CHAPTER 23

Working with Database Files

About this Chapter

Contents

This chapter describes how to create and work with database and associated

files.

Topic

Page

Overview of database files
Using additional dbspaces
Working with write files
Using the utility database

614
615
618
620

613

Overview of database files

Overview of database files

Basic database
files

Additional files

Chapter goals

614

Many databases consist of a single database file. In this case, the database
server uses three files while it is running:

¢

The database file This file holds the database information. It typically
has the extension .db.

& For information on creating databases, see "Working with
databases" on page 68.

The transaction log This file holds a record of the changes made to
the database file, and is needed for recovery and replication. It typically
has the extension ./og.

& For information on the transaction log, see "Backup and Data
Recovery" on page 553.

The temporary file This file is used by the database server to hold
information needed during a session. It is not needed once the database
server shuts down. The file has a server-generated name with the
extension .fmp. It is held in the system temporary directory.

The temporary file is created and maintained by the server. You do not
need to do anything with the temporary file.

Other files can also be used as part of a database system:

¢

Additional database files You can spread your data over several files,
each on held in a separate file. These additional files are called
dbspaces.

Transaction log mirror files For additional security, you can create a
mirror copy of the transaction log. This file typically has the extension
.mlg.

Write files If the database file is a read-only file (for example, if it is
distributed on CD-ROM) an additional file named a write file can be
used, which holds changes made to the data.

Compressed database files You can compress a database file. The
resulting file is read only, but can be used in conjunction with a write
file.

sdkjsalksadkljdsakljdsakljsdakljadssad

This chapter describes how to create, name, and delete the different kinds of
files involved in a database system.

Chapter 23 Working with Database Files

Using additional dbspaces

Placing tables in
dbspaces

Example

This section describes how to use additional database files, named dbspaces.

Only needed for large databases
For many databases, it is convenient to keep the database as a single file.
This section is intended only for users of large databases.

When a database is initialized, it is composed of one database file. This first
database file is called the root file. All database objects and all data are
placed in the root file.

Each database file has a maximum size of two Gb, so you may wish to divide
large databases among more than one file. On Windows NT drives using the
NTES file system, this limitation is removed and files can be up to one
terabyte.

You create a new database file, or dbspace, from Sybase Central, or using
the CREATE DBSPACE statement. A new dbspace may be on the same disk
drive as the root file or on another disk drive. DBA authority is required to
create database files.

& For more information, see "CREATE DBSPACE statement" on page
389 of the book Adaptive Server Anywhere Reference Manual.

For each database, you can create up to twelve dbspaces, including the root
file.

When created, a new dbspace has no contents. When you create a new table
you can place it in a specific dbspace with an IN clause in the CREATE
TABLE statement. If no IN clause is used, the table is placed in the root file.

Each table must be contained in a single dbspace. By default, indexes are
placed in the same dbspace as their table, but they can be placed in a separate
dbspace by supplying an IN clause.

& For information on creating tables, see "Creating tables" on page 71.

The following command creates a new dbspace called library in the file
library.db in the same directory as the root file:

CREATE DBSPACE library
AS 'library.db'

To create a table and place it in the library dbspace, you can use the
following command:

CREATE TABLE Library Books (
title char(100),
author char (50),

615

Using additional dbspaces

Splitting existing
databases

Creating a X
dbspace in Sybase *
Central

isbn char (30)
) IN library

If you wish to split existing database objects among several dbspaces, you
need to unload your database and modify the command file for rebuilding the
database. To do so, add IN clauses to specify the dbspace for each table you
do not wish to place in the root file.

To create a dbspace in Sybase Central:

1 Connect to the database.

2 Click the DB Spaces folder for that database.

3 Double-click Add DB Space in the right panel.
4 Enter the dbspace name and filename.
5

Click OK to create the dbspace.

Preallocating space for database files

616

Adaptive Server Anywhere automatically takes new disk space for database
files as needed. Unless you are working with a large database with a high
rate of inserts and deletes, you do not need to worry about explicitly
allocating space for database files.

Rapidly changing database files could lead to excessive file fragmentation on
the disk and possible performance problems. You may pre-allocate disk
space for database files or for transaction logs in order to prevent this. You
do this using the ALTER DBSPACE statement.

For example, the following statement adds 200 pages to the database file
with dbspace name library. The database page size is fixed when the
database is created.

ALTER DBSPACE library
ADD 200

&> For more information on this statement, see "ALTER DBSPACE
statement” on page 345 of the book Adaptive Server Anywhere Reference
Manual.

Running a disk defragmentation utility after pre-allocating disk space helps
ensure that the database file is not fragmented over many disjoint areas of the
disk drive. Performance can suffer if there is excessive fragmentation of
database files.

Chapter 23 Working with Database Files

Preallocating disk

space in Sybase
Central

1

2
3
4
5

% To preallocate disk space for a dbspace in Sybase Central:

Connect to the database.

Click the DB Spaces folder for that database.

Double-click the dbspace in the right panel.

Click Add Pages, and enter the number of database pages to preallocate.
Click OK.

617

Working with write files

Working with write files

618

If you have a database file that is read-only (for example, if you distribute a
database on a CD-ROM), you can use a write file to enable changes to be
made to the database.

You create a write file using the Write File utility or using the CREATE
WRITEFILE statement. In this section, the examples use the command-line
utilities.

& For a description of the CREATE WRITEFILE statement, see
"CREATE WRITEFILE statement" on page 432 of the book Adaptive Server
Anywhere Reference Manual.

To use a write file:

1

Create the write file for your database.

For example, to create a write file for the sample database, you can enter
the following command in the Adaptive Server Anywhere installation
directory:

dowrite -c asademo.db

This command creates a write file named asademo.wrt, with a
transaction log named asademo.wlg.

Start a database server, loading the write file. By default, the server
locates files with the extension .wrt first, so the following command in
the installation directory starts the personal server running the sample
database write file:

dbeng6 asademo
The messages on the server window indicate which file is started.

Connect to the database using Interactive SQL. You can use the user ID
DBA and the password SQL, as the sample database is the default.

You can execute queries just as usual. The following query lists the
contents of the department table.

SELECT *
FROM department

Try inserting a row. The following statement inserts a row into the
department table:

INSERT
INTO department (dept id, dept name)
VALUES (202, 'Eastern Sales')

Chapter 23 Working with Database Files

If you committed this change, it would be written to the asademo.wlg
transaction log, and when the database checkpoints, it is written to the
asademo.wrt write file.

If you now query this table, the results are taken from the write file and
the database file.

6 Try deleting a row. Set the WAIT FOR COMMIT option to avoid
referential integrity complaints here:

SET TEMPORARY OPTION wait for commit = 'on' ;

DELETE
FROM department
WHERE dept id = 100

If you committed this change, the deletion would be marked in the write
file. No change is made to the database file.

For some purposes, it is useful to use a write file with a shared database. If
you have a read-only database on a network server, you could let each user
have their own write file. In this way, they could add their own information,
which would be stored on their own machine, without affecting the database.
This can be useful for application development also.

Deleting a write file You can use the dberase utility to delete a write file and its associated
transaction log.

619

Using the utility database

Using the utility database

You can connect to a server using the utility database, a phantom database
that has no physical representation[] that is, there is no database file for this
database, and it can contain no data.

The utility database can be loaded by specifying utility_db as the database
name when connecting. The utility database permits only a narrow range of
specialized functions. It is provided so that you can execute database file
manipulation statements such as CREATE DATABASE, or ALTER
WRITEFILE, without first connecting to a physical database.

Sybase Central You cannot connect to the utility database from Sybase Central. However, as
you can already create and delete a database from Sybase Central without
first connecting to a database, this is not a practical limitation.

Starting a server Normally when you start a database server, you specify the database you
with no database wish to load. However, you can start a server that does not load a database.

For example, the following command from the command line starts a
personal database server named TestEng but does not load a database.

dbeng6 -n TestEng

< To load and connect to the utility database:
1 Start a database server with the following command:
dbeng6.exe -n TestEng
2 Start Interactive SQL.

3 On the Login tab of the Connection Window, enter DBA as the user ID
and SQL as the password. On the Database tab, enter utility_db as the
database name.

4 Click OK to connect.

Interactive SQL connects to the utility database on the personal server
named TestEng. No real database is actually loaded.

You can now execute the database file administration statements. For
example, executing the following statement after having connected to the
utility database creates a database named new.db in the directory C:\temp.

CREATE DATABASE 'C:\\temp\\new.db'

&> For more information on the syntax of those statements, see "CREATE
DATABASE statement" on page 385 of the book Adaptive Server Anywhere
Reference Manual.

620

Chapter 23 Working with Database Files

Utility database server security

There are two aspects to utility database server security:
¢ Who can connect to the utility database?

¢ Who can execute file administration statements?

These are discussed in this section.

Utility database passwords

util_db.ini

There is a different security model for the personal server and the network
server.

For the personal server, you must specify the user ID DBA. You can use any
password; as the personal server is intended for single machine use, a
security restriction is not needed.

For the network server, you must specify the user ID DBA, but the password
is held in a file named util _db.ini, which is stored in the server executable
directory. As this directory is on the server, you can control access to the file,
and thereby control who has access to the password.

The util_db.ini file has the following contents:

[UTILITY DB]
PWD=password

Use of the utility _db security level relies on the physical security of the
computer hosting the database server since the util_db.ini file can be easily
read using a text editor.

Permission to execute file administration statements

Based on the utility database, a new level of security has been added for the
ability to create and drop databases. The —gu database server command-line
option controls who can execute the file administration statements.

There are four levels of permission for the use of file administration
statements. These levels are: all, none, dba, and utility_db. The utility db
level permits only a person able to connect to the utility database to use the
file administration statements.

621

Using the utility database

Examples

622

-gu switch option

Effect

applies to

all

none

dba

utility _db

Anyone can execute file
administration statements

No one can execute file
administration statements

Only dba-authority users
can execute file
administration statements

Only the user who can
connect to utility database
can execute file
administration statements

Any database including
utility database

Any database including
utility database

Any database including
utility database

Only the utility
database

&> For more information on the database server —gu command line switch,
see "The database server" on page 12 of the book Adaptive Server Anywhere

Reference Manual.

¢ To prevent the use of the file administration statements, start the

database server using the none permission level of the —gu switch. The
following command starts a database server and names it TestSrv, loads
the sample database, but prevent anyone from using that server to create
or delete a database.

dbsrv6.exe —-n TestSrv -gu none asademo.db

With the database server named TestSrv started in this manner, all users
are prevented from using the server to create or add a database,
regardless of their resource creation rights, or whether or not they can
load and connect to the utility database.

To permit only the user knowing the utility database password to
connect to create or delete databases, start the server at the command
line with the following command.

dbsrvée -n TestSrv —gu utility db

Assuming the utility database password has been set during installation
to asa, the following command starts the Interactive SQL utility as a
client application, connects to the server named TestSrv, loads the
utility database and connects the user.

dbisgl -c

"uid=dba;pwd=asa;dbn=utility db;eng=TestSrv"

Having executed the above statement successfully, the user is connected
to the utility database, and is able to create or delete databases.

