkpoint grows. The priority is determined
by the following factors:

¢ Checkpoint Urgency The time that has elapsed since the last
checkpoint, as a percentage of the checkpoint time setting of the
database. The server —-gc command line option controls the maximum
desired time, in minutes, between checkpoints. You can also set the
desired time using the CHECKPOINT TIME option.

¢ Recovery Urgency A heuristic to estimate the amount of time
required to recover the database if it fails right now. The server -gu
command line option controls the maximum desired time, in minutes,
for recovery in the event of system failure. You can also set the desired
time using the RECOVERY_TIME option.

The checkpoint and recovery urgencies are important only if the server does
not have enough idle time to write dirty pages.

& For a description of the command-line options, see "The database
server" on page 12 of the book Adaptive Server Anywhere Reference
Manual.

How the database decides when to checkpoint

The idle 1/0O task

556

Optional information

You do not need to know the information in this section for most
purposes. It is provided as background information for those who wish to
understand more about how the server works.

The writing of dirty pages to disk is carried out by a task within the server
called the idle I/O task. This task shares processing time with other database
tasks, according to a priority. The lower the priority of the idle I/O task, the
less time it gets.

There is a threshold for the number of dirty pages, below which writing of
database pages does not take place.

When the database is busy, the urgency is low, and the cache only has a few
dirty pages, the idle I/0 task runs at a very low priority and no writing of
dirty pages takes place.

Chapter 20 Backup and Data Recovery

The rollback log

Once the urgency exceeds 30%, the priority of the idle I/O task is increased.
At intervals, the priority is increased again. As the urgency becomes high,
the engine shifts its primary focus to writing dirty pages until the number
gets below the threshold again. However, the engine only writes out pages
during the idle I/O task if the number of dirty pages is greater than the
threshold.

If, because of other activity in the database, the number of dirty pages falls to
zero, and if the urgency is 50% or more, then a checkpoint takes place
automatically, since it is a convenient time.

Both the checkpoint urgency and recovery urgency values increase in value
until the checkpoint occurs, at which point they drop to zero. They do not
decrease otherwise.

As changes are made to the contents of tables, a rollback log is kept for the
purpose of canceling changes. It is used to process the ROLLBACK
statement for recovering from system failure. There is a separate rollback log
for each connection. When a transaction is complete, the rollback log
contents for that connection are deleted. The rollback logs are stored in the
database file.

The transaction log

What you should
do

All changes to the database are stored in the transaction log in the order that
they occur. Inserts, updates, deletes, commits, rollbacks, and database
schema changes are all logged. The transaction log is also called a forward
log file.

The transaction log is stored in a separate file.

The transaction log is optional. If you run with no transaction log, a
checkpoint is carried out whenever a transaction is committed. The
checkpoint ensures that all committed transactions are written to the disk.
Checkpoints can be time consuming, so you should run with a transaction log
for improved performance as well as protection against media failure and
corrupted databases.

For greater protection, you can maintain two identical transaction logs in
tandem. This is called transaction log mirroring.

557

Database logs

Keep the
transaction log on
a separate device

Primary key
definitions affect
transaction log size

& For information on creating a database with a mirrored transaction log,
see "The Initialization utility" on page 84 of the book Adaptive Server
Anywhere Reference Manual. For information on changing an existing
database to use a mirrored transaction log, see "The Transaction Log utility"
on page 105 of the book Adaptive Server Anywhere Reference Manual.

The transaction log is not kept in the main database file. The filename of the
transaction log can be set when the database is initialized, or at any other
time when the server is not running, using the Log utility.

To protect against media failure, the transaction log should be written to a
different device than the database file. Some machines with two or more hard
drives have only one physical disk drive with several logical drives or
partitions. If you want protection against media failure, make sure that you
have a machine with two storage devices, or use a storage device on a
network file server.

By default, the transaction log is put on the same device and in the same
directory as the database—this does not protect against media failure.

Updates and deletes on tables that do not have a primary key or unique index
cause the entire contents of the affected rows to be entered in the transaction
log. If a primary key is defined, the engine needs only to record the primary
key column values to uniquely identify a row. If the table contains many
columns or wide columns, the transaction log pages will fill up much faster
(reducing performance) if no primary key is defined. And if dbtran is used
on the transaction log, it produces a very large command file.

This affects updates and deletes, but not inserts, which must always log all
column values.

If a primary key does not exist, the engine looks for a UNIQUE NOT NULL
index on the table (or a UNIQUE constraint). A UNIQUE index that allows
null values is not sufficient.

Performance tip

Placing the transaction log on a separate device can also result in
improved performance by eliminating the need for disk head movement
between the transaction log and the main database file.

Converting transaction logs to SQL

558

The transaction log is not human-readable. The Log Translation utility
(dbtran) can be used to convert a transaction log into a SQL command file,
which can serve as an audit trail of changes made to the database. The
following command uses dbtran to convert a transaction log:

Chapter 20 Backup and Data Recovery

Recovering
uncommitted
database changes

dbtran sample.log changes.sqgl

You can also convert a transaction log to a SQL command file from Sybase
Central.

&> For more information on the log translation utility, see "The Log
Translation utility" on page 98 of the book Adaptive Server Anywhere
Reference Manual.

The transaction log contains a record of everything, including transactions
that were never committed. By converting the transaction log to a SQL
command file and choosing the option to include uncommitted transactions
(for example, by running dbtran with the —a switch) you can recover
transactions that were accidentally canceled by a user. If the —a option is not
chosen, the log translation utility omits transactions that were rolled back.
While this is not a common procedure, it can prove useful for exceptional
cases.

559

Using a transaction log mirror

Using a transaction log mirror

Why use a
transaction log
mirror?

Where to store the
transaction log
mirror

A transaction log mirror is an identical copy of the transaction log,
maintained at the same time as the transaction log. Transaction log mirrors
are used to allow complete recovery in the case of media failure on the log
device.

Every time a database change is written to the transaction log, it is also
written to the transaction log mirror file. By default, a mirrored transaction
log is not used, but you can choose to use one when creating a database or
you can make an existing database use a mirrored transaction log.

A mirrored transaction log provides extra protection of critical data. For
example, at a consolidated database in a SQL Remote setup, replication
relies on the transaction log, and if the transaction log is damaged or
becomes corrupt, data replication can fail.

A mirrored transaction log carries out automatic validation of the transaction
log on database startup.

There is a performance penalty for using a mirrored log, as each database log
write operation must be carried out twice. The performance penalty depends
on the nature and volume of database traffic and on the physical
configuration of the database and logs.

If you are using a mirrored transaction log, and get an error while trying to
write to one of them (for example, if the disk is full), the server or server
stops. The purpose of a transaction log mirror is to ensure complete
recoverability in the case of media failure on either log device; this purpose
would be lost if the server continued with a single log.

A transaction log mirror should be kept on a separate device from the
transaction log, so that if either device fails, the other copy of the log keeps
the data safe for recovery.

Creating and dropping a transaction log mirror

560

Transaction log mirrors can be created at the following times:
¢ When you create a database, using the Initialization utility.

¢ At any other time that the database is not running, using the Transaction
Log utility (dblog).

¢ A mirror for a write file transaction log can be created along with the
write file using the write file utility (mirroring can be added later, using
the transaction log utility).

Chapter 20 Backup and Data Recovery

Notes

Creating a
database with a
transaction log
mirror

Starting a
transaction log
mirror for an
existing database

¢ You cannot choose to use a transaction log mirror without using a
transaction log.

¢ The default file extension for transaction log mirrors is .MLG.
You can choose to maintain a transaction log mirror when you create a

database. This option is available either from the CREATE DATABASE
statement, from Sybase Central or from the dbinit command-line utility.

¢ From Sybase Central, the transaction log mirror option is part of the
Create Database utility.

& For more information, see the Sybase Central online Help.

¢ The following command line (which should be entered on one line)
initializes a database named company.db, with a transaction log kept on
a different device and a mirror on a third device.

dbinit -t d:\log dir\company.log -m
e:\mirr dir\company.mlg c:\db dir\company.db

By default, a transaction log is used but no transaction log mirror is
created.

& For a full description of initialization options, see "Initialization utility
options" on page 85 of the book Adaptive Server Anywhere Reference
Manual.

You can choose to maintain a transaction log mirror for an existing database
any time the database is not running, by using the transaction log utility. This
option is available from either Sybase Central or the dblog command-line
utility.

¢ From Sybase Central, the transaction log mirror option is part of the
Change Log File utility.

& For more information, see the Sybase Central online Help.

¢ The following command line starts a transaction log mirror for a
database named company.db, which is already using one transaction log.

dblog -m e:\mirr dir\company.mlg
c:\db_dir\company.db

¢ The following command line stops the company.db database from using
a transaction log mirror, but continues maintaining a transaction log:

dblog -r c:\db dir\company.db

¢ The following command line stops the company.db database from using
a transaction log mirror or a transaction log:

dblog -n c:\db dir\company.db

561

Using a transaction log mirror

Starting a
transaction log
mirror for a write
file

With the transaction log utility you can also alter the name or directory of the
transaction log and mirror.

& For a full description of dblog command-line options, see "Transaction
log utility options" on page 106 of the book Adaptive Server Anywhere
Reference Manual.

You can choose to maintain a transaction log mirror for a write file when you
create the write file using the Write File utility, or at a later time using the
Transaction Log utility.

The option to create a transaction log mirror when creating a write file is
available from the CREATE WRITEFILE statement, from Sybase
Central, or from the dbwrite command-line utility.

¢ From Sybase Central, the transaction log mirror option is part of the
Create Write File utility.

& For more information, see the Sybase Central online Help.

¢ The following command line (which should be entered on one line)
creates a write file for a database named company.db, which is already
using a transaction log. The write file has default extension .WRT, the
write file transaction log has the default extension .WLG, and the write
file transaction log mirror has the default extension .WML.

dbwrite -c -t d:\log dir\company.wlg -m
c:\mirr dir\company.wml c:\db dir\company.db
c:\db_dir\company.wrt

& For a full description of dbwrite command-line options, see "Write file
utility options" on page 122 of the book Adaptive Server Anywhere
Reference Manual.

You can change the transaction log and log mirror settings of a write file
using the transaction log utility, in exactly the same way as described above
for a standard database file.

Erasing transaction log mirrors

562

You can erase transaction log mirrors using the Erase utility in Sybase
Central or the dberase command-line utility.

The Erase utility is available in Sybase Central as the Erase Database utility
or from the command line as the dberase utility.

< To delete a mirror log file only:

¢ Enter the following command:

dberase e:\mirr dir\company.wml

Chapter 20 Backup and Data Recovery

% To delete a transaction log file but not its mirror:
¢ Enter the following command:

dberase e:\log dir\company.log

Validating the transaction log on database startup

When a database that is using a mirror starts up, the server carries out a
series of checks and automatic recovery operations to confirm that the
transaction log and its mirror are not corrupted, and to correct some problems
if corruption is detected.

On startup, the server checks that the transaction log and its mirror are
identical by carrying out a full comparison of the two files; if they are
identical, the database starts as usual. The comparison of log and mirror adds
to database startup time.

If the database stopped because of a system failure, it is possible that some
operations were written into the transaction log but not into the mirror. If the
server finds that the transaction log and the mirror are identical up to the end
of the shorter of the two files, the remainder of the longer file is copied into
the shorter file. This produces an identical log and mirror. After this
automatic recovery step, the server starts as usual.

If the check finds that the log and the mirror are different in the body of the
shorter of the two, one of the two files is corrupt. In this case, the database
does not start, and an error message is generated saying that the transaction
log or its mirror is invalid.

Recovering from a corrupt transaction log or mirror

When a server detects a difference between the transaction log and its mirror
in the body of the file, the server does not start. In this case, you must take
the following steps before starting the server:

1 Identify which of the two files is corrupt.

2 Copy the correct file over the corrupt file so that you have two identical
files again.

3 Restart the server.

When a server detects a difference between the transaction log and its mirror,
it has no means of knowing which is intact and which is corrupt.

563

Using a transaction log mirror

564

< To identify which file is corrupt using the database utilities:

1

Make a copy of the backup of your database file taken at the time the
transaction log was started.

Run the log translation utility on the transaction log and on its mirror, to
see which one generates an error message. (The log translation utility is
accessible from Sybase Central or as the dbtran command-line utility.)

The following command-line translates a transaction log named
asademo.log, placing the translated output into asademo.sql:

dbtran asademo.log

The translation utility properly translates the intact file, and will report
an error while translating the corrupt file.

If the dbtran test does not identify the incorrect log, you may want to
compare the two translated logs (SQL files) to see which one contains an
error, or use a disk utility to inspect the two files and detect which is
corrupt.

Once you have identified the corrupt file, you can copy the intact log file
over the corrupt file, and restart the production server.

Chapter 20 Backup and Data Recovery

Backing up your database

Online backups

Offline backups

Client-side only

This section describes how to back up your database using the Backup
utility. You can also use the BACKUP statement, which provides server-
side backup direct to tape. The BACKUP statement is a new feature in
version 6.0.2.

& For more information, see "BACKUP statement" on page 359 of the
book Adaptive Server Anywhere Reference Manual.

There are two kinds of backups:

¢ A full backup makes a copy of the database file and (optionally) a copy
of the transaction log.

¢ Anincremental backup makes a copy of the transaction log.

Both full and incremental backups can be carried out online (while the
database is running) or offline.

Backups can be made without stopping the server. Using the backup utility
on a running database is equivalent to copying the database files when the
database is not running. In other words, it provides a snapshot of a consistent
database, even though the database is being modified by other users.

& For a full description of the online backup facility, see "The Backup
utility" on page 67 of the book Adaptive Server Anywhere Reference Manual.

The server should not be running when you do offline backups by copying
database files. Moreover, it should be taken down cleanly.

If you are running a multi-user database, you can use the database server -t
command line option to shut down at a specified time. This way, you can
have your offline backup procedure start late at night automatically.

Performing a full backup

Check the validity
of the database

Before doing a full backup, it is a good idea to verify that the database file is
not corrupt. File system errors, or errors in any software that you are running
on your machine, could corrupt a small portion of the database file without
you ever knowing.

With the database you want to check running on a server, execute the
Validation utility. For example, you could run the dbvalid command-line
utility:

565

Backing up your database

Back up the
database files

Transaction log
options

566

dbvalid -c "uid=dba;pwd=sgl"

You can also run the validation utility from Sybase Central or Interactive
SQL.

The validation utility scans every record in every table and looks up each
record in each index on the table. If the database file is corrupt, you need to
recover from your previous backup.

& For more information on running the Validation utility, see "The
Validation utility" on page 119 of the book Adaptive Server Anywhere
Reference Manual.

A full backup is completed offline by copying the database file(s) and
optionally the transaction log to the backup media. A full backup should be
completed according to a regular schedule that you follow carefully. Once
per week works well for many situations.

To do a backup while the server is running, you use the Backup utility. You
require DBA authority in order to run the backup utility on a database. The
backup utility can be run from Sybase Central, Interactive SQL, or using the
dbbackup command-line utility.

& For more information, see "The Backup utility" on page 67 of the book
Adaptive Server Anywhere Reference Manual.

For example, you could carry out a full backup of the sample database, held
in path\asademo.db, to a directory e:\backup, using user ID DBA, and
password SQL.

To complete a full backup:
¢ Enter the following command line:

dbbackup -c "uid=dba;pwd=sql;dbf=path\asademo.db"
e:\backup

where path is the name of your Adaptive Server Anywhere installation
directory.

As neither —-d nor -t is specified, both the database files and
transaction log are backed up.

Whenever the database file is backed up, the transaction log can be archived
and/or deleted (with the Erase utility). If the backup can be restored, you will
never need the transaction log. Archiving transaction logs provides you with
a history of all changes to your database and also provides protection if you
are unable to restore the most recent full backup. The backup utility has
command line options to delete and restart the transaction log (dbbackup -x)
or back up and restart the transaction log (dbbackup -r) while the server is
running.

Chapter 20 Backup and Data Recovery

Keep several full
backups

You should keep several previous full backups. If you back up on top of the
previous backup, and you get a media failure in the middle of the backup,
you are left with no backup at all. You should also keep some of your full
backups offsite to protect against fire, flood, earthquake, theft, or vandalism.

If your transaction log tends to grow to an unmanageable size between full
backups, you should consider getting a larger storage device or doing full
backups more frequently.

Performing an incremental backup

Daily backups of
the transaction log

An incremental backup is a copy of the transaction log. The transaction log
has all changes since the most recent full backup.

You can carry out an offline incremental backup by making a copy of the
transaction log file. Alternatively, you can carry out an online incremental
backup by running the backup utility and backing up just the transaction log.
You can do this from the command line using the dbbackup utility with the -
t switch, or you can use the backup utility from Sybase Central or
Interactive SQL. You require DBA authority in order to run the backup
utility on a database file.

For example, you could carry out an incremental backup of the sample
database, held in path\asademo.db, to a directory e:\backup, with user ID
DBA, and password SQL.

To complete an incremental backup:
¢ Enter the following command line:

dbbackup -c "uid=dba;pwd=sql; dbf=path\asademo.db" -
t e:\backup

where path is the name of your Adaptive Server Anywhere installation
directory.

If you are running a server that holds critical information, you should back
up the transaction log daily. This is particularly important if you have the
transaction log on the same device as the database file. If you get a media
failure, you could lose both files. By doing daily backups of the transaction
log, you will never lose more than one day of changes.

Daily backups of the transaction log are also recommended if the transaction
log tends to grow to an unmanageable size between full backups and you do
not want to get a larger storage device or do more frequent full backups. In
this case, you can choose to archive and delete the transaction log.

567

Backing up your database

568

There is a drawback to deleting the transaction log after a daily backup. If
you have media failure on the database file, there will be several transaction
logs since the last full backup. Each of the transaction logs needs to be
applied in sequence to bring the database up to date.

& For a description of how to do this, see "Media failure on the database
file" on page 572.

Chapter 20 Backup and Data Recovery

Recovery from system failure

After a power failure or other system failure you should run the system disk
verification program:

¢ For NetWare: Load the Novell VREPAIR NLM to repair any volume that
will not mount due to errors.

¢ For UNIX: Use chkfsys

¢ For Windows 3.x, Windows 95, and Windows NT, run the console
command:

chkdsk /f

This fixes simple errors in the file system structure that might have been
caused by the system failure. This should be done before running any other
software.

After a system error occurs, the server recovers automatically when you
restart the database. The results of each transaction committed before the
system error are intact. All changes by transactions that were not committed
before the system failure are canceled. It is possible to recover uncommitted
changes manually (see "Recovering uncommitted changes" on page 574).

Steps to recover from a system failure

Adaptive Server Anywhere automatically takes three steps to recover from a
system failure:

1 Restore all pages to the most recent checkpoint, using the checkpoint
log.

2 Apply any changes made between the checkpoint and the system failure.
These changes are in the transaction log.

3 Roll back all uncommitted transactions, using the rollback logs. There is
a separate rollback log for every connection.

Frequent checkpoints make recovery quicker, but also create work for the
server writing out dirty pages.

There are two database options that allow you to control the frequency of
checkpoints. CHECKPOINT TIME controls the maximum desired time
between checkpoints and RECOVERY TIME controls the maximum desired
time for recovery in the event of system failure. The RECOVERY_ TIME
specifies an estimate for steps 1 and 2 only.

569

Recovery from system failure

& For more information on these options, see "General database options"
on page 132 of the book Adaptive Server Anywhere Reference Manual.

Step 3 may take a long time if there are long uncommitted transactions that
have already done a great deal of work since the last checkpoint.

The transaction log is optional. When you are running with no transaction
log, a checkpoint is done whenever any transaction is committed. In the
event of system failure, the server uses steps 1 and 3 from above to recover a
database file. Step 2 is not necessary because there will be no committed
transactions since the last checkpoint. This is, however, usually a slower way
to run because of the frequent checkpoints.

Using a live backup for machine redundancy

You carry out a live backup of the transaction log by using the dbbackup
command line utility with the -1 command-line option. Live backups
provide a redundant copy of the transaction log that is available for restart of
your system on a secondary machine in case the machine running the
database server becomes unusable.

A live backup runs continuously, terminating only if the server shuts down.
If you suffer a system failure, the backed up transaction log can be used for a
rapid restart of the system.

+ To use a live backup:

1 Periodically, carry out a backup of the database file to a secondary
machine.

2 Run a live backup of the transaction log to the secondary machine.

3 If the primary machine becomes unusable, you can restart your database
using the secondary machine. The database file and the transaction log
hold the information needed to restart.

To restart, you must first start the database server with the apply
transaction log (—a) switch, to apply the transaction log and bring the
database up to date:

dbeng6 asademo.db -a asademo.log

The database server shuts down automatically once the transaction log is
applied. You can then start the database in the normal way. The server
will come up normally, and any new activity will be appended to the
current transaction log.

570

Chapter 20 Backup and Data Recovery

Live backups and
transaction log
mirrors

Live backups and
regular backups

There are several differences between using a live backup and using a
transaction log mirror:

¢

In general, a live backup is made to a different machine Running a
transaction log mirror on a separate machine can lead to performance
problems, and will stop the database server if the connection between
the machines goes down.

By running the backup utility on a separate machine, the database server
does not do the writing of the backed up log file. Therefore, performance
impact is less.

A live backup provides protection against a machine becoming
unusable Even if a transaction log mirror is kept on a separate device,
it does not provide immediate recovery if the whole machine becomes
unusable.

A live backup may lag behind the database server A mirrored
transaction log contains all the information required for complete
recovery of committed transactions. Depending on the load that the
server is processing, the live backup may lag behind and may not
contain all the committed transactions.

The live backup of the transaction log is always the same length or shorter
than the active transaction log. When a live backup is running, and another
backup restarts the transaction log (dbbackup -r or dbbackup -x), the live
backup automatically truncates the live backup log and restarts the live
backup at the beginning of the new transaction log.

571

Recovery from media failure

Recovery from media failure

If you have backups, you can always recover all transactions that were
committed before the media failure. Recovery from media failure requires
you to keep the transaction log on a separate device from the database file.
The information in the two files is redundant. Regular backups of the
database file and the transaction log reduce the time required to recover from
media failures.

The first step in recovering from a media failure is to clean up, reformat, or
replace the device that failed.

The steps to take in recovery depend on whether the media failure is on the
device holding your database file or on the device holding your transaction
log.

Media failure on the database file

If your transaction log is still usable, but you have lost your database file, the
recovery process depends on whether you delete the transaction log on
incremental backup.

If you have a single If you have not deleted or restarted the transaction log since the last full
transaction log backup, the transaction log contains everything since the last backup.
Recovery involves four steps:

1 Make a backup of the transaction log immediately. The database file is
gone, and the only record of the changes is in the transaction log.

2 Restore the most recent full backup (the database file).

3 Use the server with the apply transaction log (-a) switch, to apply the
transaction log and bring the database up to date:

dbeng6 asademo.db -a asademo.log

4 Start the database in the normal way. The server will come up normally,
and any new activity will be appended to the current transaction log.

If you have multiple If you have archived and deleted the transaction log since the last full
transaction logs backup, each transaction log since the full backup needs to be applied in
sequence to bring the database up to date.

% To restart from a backup, with multiple transaction logs:

1 Make a backup of all transaction logs immediately. The database file is
gone, and the only record of the changes is in the transaction logs.

2 Restore the most recent full backup (the database file).
572

Chapter 20 Backup and Data Recovery

Starting with the first transaction log after the full backup, apply each
archived transaction log by starting the server with the Apply Transaction
Log (-a) switch. For example, if the last full backup was on Sunday and
the database file is lost during the day on Thursday.

dbeng6 asademo.db -a sun.log
dbeng6 asademo.db -a mon.log
dbeng6é asademo.db -a tue.log
dbeng6 asademo.db -a wed.log
dbeng6 asademo.db -a sample.log

Do not apply the transaction logs in the wrong order or skip a
transaction log in the sequence.

Start the database in the normal way. The server will come up normally,
and any new activity will be appended to the current transaction log.

Media failure on the transaction log

Consequences of
media failure on
the transaction log

If your database file is still usable but you have lost your transaction log, the
recovery process is as follows:

1

Make a backup of the database file immediately. The transaction log is
gone, and the only record of the changes is in the database file.

Restart the database with the - £ switch.
dbeng6 asademo.db -f

Without the switch, the server will complain about the lack of a
transaction log. With the switch, the server will restore the database to
the most recent checkpoint and then roll back any transactions that were
not committed at the time of the checkpoint. A new transaction log will
be created.

Media failure on the transaction log can have more serious consequences
than media failure on the database file. If hen you lose the transaction log, all
changes since the last checkpoint are lost. This will be a problem if you have
a system failure and a media failure at the same time (such as if a power
failure causes a head crash that damages the disk). Frequent checkpoints
minimize the potential for lost data, but also create work for the server
writing out dirty pages.

573

Recovery from media failure

For running high-volume or extremely critical applications, you can protect
against media failure on the transaction log by mirroring the transaction log
or by using a special-purpose device, such as a storage device that mirrors
the transaction log automatically. If you are using the server for NetWare,
NetWare allows you to automatically mirror a NetWare volume.

& For information on using a transaction log mirror, see "Using a
transaction log mirror" on page 560.

Recovering uncommitted changes

574

The transaction log keeps a record of all changes made to the database. Even
uncommitted changes are stored in the transaction log. The dbtran utility has
a command line option (-a) to translate transactions that were not
committed. With this option, you can recover changes that were not
committed by editing the SQL command file and picking out changes that
you want to recover.

The transaction log may or may not contain changes right up to the point
where a failure occurred. It certainly contains any changes that were made
before the most recent COMMIT by any transaction.

