CHAPTER 21

Managing User IDs and Permissions

About this chapter

Contents

Each user of a database must be assigned a user ID: the name they type when
connecting to the database. This chapter describes how to manage user IDs.

Topic Page
Database permissions overview 576
Managing individual user IDs and permissions 580
Managing groups 586
Database object names and prefixes 591
Using views and procedures for extra security 593
How user permissions are assessed 596
Managing the resources connections use 597
Users and permissions in the system tables 598

575

Database permissions overview

Database permissions overview

Setting up
individual user IDs

Proper management of user IDs and permissions lets users of a database
carry out their jobs effectively, while maintaining the security and privacy of
information within the database.

You use SQL statements for assigning user IDs to new users of a database,
granting and revoking permissions for database users, and finding out the
current permissions of users.

Database permissions are assigned to user IDs. Throughout this chapter, the
term user is used as a synonym for user ID. You should remember, however,
that permissions are granted and revoked for each user ID.

Even if there are no security concerns regarding a multi-user database, there
are good reasons for setting up an individual user ID for each user. The
administrative overhead is very low if a group with the appropriate
permissions is set up. Groups of users are discussed in this chapter.

Among the reasons for using individual user IDs are the following:

¢ The log translation utility can selectively extract the changes made by
individual users from a transaction log. This is very useful when
troubleshooting or piecing together what happened if data is incorrect.

¢ The network server screen and the listing of connections in Sybase
Central are both much more useful with individual user IDs, as you can
tell which connections are which users.

¢ Row locking messages (with the BLOCKING option set to OFF) are
more informative.

DBA authority overview

Users with DBA
authority

576

When a database is created, a single usable user ID is created. This first user
ID is DBA, and the password is initially set to SQL. The DBA user ID is
automatically given DBA permissions, also called DBA authority, within the
database. This level of permission enables the DBA user ID to carry out any
activity in the database: create tables, change table structures, create new
user IDs, revoke permissions from users, and so on.

A user with DBA authority is referred to as the database administrator or
database owner. In this chapter, frequent reference is made to the database
administrator, or DBA. This is shorthand for any user or users with DBA
authority.

Chapter 21 Managing User IDs and Permissions

Adding new users

Although DBA authority may be granted or transferred to other user IDs, in
this chapter it is assumed that the DBA user ID is the database administrator,
and the abbreviation DBA is used to mean both the DBA user ID and any user
ID with DBA authority.

The DBA has the authority to add new users to the database. As users are
added, they are also granted permissions to carry out tasks on the database.
Some users may need to simply look at the database information using SQL
queries, others may need to add information to the database, and others may
need to modify the structure of the database itself. Although some of the
responsibilities of the DBA may be handed over to other user IDs, the DBA
is responsible for the overall management of the database by virtue of the
DBA authority.

The DBA has authority to create database objects and assign ownership of
these objects to other user IDs.

RESOURCE authority overview

RESOURCE authority is the permission to create database objects, such as
tables, views, stored procedures, and triggers. RESOURCE authority may be
granted only by the DBA.

In order to create a trigger, a user needs ALTER permissions on the table to
which the trigger applies, in addition to RESOURCE authority.

Ownership permissions overview

Owners

The creator of a database object becomes the owner of that object.
Ownership of a database object carries with it permissions to carry out
actions on that object. These are not assigned to users in the same way that
other permissions in this chapter are assigned.

A user who creates a new object within the database is called the owner of
that object, and automatically has permission to carry out any operation on
that object. The owner of a table may modify the structure of that table, for
instance, or may grant permissions to other database users to update the
information within the table.

The DBA has permission to modify any component within the database, and
so could delete a table created by another user, for instance. The DBA has all
the permissions regarding database objects that the owners of each object
have.

577

Database permissions overview

The DBA is also able to create database objects for other users, and in this
case the owner of an object is not the user ID that executed the CREATE
statement. A use for this ability is discussed in "Groups without passwords"
on page 589. Despite this possibility, this chapter refers interchangeably to
the owner and creator of database objects.

Table and views permissions overview

There are several distinct permissions that may be granted to user IDs
concerning tables and views:

Permission Description

ALTER Permission to alter the structure of a table or create a trigger on
a table

DELETE Permission to delete rows from a table or view

INSERT Permission to insert rows into a table or view

REFERENCES | Permission to create indexes on a table, and to create foreign
keys that reference a table

SELECT Permission to look at information in a table or view

UPDATE Permission to update rows in a table or view. This may be
granted on a set of columns in a table only

ALL All the above permissions

Group permissions overview

Example

578

Setting permissions individually for each user of a database can be a time-
consuming and error-prone process. For most databases, permission
management based on groups, rather than on individual user IDs, is a much
more efficient approach.

You can assign permissions to a group in exactly the same way as to an
individual user. You can then assign membership in appropriate groups to
each new user of the database, and they gain a set of permissions by virtue of
their group membership.

For example, you may create groups for different departments in a company
database (sales, marketing, and so on) and assign these groups permissions.
Each salesperson is made a member of the sales group, and automatically
gains access to the appropriate areas of the database.

Chapter 21 Managing User IDs and Permissions

Any user ID can be a member of several groups, and inherits all permissions
from each of the groups.

579

Managing individual user IDs and permissions

Managing individual user IDs and permissions

This section describes how to create new users and grant permissions to
them. For most databases, the bulk of permission management should be
carried out using groups, rather than by assigning permissions to individual
users one at a time. However, as a group is simply a user ID with special
properties, you should read and understand this section before moving on to
the discussion of managing groups.

Creating new users

Initial permissions
for new users

Creating users in
Sybase Central

580

.
o

A new user is added to a database by the DBA using the GRANT
CONNECT statement. For example:

To add a new user to a database, with user ID M_Haneef and
password welcome:

1 From Interactive SQL, connect to the database as a user with DBA
authority.

2 Issue the SQL statement:

GRANT CONNECT TO M Haneef
IDENTIFIED BY welcome

Only the DBA has the authority to add new users to a database.

By default, new users are not assigned any permissions beyond connecting to
the database and viewing the system tables. In order to access tables in the
database, they need to be assigned permissions.

The DBA can set the permissions granted automatically to new users by
assigning permissions to the special PUBLIC user group, as discussed in
"Special groups" on page 589.

To create a user in Sybase Central:

1 Connect to the database.

2 Click the Users and Groups folder for that database.

3 Double-click Add User. A Wizard is displayed, which leads you through
the process.

& For more information, see the Sybase Central online Help.

Chapter 21 Managing User IDs and Permissions

Changing a password

Changing a user's You can change your password, or that of another user if you have DBA
password authority, using the GRANT statement. For example, the following
command changes the password for user ID M_Haneef to new_password:

GRANT CONNECT TO M Haneef
IDENTIFIED BY new password

Changing the DBA The default password for the DBA user ID for all databases is SQL. You

password should change this password to prevent unauthorized access to your
database. The following command changes the password for user ID DBA to
new_password:

GRANT CONNECT TO DBA
IDENTIFIED BY new password

Granting DBA and RESOURCE authority

DBA and RESOURCE authority are granted in the same manner.

% To grant RESOURCE permissions to a user ID:
1 Connect to the database as a user with DBA authority.

2 Type and execute the SQL statement:

GRANT RESOURCE TO userid

For DBA authority, the appropriate SQL statement is:
GRANT DBA TO userid

Notes ¢ Only the DBA may grant DBA or RESOURCE authority to database
users.

¢ DBA authority is very powerful, granting the ability to carry out any
action on the database and access to all the information in the database.
It is generally inadvisable to grant DBA authority to more than a very
few people.

¢ You should consider giving users with DBA authority two user IDs, one
with DBA authority and one without, so that they connect as DBA only
when necessary.

¢ RESOURCE authority allows the user to create new database objects,
such as tables, views, indexes, procedures, or triggers.

581

Managing individual user IDs and permissions

Granting permissions on tables and views

Combinations of
permissions

Example 1

Example 2

582

You can assign a set of permissions on individual tables and views. Users
can be granted combinations of these permissions to define their access to a
table or view.

¢ The ALTER permission allows a user to alter the structure of a table or
to create triggers on a table. The REFERENCES permission allows a
user to create indexes on a table, and to create foreign keys. These
permissions grant the authority to modify the database schema, and so
will not be assigned to most users. These permissions do not apply to
views.

¢ The DELETE, INSERT, and UPDATE permissions grant the authority
to modify the data in a table or view. Of these, the UPDATE permission
may be restricted to a set of columns in the table or view.

¢ The SELECT permission grants authority to look at data in a table or
view, but does not give permission to alter it.

¢ ALL permission grants all the above permissions.

All table and view permissions are granted in a very similar fashion. You can
grant permission to M_Haneef to delete rows from the table named
sample_table as follows:

1 Connect to the database as a user with DBA authority, or as the owner of
sample_table.

2 Type and execute the SQL statement:

GRANT DELETE
ON sample table
TO M Haneef

You can grant permission to M_Haneef to update the column_1 and
column_2 columns only in the table named sample_table as follows:

1 Connect to the database as a user with DBA authority, or as the owner of
sample_table.

2 Type and execute the following SQL statement:

GRANT UPDATE column 1, column 2
ON sample table
TO M Haneef

One limitation of table and view permissions is that they apply to all the data
in a table or view (except for the UPDATE permission which may be
restricted). Finer tuning of user permissions can be accomplished by creating
procedures that carry out actions on tables, and then granting users the
permission to execute the procedure.

Chapter 21 Managing User IDs and Permissions

Granting user
permissions on
tables in Sybase
Central

One way to grant a user permissions on a table in Sybase Central is as
follows:

1 Connect to the database.

2 Double-click the Tables folder for that database, to display the tables in
the left panel.

3 Click the Users and Groups folder, and locate the user you want to grant
permissions to.

4 Drag the user to the table for which you want to grant permissions.

& For more information, see the Sybase Central online Help.

Granting users the right to grant permissions

Example

Each of the table and view permissions described in "Granting permissions
on tables and views" on page 582 can be assigned WITH GRANT OPTION.
This option gives the right to pass on the permission to other users. This
feature is discussed in the context of groups in section "Permissions of
groups" on page 588.

You can grant permission to M_Haneef to delete rows from the table named
sample_table, and the right to pass on this permission to other users, as
follows:

1 Connect to the database as a user with DBA authority, or as the owner of
sample_table:

2 Type and execute the SQL statement:

GRANT DELETE ON sample table
TO M Haneef
WITH GRANT OPTION

Granting permissions on procedures

There is only one permission that may be granted on a procedure, and that is
the EXECUTE permission to execute (or CALL) the procedure.

Permission to execute stored procedures may be granted by the DBA or by
the owner of the procedure (the user ID that created the procedure).

The method for granting permissions to execute a procedure is similar to that
for granting permissions on tables and views, discussed in "Granting
permissions on tables and views" on page 582.

583

Managing individual user IDs and permissions

Example

Execution
permissions of
procedures

Granting user
permissions on
procedures in
Sybase Central

You can grant M_Haneef permission to execute a procedure named
my_procedure, as follows:

1 Connect to the database as a user with DBA authority or as owner of
my_procedure procedure.

2 Execute the SQL statement:

GRANT EXECUTE
ON my procedure
TO M Haneef

Procedures execute with the permissions of their owner. Any procedure that
updates information on a table will execute successfully only if the owner of
the procedure has UPDATE permissions on the table.

As long as the procedure owner does have the proper permissions, the
procedure will execute successfully when called by any user assigned
permission to execute it, whether or not they have permissions on the
underlying table. You can use procedures to allow users to carry out well-
defined activities on a table, without having any general permissions on the
table.

One way to grant a user permissions on a procedure in Sybase Central is as
follows:

1 Connect to the database.

2 Click the Users and Groups folder, and locate the user you want to grant
permissions to.

3 Right-click the user, and select Copy from the popup menu.

4 Locate the procedure you want to allow the user to execute, in the Stored
Procedures folder.

5 Click the procedure, and choose Edit>Paste from the main menu to
grant permissions.

& For more information, see the Sybase Central online Help.

Execution permissions of triggers

584

Triggers are executed by the server in response to a user action; no
permissions are required for triggers to be executed. When a trigger executes,
it does so with the permissions of the creator of the table with which they are
associated.

& For more information on trigger permissions, see "Trigger execution
permissions" on page 235.

Chapter 21 Managing User IDs and Permissions

Revoking user permissions

Any user's permissions are a combination of those that have been granted
and those that have been revoked. By revoking and granting permissions,
you can manage the pattern of user permissions on a database.

The REVOKE statement is the exact converse of the GRANT statement. To
disallow M_Haneef from executing my_procedure, the command is:

REVOKE EXECUTE
ON my procedure
FROM M Haneef

This command must be issued by the DBA or by the owner of the procedure.

Permission to delete rows from sample_table may be revoked by issuing the
command:

REVOKE DELETE
ON sample table
FROM M Haneef

585

Managing groups

Managing groups

DBA, RESOURCE,
and GROUP
permissions

Creating groups

586

Once you understand how to manage permissions for individual users (as
described in the previous section) working with groups is straightforward. A
group is identified by a user ID, just like a single user, but this user ID is
granted the permission to have members.

When permissions on tables, views, and procedures are granted to or revoked
from a group, all members of the group inherit those changes. The DBA,
RESOURCE, and GROUP permissions are not inherited: they must be
assigned individually to each individual user ID requiring them.

A group is simply a user ID with special permissions. Granting permissions
to a group and revoking permissions from a group are done in exactly the
same manner as any other user, using the commands described in "Managing
individual user IDs and permissions" on page 580.

A group can also be a member of a group. A hierarchy of groups may be
constructed, each inheriting permissions from its parent group.

A user ID may be granted membership in more than one group, so the user-
to-group relationship is many-to-many.

The ability to create a group without a password enables you to prevent
anybody from signing on using the group user ID. This security feature is
discussed in "Groups without passwords" on page 589.

To create a group with a name and password:
1 Connect to the database as a user with DBA authority.

2 Create the group's user ID just as you would any other user ID, using the
following SQL statement:

GRANT CONNECT
TO personnel
IDENTIFIED BY group password

3 Give the personnel user ID the permission to have members, with the
following SQL statement:

GRANT GROUP TO personnel

The GROUP permission, which gives the user ID the ability to have
members, is not inherited by members of a group. If this were not the case,
every user ID would automatically be a group as a consequence of its
membership in the special PUBLIC group.

Chapter 21 Managing User IDs and Permissions

Creating groups in

Sybase Central

1
2
3

% To create a group in Sybase Central:

*

Connect to the database.
Click the Users and Groups folder for that database.

Double-click Add Group. A Wizard is displayed, which leads you
through the process.

& For more information, see the Sybase Central online Help.

Granting group membership to users

Adding users to
groups in Sybase
Central

®,
°n

Making a user a member of a group is done with the GRANT statement.
Membership in a group can be granted only by the DBA. You can grant user
M_Haneef membership in a group personnel as follows:

1

Connect to the database as a user with DBA authority, or as the group
user ID personnel.

Grant membership in the group to M_Haneef with the following SQL
statement:

GRANT MEMBERSHIP
IN GROUP personnel
TO M Haneef

When a user is assigned membership in a group, they inherit all the
permissions on tables, views, and procedures associated with that group.

To add a user to a group in Sybase Central:

1
2

Connect to the database.

Double-click the Users and Groups folder for that database, to open it.
Groups are displayed in the left panel, and both users and groups are
displayed in the right panel.

In the right panel, select the users you want to add to a group, and drag
them to the group.

& For more information, see the Sybase Central online Help.

587

Managing groups

Permissions of groups

Notes

Permissions may be granted to groups in exactly the same way as to any
other user ID. Permissions on tables, views, and procedures are inherited by
members of the group, including other groups and their members. There are
some complexities to group permissions that database administrators need to
keep in mind.

The DBA, RESOURCE, and GROUP permissions are not inherited by the
members of a group. Even if the personnel user ID is granted RESOURCE
permissions, the members of personnel do not have RESOURCE
permissions.

Ownership of database objects is associated with a single user ID and is not
inherited by group members. If the user ID personnel creates a table, then
the personnel user ID is the owner of that table and has the authority to
make any changes to the table, as well as to grant privileges concerning the
table to other users. Other user IDs who are members of personnel are not
the owners of this table, and do not have these rights. If, however, SELECT
authority is explicitly granted to the personnel user ID by the DBA or by the
personnel user ID itself, all group members do have select access to the
table. In other words, only granted permissions are inherited.

Referring to tables owned by groups

Creating a group to
own the tables

588

Groups are used for finding tables and procedures in the database. For
example, the query

SELECT * FROM SYSGROUPS

will always find the table SYSGROUPS, because all users belong to the
PUBLIC group, and PUBLIC belongs to the SYS group which owns the
SYSGROUPS table. (The SYSGROUPS table contains a list of group name,
member_name pairs representing the group memberships in your database.)

If a table named employees is owned by the user ID personnel, and if
M_Haneef is a member of the personnel group, then M_Haneef can refer to
the employees table simply as employees in SQL statements. Users who are
not members of the personnel group need to use the qualified name
personnel.employees.

It is advisable that you create a group whose only purpose is to own the
tables. Do not grant any permissions to this group, but make all users
members of the group. This allows everyone to access the tables without
qualifying names. You can then create permission groups and grant users
membership in these permission groups as warranted. For an example of this,
see the section "Database object names and prefixes" on page 591.

Chapter 21 Managing User IDs and Permissions

Groups without passwords

Special groups

The SYS group

Users connected to a group's user ID have certain permissions. This user ID
can grant and revoke membership in the group. Also, this user would have
ownership permissions over any tables in the database created in the name of
the group's user ID.

It is possible to set up a database so that all handling of groups and their
database objects is done by the DBA, rather than permitting other user IDs to
make changes to group membership.

This is done by disallowing connection as the group's user ID when creating
the group. To do this, the GRANT CONNECT statement is typed without a
password. Thus:

GRANT CONNECT
TO personnel

creates a user ID personnel. This user ID can be granted group permissions,
and other user IDs can be granted membership in the group, inheriting any
permissions that have been given to personnel. However, nobody can
connect to the database using the personnel user ID, because it has no valid
password.

The user ID personnel can be an owner of database objects, even though no
user can connect to the database using this user ID. The CREATE TABLE
statement, CREATE PROCEDURE statement, and CREATE VIEW
statement all allow the owner of the object to be specified as a user other
than that executing the statement. This assignment of ownership can be
carried out only by the DBA.

When a database is created, two groups are also automatically created. These
are SYS and PUBLIC. Neither of these groups has passwords, so it is not
possible to connect to the database as either SYS or as PUBLIC. The two
groups serve important functions in the database.

The SYS group is owner of the system tables and views for the database,
which contain the full description of database structure, including all
database objects and all user IDs.

& For a description of the system tables and views, together with a
description of access to the tables, see the chapters "System Tables" on page
771 of the book Adaptive Server Anywhere Reference Manual, and also
"System Views" on page 827 of the book Adaptive Server Anywhere
Reference Manual.

589

Managing groups

The PUBLIC group

590

When a database is created, the PUBLIC group is automatically created, with
CONNECT permissions to the database and SELECT permission on the
system tables.

The PUBLIC group is a member of the SYS group, and has read access for
some of the system tables and views, so that any user of the database can
find out information about the database schema. If you wish to restrict this
access, you can REVOKE PUBLIC's membership in the SYS group.

Any new user ID is automatically a member of the PUBLIC group and
inherits any permissions specifically granted to that group by the DBA. You
can also REVOKE membership in PUBLIC for users if you wish.

Chapter 21 Managing User IDs and Permissions

Database object names and prefixes

Example

The name of every database object is an identifier. The rules for valid
identifiers are described in "Statement elements" on page 180 of the book
Adaptive Server Anywhere Reference Manual.

In queries and sample SQL statements throughout this guide, database
objects from the sample database are generally referred to using their simple
name. For example:

SELECT *
FROM employee

Tables, procedures, and views all have an owner. The owner of the tables in
the sample database is the user ID DBA. In some circumstances, you must
prefix the object name with the owner user ID, as in the following statement.

SELECT *
FROM "DBA".employee

The employee table reference is said to be qualified. In other circumstances
it is sufficient to give the object name. This section describes when you need
to use the owner prefix to identify tables, view and procedures, and when
you do not.

When referring to a database object, a prefix is required unless:
¢ You are the owner of the database object.

¢ The database object is owned by a group ID of which you are a member.

Consider the following example of a corporate database. All the tables are
created by the user ID company. This user ID is used by the database
administrator and is therefore given DBA authority.

GRANT CONNECT TO company
IDENTIFIED BY secret;
GRANT DBA TO company;

The tables in the database are created by the company user ID.

CONNECT USER company IDENTIFIED BY secret;
CREATE TABLE company.Customers (...);
CREATE TABLE company.Products (...);
CREATE TABLE company.Orders (...);
CREATE TABLE company.Invoices (...);
CREATE TABLE company.Employees (...);
CREATE TABLE company.Salaries (...);

Not everybody in the company should have access to all information.
Consider two user IDs in the sales department, Joe and Sally, who should
have access to the Customers, Products and Orders tables. To do this, you
create a Sales group.

591

Database object names and prefixes

Note

592

GRANT CONNECT TO Sally IDENTIFIED BY xxxxX;
GRANT CONNECT TO Joe IDENTIFIED BY XXXXX;
GRANT CONNECT TO Sales IDENTIFIED BY XXXXX;
GRANT GROUP TO Sales;

GRANT ALL ON Customers TO Sales;

GRANT ALL ON Orders TO Sales;

GRANT SELECT ON Products TO Sales;

GRANT MEMBERSHIP IN GROUP Sales TO Sally;
GRANT MEMBERSHIP IN GROUP Sales TO Joe;

Now Joe and Sally have permission to use these tables, but they still have to
qualify their table references because the table owner is company, and Sally
and Joe are not members of the company group:

SELECT *
FROM company.customers

To rectify the situation, make the Sales group a member of the company
group.

GRANT GROUP TO company;
GRANT MEMBERSHIP IN GROUP company TO Sales;

Now Joe and Sally, being members of the Sales group, are indirectly
members of the company group, and can reference their tables without
qualifiers. The following command will now work:

SELECT *
FROM Customers

Joe and Sally do not have any extra permissions because of their membership
in the company group. The company group has not been explicitly granted
any table permissions. (The company user ID has implicit permission to
look at tables like Salaries because it created the tables and has DBA
authority.) Thus, Joe and Sally still get an error executing either of these
commands:

SELECT *
FROM Salaries;

SELECT *
FROM company.Salaries

In either case, Joe and Sally do not have permission to look at the Salaries
table.

Chapter 21 Managing User IDs and Permissions

Using views and procedures for extra security

For databases that require a high level of security, defining permissions
directly on tables has limitations. Any permission granted to a user on a table
applies to the whole table. There are many cases when users' permissions
need to be shaped more precisely than on a table-by-table basis. For
example:

¢ Itis not desirable to give access to personal or sensitive information
stored in an employee table to users who need access to other parts of
the table.

¢ You may wish to give sales representatives update permissions on a
table containing descriptions of their sales calls, but limit such
permissions to their own calls.

In these cases, you can use views and stored procedures to tailor permissions
to suit the needs of your organization. This section describes some of the
uses of views and procedures for permission management.

& For information on how to create views, see "Working with views" on
page 77.

Using views for tailored security

Example

Views are computed tables that contain a selection of rows and columns
from base tables. Views are useful for security when it is appropriate to give
a user access to just one portion of a table. The portion can be defined in
terms of rows or in terms of columns. For example, you may wish to
disallow a group of users from seeing the salary column of an employee
table, or you may wish to limit a user to see only the rows of a table that they
have created.

The Sales manager needs access to information in the database concerning
employees in the department. However, there is no reason for the manager to
have access to information about employees in other departments.

This example describes how to create a user ID for the sales manager, create
views that provides the information she needs, and grants the appropriate
permissions to the sales manager user ID.

1 Create the new user ID using the GRANT statement, from a user ID
with DBA authority. Enter the following:

CONNECT "dba"
IDENTIFIED by sql ;

593

Using views and procedures for extra security

GRANT CONNECT
TO SalesManager
IDENTIFIED BY sales

2 Define a view which only looks at sales employees as follows:

CREATE VIEW emp sales AS
SELECT emp id, emp fname, emp lname
FROM "dba".employee
WHERE dept id = 200

The table should therefore be identified as dba.employee, with the
owner of the table explicitly identified, for the SalesManager user ID to
be able to use the view. Otherwise, when SalesManager uses the view,
the SELECT statement refers to a table that user ID does not recognize.

3 Give SalesManager permission to look at the view:

GRANT SELECT
ON emp sales
TO SalesManager

Exactly the same command is used to grant permission on a view as to
grant permission on a table.

Example 2 The next example creates a view which allows the Sales Manager to look at a
summary of sales orders. This view requires information from more than one
table for its definition:

1 Create the view.

CREATE VIEW order summary AS
SELECT order date, region, sales rep, company name
FROM "dba".sales order
KEY JOIN "dba".customer

2 Grant permission for the Sales Manager to examine this view.

GRANT SELECT
ON order summary
TO SalesManager

3 To check that the process has worked properly, connect to the
SalesManager user ID and look at the views you have created:

CONNECT SalesManager
IDENTIFIED BY sales ;

SELECT *
FROM "dba".emp sales ;

SELECT *
FROM "dba".order summary ;

No permissions have been granted to the Sales Manager to look at the
underlying tables. The following commands produce permission errors.

594

Chapter 21 Managing User IDs and Permissions

Other permissions
on views

SELECT * FROM "dba".employee ;
SELECT * FROM "dba".sales order

The previous example shows how to use views to tailor SELECT
permissions. INSERT, DELETE, and UPDATE permissions can be granted
on views in the same way.

& For information on allowing data modification on views, see "Using
views" on page 78.

Using procedures for tailored security

Strict security

While views restrict access on the basis of data, procedures restrict the
actions a user may take. As described in "Granting permissions on
procedures" on page 583, a user may have EXECUTE permission on a
procedure without having any permissions on the table or tables on which the
procedure acts.

For strict security, you can disallow all access to the underlying tables, and
grant permissions to users or groups of users to execute certain stored
procedures. With this approach, the manner in which data in the database can
be modified is strictly defined.

595

How user permissions are assessed

How user permissions are assessed

596

Groups do introduce complexities in the permissions of individual users.
Suppose user M_Haneef has been granted SELECT and UPDATE
permissions on a specific table individually, but is also a member of two
groups. Suppose one of these groups has no access to the table at all, and one
has only SELECT access. What are the permissions in effect for this user?

Adaptive Server Anywhere decides whether a user ID has permission to
carry out a specific action in the following manner:

1 Ifthe user ID has DBA permissions, the user ID can carry out any action
in the database.

2 Otherwise, permission depends on the permissions assigned to the
individual user. If the user ID has been granted permission to carry out
the action, then the action is allowed to proceed.

3 Ifno individual settings have been made for that user, permission
depends on the permissions of each of the groups of which the user is a
member. If any of these groups has permission to carry out the action,
the user ID has permission by virtue of membership in that group, and
the action is allowed to proceed.

This approach minimizes problems associated with the order in which
permissions are set.

Chapter 21 Managing User IDs and Permissions

Managing the resources connections use

Setting options

Resources that can
be managed

Building a set of users and groups allows you to manage permissions on a
database. Another aspect of database security and management is to limit the
resources an individual user can use.

For example, you may wish to prevent a single connection from taking too
much of the available memory or CPU resources, in order to avoid a
connection from slowing down other users of the database.

Adaptive Server Anywhere provides a set of database options that the DBA
can use to control resources. These options are called resource governors.

You can set database options using the SET OPTION statement, which has

the following syntax:

SET [TEMPORARY] OPTION
... [userid. | PUBLIC.]option-name = [option-value]

& For reference information about options, see "Database Options" on
page 127 of the book Adaptive Server Anywhere Reference Manual. For
information on the SET OPTION statement, see "SET OPTION statement"
on page 553 of the book Adaptive Server Anywhere Reference Manual.

The following options can be used to manage resources:

¢ JAVA_HEAP_SIZE Sets the maximum size (in bytes) of that part of
the memory that is allocated to Java applications on a per connection
basis.

¢ MAX_CURSOR_COUNT Limits the number of cursors for a
connection.

¢ MAX_STATEMENT_COUNT Limits the number of prepared
statements for a connection.

¢ BACKGROUND_PRIORITY Limits the impact requests on the current
connection have on the performance of other connections

Database option settings are not inherited through the group structure.

597

Users and permissions in the system tables

Users and permissions in the system tables

598

Information about the current users of a database and about their permissions
is stored in the database system tables and system views.

& For a description of each of these tables, see "System Tables" on page
771 of the book Adaptive Server Anywhere Reference Manual.

The system tables are owned by the special user ID SYS. It is not possible to
connect to the SYS user ID.

The DBA has SELECT access to all system tables, just as to any other tables
in the database. The access of other users to some of the tables is limited. For
example, only the DBA has access to the SYS.SYSUSERPERM table, which
contains all information about the permissions of users of the database, as
well as the passwords of each user ID. However, SYS.SYSUSERPERMS is
a view containing all information in SYS.SYSUSERPERM except for the
password, and by default all users have SELECT access to this view. All
permissions and group memberships set up in a new database for SYS,
PUBLIC, and DBA can be fully modified.

The following table summarizes the system tables containing information
about user IDs, groups, and permissions. All tables and views are owned by
user ID SYS, and so their qualified names are SYS.SYSUSERPERM and so
on.

Appropriate SELECT queries on these tables generates all the user ID and
permission information stored in the database.

Table Default Contents

SYSUSERPERM DBA only Database-level permissions and
password for each user ID

SYSGROUP PUBLIC One row for each member of each group

SYSTABLEPERM | PUBLIC All permissions on table given by the
GRANT command s

SYSCOLPERM PUBLIC All columns with UPDATE permission
given by the GRANT command

SYSDUMMY PUBLIC Dummy table, can be used to find the

current user ID

SYSPROCPERM | PUBLIC Each row holds one user granted
permission to use one procedure

The following table summarizes the system views containing information
about user IDs, groups, and permissions

Chapter 21

Managing User IDs and Permissions

Views Default Contents

SYSUSERAUTH DBA only All information in SYSUSERPERM
except for user numbers

SYSYUSERPERMS | PUBLIC All information in SYSUSERPERM
except for passwords

SYSUSERLIST PUBLIC All information in SYSUSERAUTH
except for passwords

SYSGROUPS PUBLIC Information from SYSGROUP in a
more readable format

SYSTABAUTH PUBLIC Information from
SYSTABLEPERM in a more
readable format

SYSCOLAUTH PUBLIC Information from SYSCOLPERM in
a more readable format

SYSPROCAUTH PUBLIC Information from SYSPROCPERM

in a more readable format

In addition to these, there are tables and views that contain information about
each object in the database.

599

Users and permissions in the system tables

600

