CHAPTER 22
Keeping Your Data Secure

About this chapter

Contents

This chapter describes Adaptive Server Anywhere features that help to make

your database secure.

Many of these features are described in more detail elsewhere in the

documentation, and for such features, pointers to the relevant places are

provided.

Database administrators are responsible for data security. In this chapter,
unless otherwise noted, you require DBA authority to carry out the tasks

described.

& User IDs and permissions are major security-related topics. For
information on these topics, see "Managing User IDs and Permissions" on

page 575.
Topic Page
Security features overview 602
Security tips 603
Controlling database access 605
Controlling the tasks users can perform 607
Auditing database activity 608
Running the database server in a secure fashion 612

601

Security features overview

Security features overview

602

Databases may contain information that is proprietary, confidential, or
private. For this reason, it can be important to ensure that the database and
the data in it are designed for security.

Adaptive Server Anywhere has several features to assist in building a secure
environment for your data:

¢

User identification and authentication These control who can gain
access to a database.

& For information on these subjects, see "Creating new users" on
page 580.

Discretionary access control features These features control the
actions a user is able to carry out when connected to a database.

& For more information, see "Database permissions overview" on
page 576.

Auditing By turning on auditing, you can maintain a record of actions
on the database.

& For more information, see "Auditing database activity" on page
608.

Database server options When you start the database server, you
control who can carry out operations such as loading databases.

& For more information, see "Controlling permissions from the
command line" on page 11.

Views and stored procedures Views and stored procedures allow
you to tune the data that a user can access and the operations a user can
execute.

& For more information, see "Using views and procedures for extra
security" on page 593.

This chapter describes auditing, and collects together overviews of the other
security features, providing pointers to where they are discussed in more
detail.

Chapter 22 Keeping Your Data Secure

Security tips

There are many actions you can take as database administrator can take to
improve the security of your data.

¢

Change the default user ID and password The default user ID and
password for a newly created database is DBA and SQL. You should
change this password before deploying the database.

Require long passwords You can set the
MIN PASSWORD LENGTH public option to disallow short (and
therefore easily guessed) passwords.

& For information, see "MIN_PASSWORD_ LENGTH option" on
page 163 of the book Adaptive Server Anywhere Reference Manual.

Restrict DBA authority DBA authority is very powerful. Users with
DBA authority can see and do anything in the database. You should
grant DBA authority only to users who absolutely require it.

Consider giving users with DBA authority two user IDs, one with DBA
authority and one without, so that they can connect as DBA only when
necessary.

Drop external system functions The following external functions
present possible security risks: xp_cmdshell, xp_startmail,
xp_sendmail, and xp_stopmail.

The xp_cmdshell procedure allows users to cause the server to execute
operating system commands or programs.

The e-mail commands allow users to have the server send e-mail
composed by the user. Malicious users could use either the e-mail or
command shell procedures to perform operating-system tasks with
authorities other than they have been given by the operating system. In a
security-conscious environment, these functions should be dropped.

& For information on dropping procedures, see "DROP statement" on
page 451 of the book Adaptive Server Anywhere Reference Manual.

Protect your database files The database file, log files, dbspace files,
and write files should be protected from unauthorized access. They
should not be stored within a shared directory or volume.

Protect your database software The Adaptive Server Anywhere
software should be similarly protected. Users should be given access
only to the applications, DLLs, and other resources that they require.

603

Security tips

¢ Run the database server as a service or a daemon On Windows
NT, the database server should be run as an NT service so that
unauthorized users cannot shut it down or gain access to the database or
log files. On UNIX, running the server as a daemon serves a similar
purpose.

& For more information, see "Running the server outside the current
session" on page 18.

604

Chapter 22 Keeping Your Data Secure

Controlling database access

Permission
scheme is based
on user IDs

Using integrated
logins

By assigning user IDs and passwords, the database administrator controls
who can gain access to a database. By granting permissions to each user ID,
the database administrator controls what tasks each user can carry out when
connected. This section describes the features available for controlling
database access.

When users log into the database, they have access to all database objects
that meet any of the following criteria:

¢ The object was created by that user.
¢ The user was explicitly granted permission on the object.

¢ A group to which the user belongs was explicitly granted permission on
the object.

The user cannot access any database object that does not meet these criteria.
In short, users can access only objects that they own or to which access has
been explicitly granted.

&> For more information, see the following:
¢ "Managing User IDs and Permissions" on page 575.

¢ "CONNECT statement" on page 381 of the book Adaptive Server
Anywhere Reference Manual.

¢ "GRANT statement" on page 484 of the book Adaptive Server Anywhere
Reference Manual.

¢ "REVOKE statement" on page 536 of the book Adaptive Server
Anywhere Reference Manual.

Integrated logins allow users to use a single login name and password to log
into the Windows NT operating system and into a database. An external
login name is associated with a database user ID. When a user attempts an
integrated login, the operating system tells the server who the user is, and the
server logs the user in as the associated database user ID. No login name or
password are required, since the user provided both in order to log into the
operating system. There are some security implications of integrated logins
to consider

& For more information see the following

¢ "Using integrated logins" on page 58.

¢ "Security concerns: unrestricted database access" on page 62.

¢ "LOGIN_MODE option" on page 161 of the book Adaptive Server
Anywhere Reference Manual.

605

Controlling database access

Increasing password security

Restricting
password length

Encrypt the
passwords

606

Passwords are an important part of any database security system. To be
secure, passwords must not be easy to guess, and they must not be easily
accessible on users' hard drives or other locations.

By default, passwords can be any length. For greater security, you can
enforce a minimum length requirement on all new passwords. You do this by
setting the MIN_PASSWORD_LENGTH database option to a value greater
than zero. The following statement enforces passwords to be at least 8 bytes
long.

SET OPTION PUBLIC.MIN PASSWORD LENGTH = 8

& For more information, see "MIN_PASSWORD_ LENGTH option" on
page 163 of the book Adaptive Server Anywhere Reference Manual.

As passwords are the key to accessing databases, it is important that they not
be easily available to unauthorized people in a security-conscious
environment.

When you create an ODBC data source, or a Sybase Central connection
profile, you can optionally include a password. Avoid including passwords
for greater security. If you do include a password in the data source, check
the box to encrypt the password.

& For information on creating ODBC data sources, see "Creating an
ODBC data source" on page 42.

Chapter 22 Keeping Your Data Secure

Controlling the tasks users can perform

Negative
permissions

Users can access only those objects to which they have been granted access.

Granting permission on an object to another user is done using the GRANT
statement. It is also possible to grant a user a grant option to an object, which
allows that user to pass on the permissions to other users.

The GRANT statement is also used to give more general permissions to
users. Granting CONNECT permissions to a user is used to create users and
to change their passwords. Granting RESOURCE to a user is required for the
user to create tables, views, procedures, etc. Granting DBA to a user gives
that user the ability to see and do anything in the database. The DBA would
also use the GRANT statement to create and administer groups.

The REVOKE statement is the opposite of the GRANT statement—any
permission that GRANT has explicitly given, REVOKE can take away.
Revoking CONNECT from a user will remove the user from the database,
including all objects owned by that user.

Adaptive Server Anywhere does not support negative permissions. This
means that you cannot revoke a permission that was not explicitly granted.

For example, suppose user bob is a member of a group called sales. If a user
grants DELETE permission on a table T to sales, then bob can delete rows
from T. If you want to prevent bob from deleting from T, you cannot simply
execute a REVOKE DELETE on T from bob, since the DELETE ON T
permission was never granted directly to bob. In this case, you would have to
revoke bob's membership in the sales group.

&> For more information see:

¢ "GRANT statement" on page 484 of the book Adaptive Server Anywhere
Reference Manual.

¢ "REVOKE statement" on page 536 of the book Adaptive Server
Anywhere Reference Manual.

Designing database objects for security

Views and stored procedures provide alternative ways of tuning the data
users can access and the tasks they can perform.

&> For more information on these features, see:
¢ "Benefits of procedures and triggers" on page 223.

¢ "Using views and procedures for extra security" on page 593.

607

Auditing database activity

Auditing database activity

The transaction log

Auditing is a way of keeping track of the activity performed on a database.
The record of activities is kept in the transaction log. By turning on auditing,
the DBA increases the amount of data saved in the transaction log to include
the following:

¢ All login attempts (successful and failed), including the terminal ID.
¢ Accurate timestamps of all events (to a resolution of milliseconds)

¢ All permissions checks (successful and failed), including the object on
which the permission was checked (if applicable)

¢ All actions that require DBA authority.

Each database has an associated transaction log file. The transaction log is
used for database recovery. It is a record of transactions executed against a
database.

& For information about the transaction log, see "The transaction log" on
page 557.

The transaction log stores all executed data definition statements, and the
user ID that executed them. It also stores all updates, deletes, and inserts and
which user executed those statements. However, this is insufficient for some
auditing purposes. By default, the transaction log does not contain the time
of the event, just the order in which events occurred. It also contains no
failed events, nor select statements.

Turning on auditing

608

.
o

The database administrator can turn on auditing. Auditing adds security-
related information to the transaction log.

Auditing is disabled by default. To enable auditing on a database, the DBA
must set the value of the public option AUDITING to ON. DBA permissions
are required to set this option. Auditing then remains enabled until explicitly
disabled, by setting the value of the AUDITING option to OFF.

To turn on auditing:
1 Ensure that your database is upgraded to at least version 6.0.2.

2 Ifyou had to upgrade your database, create a new transaction log.

3 Execute the following statement:

SET OPTION PUBLIC.AUDITING = 'ON'

Chapter 22 Keeping Your Data Secure

& For more information, see "AUDITING option" on page 140 of the
book Adaptive Server Anywhere Reference Manual.

Retrieving audit information

You can use the Log Translation utility to retrieve audit information. You
can access this utility from Sybase Central or from the command line. It
operates on a transaction log to produce a SQL script containing all of the
transactions, along with some information on what user executed each
command. By using the —g option, dbtran includes more comments
containing the auditing information.

To ensure a complete and readable audit record, the —g option automatically
sets the following switches:

¢ -d Display output in chronological order.
¢ -t Include trigger-generated operations in the output.
¢ -a Include rolled back transactions in the output.

The Log Translation Utility can be run against a running database server or
against a database log file

To retrieve auditing information from a running database server:

1 With the database server running, execute the following statement at a
system command prompt.

dbtran -g -c "uid=dba;pwd=sqgl;..." -n asademo.sql
The user ID must have DBA authority.

& For information about connection strings, see "Connection
parameters" on page 46.

To retrieve auditing information from a transaction log file:
1 Ensure the log file is not in use by closing down the database server.

2 At asystem command prompt, execute the following statement to place
the information from the file asademo.log and places it in the file
asademo.sql.

dbtran -g asademo.log

The —g command-line option includes auditing information in the output
file.

& For more information see "The Log Translation utility" on page 98 of
the book Adaptive Server Anywhere Reference Manual.

609

Auditing database activity

Adding audit comments

You can add comments to the audit trail using the sa_audit_string system
stored procedure. You must have DBA permissions to call this procedure. It
takes a single argument, which is a string of up to 200 bytes.

For example:

call sa audit string('Started audit testing here.')

This comment is stored in the transaction log as an audit statement.

An auditing example

610

This example shows how the auditing feature records attempts to access
unauthorized information.

1

As database administrator, turn on auditing.
You can do this from Sybase Central as follows:

¢ Connect to the ASA 6.0 Sample data source. This connects you as
the DBA user.

¢ Right-click on the asademo database icon, and select Set Options
from the popup menu.

¢ Select Auditing from the list of options, and enter the value ON in
the Public Setting box. Click Set Permanent Now to set the option
and Close to exit.

Alternatively, you can use Interactive SQL. Connect to the sample
database from Interactive SQL, as user ID DBA using password SQL
and execute the following statement:

SET OPTION PUBLIC.AUDITING = 'ON'

Add a user to the sample database, named BadUser, with password
BadUser. You can do this from Sybase Central. Alternatively, you can
use Interactive SQL and enter the following statement:

GRANT CONNECT TO BadUser
IDENTIFIED BY 'BadUser'

Using Interactive SQL, connect to the sample database as BadUser and
attempt to access confidential information in the employee table with
the following query:

SELECT emp lname, salary
FROM dba.employee

Chapter 22 Keeping Your Data Secure

You receive an error message: do not have permission to select from
employee.

4 From a command prompt, change directory to your Adaptive Server
Anywhere installation directory, which holds the sample database, and
execute the following command:

dbtran -g -c "dsn=ASA 6.0 Sample" -n asademo.sqgl

This command produces a file named asademo.sql, containing the
transaction log information and a set of comments holding audit
information. The lines indicating the unauthorized BadUser attempt to
access the employee table are included in the file as follows:

--AUDIT-1001-0000287812 -- 1999/02/11 13:59:58.765
Checking Select permission on employee - Failed
--AUDIT-1001-0000287847 -- 1999/02/11 13:59:58.765
Checking Select permission on employee (salary) -
Failed

5 Restore the sample database to its original state so that other examples
you try in this documentation give the expected results.

Connect as the DBA user, and carry out the following operations:
¢ Revoke Connect privileges from the user ID BadUser.
¢ Set the PUBLIC.AUDITING option to 'OFF".

Auditing actions outside the database server

Some database utilities act on the database file directly. In a secure
environment, the database files should not be accessible to any other than
trusted users.

In order to provide auditing of actions directly on the file, under Windows
NT only, any use of dbtran, dbwrite, and dblog generates Windows NT
Application Events, which can be viewed in the Windows NT Event Viewer.

The user's name and program name are stored in the Event log.

The Application Events are generated only if the database has the
AUDITING option set to ON.

611

Running the database server in a secure fashion

Running the database server in a secure fashion

There are several security features that you can set when starting the
database server or during server operation. These include the following:

¢ Controlling who can start and stop databases, who can create and delete
database files, and who can stop the server.

& For more information on controlling permissions from the database
server command line, see "Controlling permissions from the command
line" on page 11.

¢ Encrypting client/server communications over the network.

For greater security, you can force client/server network
communications to be encrypted as they pass over the network.

Encrypting client/server communications

612

You can set client/server encryption when you start the database server or,
from one client, in the client connection parameters.

To force encryption of client/server communications from the
server:

¢ Start the database server using the —e command-line option. For
example:

dbsrve -e -x tcpip asademo.db

& For a complete listing of database server command-line options, see
"The database server" on page 12 of the book Adaptive Server Anywhere
Reference Manual.

To force encryption of client/server communications from a

particular client:

¢ Add the Encryption connection parameter to your connection string.
...UID=dba;PWD=sqgl;ENC=YES; ...

You can also set this parameter can be set on the Network tab of the
connection dialog box and the ODBC data source dialog box.

& For more information, see "Encryption connection parameter" on page
49 of the book Adaptive Server Anywhere Reference Manual.

