CHAPTER 24

Monitoring and Improving Performance

About this chapter

Contents

This chapter describes some of the methods available to monitor and

improve the performance of your database.

Topic Page
Top performance tips 624
Using keys to improve query performance 630
Using indexes to improve query performance 634
Search strategies for queries from more than one table 636
Sorting query results 639
Temporary tables used in query processing 640
How the optimizer works 641
Monitoring database performance 644

623

Top performance tips

Top performance tips

Adaptive Server Anywhere is designed to provide excellent performance and
to do so automatically. However, some tips help you achieve the most from
the product. The following suggestions are a good starting point.

Always use a transaction log

You might think that Adaptive Server Anywhere would run faster without a
transaction log because it has to maintain less information on disk, yet the
opposite is the case. Not only does a transaction log provide a large amount
of protection, it can dramatically improve performance.

Without a transaction log, Adaptive Server Anywhere must always be sure
that any changes to your database are written to the disk at the end of every
transaction. Writing these changes can consume considerable resources.

With a transaction log, Adaptive Server Anywhere need only write notes
detailing the changes. It can choose to write the new database pages more
efficiently, later.

The process of writing information to the database file to make it consistent
and up to date is called a checkpoint. Without a transaction log, Adaptive
Server Anywhere must perform a checkpoint at the end of every transaction.

Tip
Always use a transaction log. It helps protect your data and it greatly
improves performance.

If you can store the transaction log on a different physical device, rather than
the one that contains the main database file, you can further improve
performance. With this arrangement, you will reduce contention for the hard
drives.

Increase the cache size

Adaptive Server Anywhere stores pages that it has used recently in a cache.
The size of the cache is set on the command line when you launch the
database server. Should another connect require the same page, it may find it
already in memory and hence avoid reading information from disk.

624

Chapter 24 Monitoring and Improving Performance

If your cache is too small, Adaptive Server Anywhere is unable to keep
pages in memory long enough to reap these benefits. When you launch the
server, allocate as much memory to the database cache as is feasible, given
the requirements of the other applications and processes that will run
concurrently.

Tip

Increase the cache size. Increasing the cache size can often improve
performance dramatically because retrieving information from memory is
many times faster than reading it from disk. You may even find it
worthwhile to purchase more RAM to allow a larger cache.

In particular, databases that make use of Java objects benefit greatly from
larger cache sizes. If you are using Java in your database, consider using a
cache of at least 8§ Mb.

Normalize your table structure

In general, the information in each column of a table should depend solely on
the value of the primary key. If this is not the case, then one table may
contain many copies of the same information.

For example, suppose the people in your company work at a number of
offices. You might better place information about the office, such as its
address and main telephone numbers, in a separate table, rather than
duplicating all this information for every employee.

You can, however, take the generally good notion of normalization too far. If
the amount of duplicate information is small, you may find it better to
duplicate the information and maintain its integrity using triggers, or other
constraints.

Use indexes effectively

When executing any one statement, Adaptive Server Anywhere must choose
one index to access each table. When it cannot find a suitable index, it must
instead resort to scanning the table sequentially—a process that can take a
long time.

For example, if suppose you need to search for people, but may know only
their first or only their last name. Create two indexes, one that contains the
last names first, and a second that contains the first names first.

625

Top performance tips

Examine the plans generated in response to your common statements.
Considering adding an index when it will allow Adaptive Server Anywhere
to access data more efficiently. In particular, add an index when it will
eliminate unnecessary sequential access of a large table.

Although indexes let Adaptive Server Anywhere locate information very
efficiently, you should exercise some caution when adding them. Each index
creates extra work whenever you insert a row because Adaptive Server
Anywhere must, in addition to adding the row, update all affected indexes.
The same applies when you delete rows or update information in an indexed
column.

If you need better performance when you add rows to a table and do not need
to find information quickly, use as few indexes as possible.

Use a larger page size

626

Large page sizes can help Adaptive Server Anywhere to read databases more
efficiently when the database is large or when you access information
sequentially. If either of these criteria apply, try using 4 or 2 kb pages instead
of 1 kb pages.

Larger pages also bring other benefits. They improve the fan-out of your
indexes and reduce the number of index levels. Large pages also let you
create tables with more columns.

You cannot change the page size of a database. You must create a new
database and use the —p flag of dbinit to specify the page size. For example,
the following command creates a database with 4 kb pages.

dbinit -p 4096 new.db

If you use larger pages, you must specify a large page size when you start a
database server. A database server cannot open a database that uses pages
larger than the size you chose when you started it. You specify the maximum
page size using the —gp flag. You should increase your cache size. A cache
of the same size will accommodate only a fraction of the number of the
larger pages, leaving less flexibility in arranging the space.

The following command starts a server that reserves an 8§ Mb cache and can
accommodate databases of page sizes up to 4096 bytes.

dbsrve —-gp 4096 -c 8M -x tcpip -n myserver

Chapter 24 Monitoring and Improving Performance

In contrast, a small page size sometimes allows Adaptive Server Anywhere
to run with less resources because it can store more pages in a cache of the
same size. They are thus useful if your database must run on small machines
with limited memory. Small pages can also help in situations when you use
your database primarily to retrieve small pieces of information from random
locations.

The benefits of smaller pages are not always realized. Smaller pages hold
less information and may force less efficient use of space, particularly if you
insert rows that are slightly more than half a page in size.

Place different files on different devices

Disk drives operate much more slowly than modern processors or RAM.
Much of what slows a database server is waiting for the disk to read or write

pages.
You almost always improve database performance when you put different
physical database file on different physical devices. For example, while one
disk drive is busy writing out swapping database pages to and from the
cache, another device can be writing to the log file.

Notice that to gain these benefits, the two or more devices involved must be
independent. A single disk, partitioned into smaller logical drives, is unlikely
to yield benefits.

Adaptive Server Anywhere uses four types of files:
1 database (.db)

2 transaction log (./og)

3 transaction log mirror (.mlg)

4 temporary (.tmp)

The first is your database file. It holds the entire contents of your database.
A single database is contained in a single file. You choose a location for it
appropriate to your needs.

The second is the transaction log file. Effective recovery of the information
in your database in the event of a failure depends most on the transaction log
file. For extra protection, you can maintain a duplicate in a third type of file
called a transaction log mirror file. Adaptive Server Anywhere writes the
same information at the same time to each of these files.

627

Top performance tips

628

Tip

Locate the transaction log mirror file (if you use one) on a physically
separate drive. You gain better protection against disk failure and
Adaptive Server Anywhere will run faster because it can efficiently write
to the log and log mirror files simultaneously.

You can use the dblog transaction log utility to specify the location of the
transaction log and transaction log mirror files.

Adaptive Server Anywhere may need more space than is available to it in the
cache for such operations as sorting and forming unions. When it needs this
space, it generally uses it intensively. The overall performance of your
database becomes heavily dependent on the speed of the device containing
the fourth type of file, the temporary file.

Tip

Direct Adaptive Server Anywhere to place its temporary file on a fast
device, physically separate from that holding the database file. Adaptive
Server Anywhere runs faster because many of the operations that
necessitate using the temporary file also require retrieving a lot of
information from the database.

Adaptive Server Anywhere examines the following environment variables, in
the order shown, to determine a directory in which to place the temporary
file.

¢+ TMP
¢+ TMPDIR
¢+ TEMP

If none of these is defined, Adaptive Server Anywhere places its temporary
file in the current directory—not a good location for the best in performance.

If your machine has sufficient number of fast devices, you can gain even
more performance by placing each of these files on a separate device. You
can even divide your database into multiple data spaces, located on separate
devices. In such a case, group tables in the separate data spaces so that
common join operations will read information from different files.

Another similar strategy is to place the temporary and database files on a
RAID device. Although such devices act as a logical drive, they dramatically
improve performance by distributing files over many physical drives and
accessing the information using multiple heads.

& For information about data recovery, see "Backup and Data Recovery"
on page 553.

Chapter 24 Monitoring and Improving Performance

& For information about transaction log and transaction logs and the dbcc
utility, see "Administration utilities overview" on page 65 of the book
Adaptive Server Anywhere Reference Manual.

Turn off autocommit mode

If your application is running in autocommit mode, then Adaptive Server
Anywhere treats each of your statements as a separate transaction. In effect,
it is equivalent to appending a COMMIT statement to the end of each of your
commands.

Each application interface has its own way of setting autocommit behavior.
For the Open Client, ODBC, and JDBC interfaces, Autocommit is the default
behavior.

Instead of running in autocommit mode, you should consider grouping your
commands so that each group performs one logical task. If you do disable
autocommit, you must execute an explicit commit after each logical group of
commands. Also, be aware that if logical transactions are large, and a
isolation level of one or greater is used, blocking and deadlock can result.

The cost of using autocommit mode is particularly high if you are also not
using a transaction log file. Every statement forces a checkpoint—an
operation that can involve writing numerous pages of information to disk.

& For more information about autocommit, see "Setting autocommit or
manual commit mode" on page 218.

Defragment your drives

Your hard disk is excessively fragmented. This becomes more important as
your database increases in size. In particular, the Windows 3.x server cannot
do direct (fast) reading and writing when the database file is very
fragmented. There are several utilities available to defragment your hard
disk. One of these should be run periodically. You could put the database on
a disk partition by itself to eliminate fragmentation problems.

Use bulk operations methods

If you are loading huge amounts of information into your database, you can
benefit from the special tools provided for these tasks.

& See "Tuning bulk loading of data" on page 287 for methods to improve
performance during bulk operations.

629

Using keys to improve query performance

Using keys to improve query performance

Example

The foreign key and the primary key are used for validation purposes.
However, these keys are also used to improve performance where possible.

The following example illustrates how keys are used to make commands
execute faster.

SELECT *
FROM employee
WHERE emp id = 390

The simplest way for the server to perform this query would be to look at all
75 rows in the employee table and check the employee ID number in each
row to see if it is 390. This does not take very long since there are only 75
employees, but for tables with many thousands of entries the search can take
a long time.

The emp_id column is the primary key for the employee table. There is a
built-in index mechanism for finding primary and foreign key values quickly.
(This mechanism is used for the validation you saw in "Validity checking"
on page 267 of the book First Guide to SOQL Anywhere Studio.)

The same mechanism is used automatically to find the employee number 390
quickly. This quick search takes almost the same amount of time whether
there are 100 rows or 1,000,000 rows in the table.

Using Interactive SQL to examine query performance

630

The Interactive SQL Statistics window tells you when keys are being used to
improve performance.

Chapter 24 Monitoring and Improving Performance

Information in the
statistics window

amp_id sk
L1 8 R
5
1
14
[}
B % Hakise
1% L]
1 D Wmc

i
L
1z

Fnlistics
T o il [e 1)
Bl b g o i i1

welert
lram pmplirges

If you execute a query to look at every row in the employee table:

SELECT *
FROM employee

two lines appear in the Statistics window:
75 rows in query (I/0O estimate 14)
PLAN> employee (seq)

The first line indicates the number of rows in the query. Sometimes the
database knows exactly, as in this case where there are 75 rows; other times
it estimates the number of rows. The first line also indicates an internal I/O
estimate of how many times the server will have to look at the database on
your hard disk to examine the entire employee table.

The second line summarizes the execution plan for the query: the tables that
are searched, any indexes used to search through a table. This plan says that
the server will look at the employee table sequentially (that is, one page at a
time, in the order that the rows appear on the pages). The letters seq inside
parentheses mean that all the rows of the table need to be examined. This
makes sense, since the query fetches the entire table.

631

Using keys to improve query performance

Resetting statistics You may notice, when working through the tutorial yourself, that the
statistics window contains estimates than are different from what is given
here. This may happen because the optimizer has decided to optimize a query
differently. The optimizer maintains statistics as it evaluates queries and uses
these statistics to optimize subsequent queries. These statistics can be reset
by executing the following statement:

DROP OPTIMIZER STATISTICS

Note that you must have DBA authority to execute this statement. In
production environments, dropping the optimizer statistics can cause queries
to execute slower, as the optimizer has less information about the actual
distribution of data in the database tables.

Using primary keys to improve query performance

A primary key is used to improve performance on the following statement:

SELECT *
FROM employee
WHERE emp id = 390

Statistic window The statistics window contains the following two lines:

information Estimated 1 rows in query (I/O estimate 2)

PLAN> employee (employee)

Whenever the name inside the parentheses in the Statistics window PLAN
description is the same as the name of the table, it means that the primary
key for the table is used to improve performance. Also, the Statistics window
shows that the database optimizer estimates that there will be one row in the
query and that it will have to go to the disk twice.

Using foreign keys to improve query performance

The following query lists the orders from customer with customer ID 113:

SELECT *
FROM sales order
WHERE cust id = 113

Statistic window The statistics window contains the following information:
information Estimated 2 rows in query (I/O estimate 2)
PLAN> sales_order (ky_so_customer)

Here ky_so_customer refers to the foreign key that the sales_order table
has for the customer table.

632

Chapter 24 Monitoring and Improving Performance

Primary and foreign keys are just special indexes that also maintain entity
and referential integrity. The integrity is maintained by extra information that
is placed in the indexes.

633

Using indexes to improve query performance

Using indexes to improve query performance

Creating an index

How indexes are
used

634

Sometimes you need to search for something which is not in a primary or
foreign key. In this case, a key cannot be used to improve performance.
Creating indexes speeds up searches on particular columns. For example,
suppose you wanted to look up all the employees with a last name beginning
with M.

A query for this is as follows:

SELECT *
FROM employee
WHERE emp lname LIKE 'M%'

If you execute this command, the plan description in the Interactive SQL
Statistics window shows that the table is searched sequentially.

If a search by employee last names is common, you may wish to create an
index on the emp_Iname column in order to speed up the queries. You can
do this with a CREATE INDEX statement.

CREATE INDEX lname
ON employee (emp lname)

The column name emp_Iname indicates the column that is indexed. An
index can contain one, two, or more columns. However, if you create a
multiple-column index, and then do a search with a condition using only the
second column in the index, the index cannot be used to speed up the search.

An index is similar to a telephone book, which first sorts people by their last
name, and then all the people with the same last name by their first name. A
telephone book is useful if you know the last name, even more useful if you
know both the first name and last name, but worthless if you only know the
first name and not the last name.

Once you have created the index, rerunning the query produces the following
plan description in the Statistics window:

PLAN> employee (Iname)

Indexes are used automatically. Once an index is created, it is automatically
kept up to date and used to improve performance whenever it can.

You could create an index for every column of every table in the database.
But that would make data modifications slow, since all indexes affected by
the change have to be updated. Further, each index requires space in the
database. For these reasons, you should only create indexes that are used
frequently.

Since you will not be using this index again, you should delete it by entering
the following statement:

Chapter 24 Monitoring and Improving Performance

DROP INDEX lname

How indexes work

Index page
structure

An index lookup

Recommended
page sizes

This section provides a technical description of how the server uses indexes
when searching databases.

The Adaptive Server Anywhere query processor uses modified B+ trees.
Each index page is a node in the tree and each node has many index entries.
Leaf page index entries have a reference to a row of the indexed table.
Indexes are kept balanced (uniform depth) and pages are kept close to full.

An index lookup starts with the root page. The index entries on a nonleaf
page determine which child page has the correct range of values. The index
lookup moves down to the appropriate child page. This continues until a leaf
page is reached. An index with N levels will require N reads for index pages
and 1 read for the data page that contains the actual row. Index pages tend to
be cached due to the frequency of use.

About the first 10 bytes of data for each index entry are stored in the index
pages. This allows for a fan-out of roughly 200 using 4K pages, meaning that
200 rows can be indexed on one page, and 40,000 rows can be indexed with
a two-level index. Each new level of an index allows for a table 200 times
larger. Page size can significantly affect fan-out, in turn affecting the depth
of index required for a table. 4K pages are recommended for large databases.

The leaf nodes of the index are linked together. Once a row has been looked
up, the rows of the table can be scanned in index order. Scanning all rows
with a given value requires only one index lookup, followed by scanning the
leaf nodes of the index until the value changes. This occurs when you have a
WHERE clause that filters out rows with a certain value or a range of values.
It also occurs when joining rows in a one-to-many relationship.

635

Search strategies for queries from more than one table

Search strategies for queries from more than

one table

Using a key join

Adding a WHERE
clause

636

This section uses sample queries to illustrate how the server selects an
optimal processing route for each query. If you execute each of the
commands in this section in Interactive SQL, the Statistics window display
shows you the execution plan chosen to process each query.

The following simple query uses a key join to search more than one table:

SELECT customer.company name, sales order.id
FROM sales order
KEY JOIN customer

The Statistics window displays the following:
Estimated 711 rows in query (/O estimate 2)
PLAN> customer(seq), sales_order(ky_so_customer)

When this query is executed, the Interactive SQL Statistics window display
indicates that Adaptive Server Anywhere first examines each row in the
customer table, then finds the corresponding sales order numbers in the
sales_order table using the ky_so_customer foreign key joining the
sales_order and customer tables.

The order that the tables are listed in the Statistics window is the order that
the tables are accessed by the database.

If you modify the query by adding a WHERE clause, as follows, the search
is carried out in a different order:

SELECT customer.company name, sales order.id
FROM sales order

KEY JOIN customer

WHERE sales order.id = 2583

The Statistics windows displays the following plan:
PLAN> sales_order(sales_order), customer(customer)

Now, Adaptive Server Anywhere looks in the sales_order table first, using
the primary key index. Then, for each sales order numbered 2583 (there is
only one), it looks up the company_name in the customer table using the
customer table primary key to identify the row. The primary key can be used
here because the row in the sales_order table is linked to the rows of the
customer table by the customer id number, which is the primary key of the
customer table.

Chapter 24 Monitoring and Improving Performance

Example 1

Example 2

Example 3

.

The tables are examined in a different order depending on the query. The
Adaptive Server Anywhere built-in query optimizer estimates the cost of
different possible execution plans, and chooses the plan with the least
estimated cost.

For some more complicated examples, try the following commands which
each join four tables. The Interactive SQL statistics window shows that each
query is processed in a different order.

To list the customers and the sales reps they have dealt with.

¢ Type the following:

SELECT customer.lname, employee.emp lname
FROM customer

KEY JOIN sales order

KEY JOIN sales order items

KEY JOIN employee

Iname emp_Ilname
Colburn Chin
Smith Chin
Sinnot Chin
Piper Chin
Phipps Chin

The plan for this query is as follows:

PLAN> employee (seq), sales_order (ky_so_employee_id),
customer (customer), sales_order_items (id_fk)

The following command restricts the results to list all sales reps that the
customer named Piper has dealt with:

SELECT customer.lname, employee.emp lname
FROM customer

KEY JOIN sales order

KEY JOIN sales order items

KEY JOIN employee
WHERE customer.lname = 'Piper'

The plan for this query is as follows:

PLAN> customer (ix_cust_name), sales_order (ky_so_customer),
employee (employee), sales_order_items (id_fk)

The third example shows all customers who have dealt with a sales
representative who has the same name that they have:

637

Search strategies for queries from more than one table

SELECT customer.lname, employee.emp lname
FROM customer

KEY JOIN sales order

KEY JOIN sales order items

KEY JOIN employee
WHERE customer.lname = employee.emp lname

The plan for this query is as follows:

PLAN> employee (seq), customer (ix_cust_name),
sales_order (ky_so_employee_id), sales_order_items (id_fk)

& For information on how the optimizer selects a strategy for each search,
see "How the optimizer works" on page 641.

638

Chapter 24 Monitoring and Improving Performance

Sorting query results

Queries with WHERE
and ORDER BY
clauses

Solving the
problem

Many queries against a database have an ORDER BY clause so that the rows
come out in a predictable order. Indexes are used to accomplish the ordering
quickly. For example,

SELECT *
FROM customer
ORDER BY customer. lname

can use the index on the Iname column of the customer table to access the
rows of the customer table in alphabetical order by last name.

A potential problem arises when a query has both a WHERE clause and an
ORDER BY clause.

SELECT *

FROM customer

WHERE id > 300

ORDER BY company name

The server must decide between two strategies:

1 Go through the entire customer table in order by company name,
checking each row to see if the customer id is greater than 300.

2 Use the key on the id column to read only the companies with id greater
than 300. The results would then need to be sorted by company name.

If there are very few id values greater than 300, the second strategy is better
because only a few rows are scanned and quickly sorted. If most of the id
values are greater than 300, the first strategy is much better because no
sorting is necessary.

The example above could be solved by creating a two-column index on id
and company_name. (The order of the two columns is important.) The
server could then use this index to select rows from the table and have them
in the correct order. However, keep in mind that indexes take up space in the
database file and involve some overhead to keep up to date. Do not create
indexes indiscriminately.

639

Temporary tables used in query processing

Temporary tables used in query processing

When temporary
tables occur

Notes

640

Sometimes Adaptive Server Anywhere needs to make a temporary table for
a query. This occurs in the following cases:

¢ When a query has an ORDER BY or a GROUP BY clause and Adaptive
Server Anywhere does not use an index for sorting the rows, no suitable
index exists.

¢ When a multiple-row UPDATE is being performed and the column
being updated is used in the WHERE clause of the update or in an index
that is being used for the update.

¢ When a multiple-row UPDATE or DELETE has a subquery in the
WHERE clause that references the table that is being modified.

¢ When an INSERT from a SELECT statement is being performed and the
SELECT statement references the insert table.

¢ When a multiple row INSERT, UPDATE, or DELETE is performed,
and there are triggers defined on the table that the operation causes to
fire.

In these cases, Adaptive Server Anywhere makes a temporary table before
the operation begins. The records affected by the operation are put into the
temporary table and a temporary index is built on the temporary table. This
operation of extracting the required records into a temporary table can take a
significant amount of time before any rows at all are retrieved from the
query. Thus, creating indexes that can be used to do the sorting in first case,
above, will improve the performance of these queries since it will not be
necessary to build a temporary table.

The INSERT, UPDATE and DELETE cases above are usually not a
performance problem since they are usually one-time operation. However, if
problems occur, the only thing that can be done to avoid building a
temporary table is to rephrase the command to avoid the conflict. This is not
always possible.

In Interactive SQL, the Statistics window displays "TEMPORARY TABLE"
before the optimization strategy is listed if a temporary table is created by
Adaptive Server Anywhere in carrying out the search.

Chapter 24 Monitoring and Improving Performance

How the optimizer works

Adaptive Server Anywhere has an optimizer that attempts to pick the best
strategy for executing each query. The best strategy is the one that gets the
results in the shortest period of time. The optimizer determines the cost of
each strategy by estimating the number of disk reads and writes required.
The strategy with the lowest cost is chosen.

The optimizer must decide which order to access the tables in a query, and
whether or not to use an index for each table. If a query joins N tables, there
are N factorial possible ways to access the tables. The optimizer will estimate
the cost of executing the query in the different ways and use the ordering
with the lowest cost estimate. The query execution plan in the Interactive
SQL statistics window shows the table ordering for the current query and
indicates in parentheses the index that was used for each table.

& This section provides an introduction to the optimizer. For more
information, see "Query Optimization" on page 653.

Optimizer estimates

Single-column
examples

The optimizer uses heuristics (educated guesses) to help decide the best
strategy.

For each table in a potential execution plan, the optimizer must estimate the
number of rows that will be part of the results. The number of rows will
depend on the size of the table and the restrictions in the WHERE clause or
the ON clause of the query.

In many cases, the optimizer uses more sophisticated heuristics. For
example, a default estimate for equality is only used in cases where no better
statistics are available.

The optimizer makes use of indexes and keys to improve its guess of the
number of rows. Here are a few single-column examples:

¢ Equating a column to a value: estimate one row when the column has a
unique index or is the primary key.

¢ A comparison of an indexed column to a constant: use the index to
estimate the percentage of rows that will satisfy the comparison.

¢ Equating a foreign key to a primary key (key join): use relative table
sizes in determining an estimate. For example, if a 5000 row table has a
foreign key to a 1000 row table, the optimizer guesses that there are five
foreign rows for each primary row.

641

How the optimizer works

Self tuning of the query optimizer

One of the most common constraints in a query is equality with a column
value. For example,

SELECT *
FROM employee
WHERE sex = 'f'

tests for equality of the sex column. For this type of constraint, the Adaptive
Server Anywhere optimizer learns from experience. A query will not always
be optimized the same way the second time it is executed. The estimate for
an equality constraint will be modified for columns that have an unusual
distribution of values. This information is stored permanently in the
database. If needed, the statistics can be deleted with the DROP
OPTIMIZER STATISTICS command.

Providing estimates to improve query performance

Supplying an
estimate

642

Since the query optimizer is guessing at the number of rows in a result based
on the size of tables and particular restrictions used in the WHERE clause, it
almost always makes inexact guesses. In many cases, the guess that the
query optimizer makes is close enough to the real number of rows that the
optimizer will have chosen the best search strategy. However, in some cases
this does not occur.

The following query displays a list of order items that shipped later than the
end of June, 1994

SELECT ship date

FROM sales order items

WHERE ship date > '1994/06/30'
ORDER BY ship date DESC

The estimated number of rows is 274. However, the actual number of rows
returned is only 12. This estimate is wrong because the query optimizer
guesses that a test for greater than will succeed 25 percent of the time. In this
example, the condition on the ship_date column:

ship date > '1994/06/30"
is assumed to choose 25 percent of rows in the sales_order_items table.

If you know that a condition has a success rate that differs from the optimizer
rule, you can tell the database this information by using an estimate. An
estimate is formed by enclosing in brackets the expression followed by a
comma and a number. The number represents the percentage of rows that the
expression is estimated to select. In this case, you could estimate a success
rate of one percent:

Chapter 24 Monitoring and Improving Performance

SELECT ship date

FROM sales order items

WHERE (ship date > '1994/06/30', 1)
ORDER BY ship date DESC

With this estimate, the optimizer estimates ten rows in the query.

Note Incorrect estimates are only a problem if they lead to poorly optimized
queries.

& For further information about the optimizer and query optimization, see
"Query Optimization" on page 653.

643

Monitoring database performance

Monitoring database performance

Adaptive Server Anywhere provides a set of statistics that can be used to
monitor database performance. These are accessible from Sybase Central,
and client applications can access the statistics as functions. In addition,
these statistics are made available by the server to the Windows NT
performance monitor.

This section describes how to access performance and related statistics from
client applications, how to monitor database performance using Sybase
Central, and how to monitor database performance using the Windows NT
performance monitor.

Obtaining database statistics from a client application

Functions that
retrieve system
information

644

Adaptive Server Anywhere provides a set of system functions that can access
information on a per-connection, per-database, or engine-wide basis. The
kind of information available ranges from static information such as the
server name to detailed performance-related statistics concerning disk and
memory usage.

The performance-related statistics are also available, along with some other
statistics, for the Windows NT engine and server in the Windows NT
Performance Monitor.

& For more information on the Performance Monitor, see "Monitoring
database statistics from the Windows NT Performance Monitor" on page
646.

This section illustrates how to use the functions.

& A complete list of system functions and of their properties is provided
in the section "System functions" on page 276 of the book Adaptive Server
Anywhere Reference Manual.

The following functions are used to retrieve system information:

¢ property Provides the value of a given property on an engine-wide
basis

¢ connection_property Provides the value of a given property for a
given connection, or for the current connection by default.

¢ db_property Provides the value of a given property for a given
database, or for the current database by default.

Supply as an argument only the name of the property you wish to retrieve,
the functions return the value for the current server, connection, or database.

Chapter 24 Monitoring and Improving Performance

Examples ¢ The following statement sets a variable named server_name to the
name of the current server:

SET server name = property('name')

¢ The following query returns the user ID for the current connection:

SELECT connection property('userid')

¢ The following query returns the filename for the root file of the current
database:

SELECT db property('file')

Improving query For maximum efficiency, a client application monitoring database activity

efficiency should use the property_number function to identify a named property, and
then use the number to repeatedly retrieve the statistic. The following set of
statements illustrates the process from Interactive SQL:

CREATE VARIABLE propnum INT ;

CREATE VARIABLE propval INT ;

SET propnum = property number ('cacheread');
SET propval = property(propnum)

Property names obtained in this way are available for many different
database statistics, from the number of transaction log page write operations
and the number of checkpoints carried out to the number of reads of index
leaf pages from the memory cache.

Many of these statistics are made available in graphical form from the
Sybase Central database management tool.

Monitoring database statistics from Sybase Central

You can monitor database statistics from Sybase Central. The Sybase Central
Performance Monitor is a graphing tool that can present database statistics as
a line graph or a bar graph.

.

% To start the Sybase Central Performance Monitor:
1 Click the icon for the server you wish to monitor in the left panel.
2 Double-click the Statistics folder underneath the server.

3 Select a statistic to graph, and drag it to the Performance Monitor icon to
start graphing that statistic.

645

Monitoring database performance

About the
performance
monitor

The Performance Monitor uses the regular Adaptive Server Anywhere
communication mechanisms to gather statistics. This means some statistics
(most notably Cache Reads) are affected by Sybase Central. For example,
graphing Cache Reads/sec in Sybase Central shows a steady rate, even when
nothing apart from the monitoring is going on.

If you have a Windows NT client and server, the Windows NT Performance
monitor is preferable since it offers more statistics, and is not intrusive:
updating the statistics will not affect the measurements. The extra statistics
the Windows NT performance monitor offers deal mainly with network
communications—packets received, network buffers used, and so on.

Monitoring database statistics from the Windows NT Performance

Monitor

646

The Windows NT performance monitor is an application for viewing the
behavior of objects such as processors, memory, and applications. Adaptive
Server Anywhere provides many statistics for the performance monitor to
display.

The Windows NT performance monitor allows unintrusive monitoring of
statistics: updating the statistics does not affect the measurements.

To start the Windows NT performance monitor:
1 Open the Administrative Tools program group.

2 Double click Performance Monitor.

&> For information about Performance Monitor, see the Performance
Monitor online Help.

To display database statistics:

1 With Performance Monitor running, select Add To Chart from the Edit
menu, or click the Plus sign on the toolbar.

The Add To Chart dialog appears.
2 From the Object list, select Adaptive Server Anywhere.

The Counter list then displays a list of the statistics provided.
3 From the Counter list, click a statistic to be displayed.
4 For a description of the selected counter, click Explain.

5 To display the counter, click Add.

Chapter 24 Monitoring and Improving Performance

Performance
Monitor statistics

6 When you have selected all the counters you wish to display, click

Done.

The statistics made available for Performance Monitor by Adaptive Server
Anywhere are as follows:

Statistic

Description

Active Requests

Asynchronous
Reads/sec

Asynchronous
Writes/sec

Bytes Received/sec

Bytes
Transmitted/sec

Cache Hits/sec

Cache Index
Internal Reads/sec

Cache Index Leaf
Reads/sec

Cache Reads/sec

Cache Table
Reads/sec

Cache Writes/sec

Checkpoint
Flushes/sec

Checkpoint
Log/sec

Checkpoint
Urgency

Checkpoints/sec

Commit files/sec

Active Requests is the number of engine threads that are
currently handling a request.

Asynchronous Reads/sec is the rate at which pages are
being read asynchronously from disk.

Asynchronous Writes/sec is the rate at which pages are
being written asynchronously to disk.

Bytes Received/sec is the rate at which network data (in
bytes) are being received.

Bytes Transmitted/sec is the rate at which bytes are being
transmitted over the network.

Cache Hits/sec is the rate at which database page lookups
are satisfied by finding the page in the cache.

Cache Index Internal Reads/sec is the rate at which index
internal-node pages are being read from the cache.

Cache Index Leaf Reads/sec is the rate at which index leaf
pages are being read from the cache.

Cache Reads/sec is the rate at which database pages are
being looked up in the cache.

Cache Table Reads/sec is the rate at which table pages are
being read from the cache.

Cache Writes/sec is the rate at which pages in the cache are
being modified (in pages/sec).

Checkpoint Flushes/sec is the rate at which ranges of
adjacent pages are being written out during a checkpoint.

Checkpoint Log/sec is the rate at which the transaction log
is being checkpointed.

Checkpoint Urgency is expressed as a percentage.

Checkpoints/sec is the rate at which checkpoints are being
performed.

Commit files/sec is the rate at which the engine is forcing a
flush of the disk cache. On Windows NT and NetWare
platforms, the disk cache does not need to be flushed
because unbuffered (direct) I/O is used.

647

Monitoring database performance

648

Statistic

Description

Commits/sec

Context Switch
Checks/sec

Context
Switches/sec

Continue
Requests/sec

Corrupt
Packets/sec

Current 10

Current Reads

Current Writes

Cursor

Dirty Pages

Disk Index Internal
Reads/sec

Disk Index Leaf
Reads/sec

Disk Reads/sec

Disk
SyncReads/sec

Disk SyncWrite
Other/sec

Disk SyncWrites
Checkpoint/sec

Disk SyncWrites
Extend/sec

Disk SyncWrites
Free Current/sec

Commits/sec is the rate at which Commit requests are being
handled.

Context Switch Checks/sec is the rate at which the current
engine thread is volunteering to give up the CPU to another
engine thread.

Context Switches/sec is the rate at which the current engine
thread is being changed.

Continue Requests/sec is the rate at which "CONTINUE"
requests are being issued to the engine.

Corrupt Packets/sec is the rate at which corrupt network
packets are being received.

Current 10 is the current number of file I/Os issued by the
engine which have not yet completed.

Current Reads is the current number of file reads issued by
the engine which have not yet completed.

Current Writes is the current number of file writes issued by
the engine which have not yet completed.

Cursor is the number of declared cursors that are currently
being maintained by the engine.

Dirty Pages is the number of pages in the cache which must
be written out and which do not belong to temporary files.

Disk Index Internal Reads/sec is the rate at which index
internal-node pages are being read from disk.

Disk Index Leaf Reads/sec is the rate at which index leaf
pages are being read from disk.

Disk Reads/sec is the rate at which pages are being read
from file.

Disk SyncReads/sec is the rate at which pages are being
read synchronously from disk.

Disk SyncWrite Other/sec is the rate at which pages are
being written synchronously to disk for a reason not covered
by other "Disk SyncWrites /sec" counters.

Disk SyncWrites Checkpoint/sec is the rate at which pages
are being written synchronously to disk for a checkpoint.

Disk SyncWrites Extend/sec is the rate at which pages are
being written synchronously to disk while extending a
database file.

Disk SyncWrites Free Current/sec is the rate at which pages
are being written synchronously to disk to free a page that

Chapter 24 Monitoring and Improving Performance

Statistic Description
cannot remain in the in-memory free list.
Disk SyncWrites Disk SyncWrites Free Push/sec is the rate at which pages

Free Push/sec

Disk SyncWrites
Log/sec

Disk SyncWrites
Rollback/sec

Disk
SyncWrites/sec

Disk Table
Reads/sec

Disk Waitreads/sec

Disk
Waitwrites/sec

Disk Writes/sec

Dropped
Packets/sec

Extend
Database/sec

Extend Temporary
File/sec

Free Buffers

Freelist Write
Current/sec

Freelist Write
Push/sec
Full compares/sec

10 to Recover

Idle Active/sec

are being written synchronously to disk to free a page that
can remain in the in-memory free list.

Disk SyncWrites Log/sec is the rate at which pages are
being written synchronously to the transaction log.

Disk SyncWrites Rollback/sec is the rate at which pages are
being written synchronously to the rollback log.

Disk SyncWrites/sec is the rate at which pages are being
written synchronously to disk. It is the sum of all the other
"Disk SyncWrites /sec" counters.

Disk Table Reads/sec is the rate at which table pages are
being read from disk.

Disk Waitreads/sec is the rate at which the engine is waiting
synchronously for the completion of a read 1O operation
which was originally issued as an asynchronous read.
Waitreads often occur due to cache misses on systems that
support asynchronous IO.

Disk Waitwrites/sec is the rate at which the engine is
waiting synchronously for the completion of a write IO
operation which was originally issued as an asynchronous
write.

Disk Writes/sec is the rate at which modified pages are
being written to disk.

Dropped Packets/sec is the rate at which network packets
are being dropped due to lack of buffer space.

Extend Database/sec is the rate (in pages/sec) at which the
database file is being extended.

Extend Temporary File/sec is the rate (in pages/sec) at
which temporary files are being extended.

Number of free network buffers.

Freelist Write Current/sec is the rate at which pages that
cannot remain in the in-memory free list are being freed.

Freelist Write Push/sec is the rate at which pages that can
remain in the in-memory free list are being freed.

Full compares/sec is the rate at which comparisons beyond
the hash value in an index must be performed.

10 to Recover is the estimated number of 10 operations
required to recover the database.

Idle Active/sec is the rate at which the engine's idle thread

649

Monitoring database performance

650

Statistic Description
becomes active to do idle writes, idle checkpoints, etc.
Idle Idle Checkpoints/sec is the rate at which checkpoints are
Checkpoints/sec completed by the engine's idle thread. An idle checkpoint
occurs whenever the idle thread writes out the last dirty
page in the cache.
Idle Waits/sec Idle Waits/sec is the number of times per second that the

Idle Writes/sec

Index Fills

Index Merges

Index adds/sec

Index lookups/sec

Lock Table Pages

Main Heap Pages

Map Pages

Maximum 10

Maximum Reads

Maximum Writes

Multi-packets

Received/sec

Multi-packets
Transmitted/sec

Open cursors

Packets
Received/sec

Packets
Transmitted/sec

server goes idle waiting for IO completion or a new request.

Idle Writes/sec is the rate at which disk writes are being
issued by the engine's idle thread.

Index Fills is the number of times a new temporary merge
index is created.

Index Merges is the number of times a temp index has been
merged into a main index

Index adds/sec is the rate at which entries are being added to
indexes.

Index lookups/sec is the rate at which entries are being
looked up in indexes.

Lock Table Pages is the number of pages used to store lock
information.

Main Heap Pages is the number of pages used for global
engine data structures.

Map Pages is the number of map pages used for accessing
the lock table, frequency table, and table layout.

Maximum IO is the maximum value that "Current 10" has
reached.

Maximum Reads is the maximum value that "Current
Reads" has reached.

Maximum Writes is the maximum value that "Current
Writes" has reached.

Multi-packets Received/sec is the rate at which multi-packet
deliveries are being received.

Multi-packets Transmitted/sec is the rate at which multi-
packet deliveries are being transmitted.

Open cursors is the number of open cursors that are
currently being maintained by the engine.

Packets Received/sec is the rate at which network packets
are being received.

Packets Transmitted/sec is the rate at which network
packets are being transmitted.

Chapter 24 Monitoring and Improving Performance

Statistic Description

Page Page Relocations/sec is the rate at which relocatable heap

Relocations/sec pages are being read from the temporary file.

Pending Pending requests/sec is the rate at which the engine is

requests/sec detecting the arrival of new requests.

Pingl/sec Ping1/sec is the rate at which ping requests which go all the
way down into the engine are serviced.

Ping2/sec Ping2/sec is the rate at which ping requests which are turned

Procedure Pages

Read Hints
Used/sec

Read Hints/sec
Recovery Urgency
Redo Free

Commits/sec

Redo Rewrites/sec

Redo Writes/sec

Relocatable Heap
Pages

Remoteput
Wait/sec

Requests/sec

Rereads
Queued/sec

around at the top of the protocol stack are serviced.

Procedure Pages is the number of relocatable heap pages
used for procedures.

Read Hints Used/sec is the rate at which page-read
operations are being satisfied immediately from cache
thanks to an earlier read hint.

A read hint is an asynchronous read operation for a page
that the server is likely to need soon. Read Hints/sec is the
rate at which such read operations are being issued.

Recovery Urgency is expressed as a percentage.

A "Redo Free Commit" occurs when a commit of the
transaction (redo) log is requested but the log has already
been written (so the commit was done for "free").

Redo Rewrites/sec is the rate at which pages that were
previously written to the transaction log (but were not full)
are being written to the transaction log again (but with more
data added).

Redo Writes/sec is the rate at which pages are being written
to the transaction (redo) log.

Relocatable Heap Pages is the number of pages used for
relocatable heaps (cursors, statements, procedures, triggers,
views, etc.).

Remoteput Wait/sec is the rate at which the communication
link must wait because it does not have buffers available to
send information. This statistic is collected for NetBIOS
(both sessions and datagrams) and IPX protocols only.

Requests/sec is the rate at which the engine is being entered
to allow it to handle a new request or continue processing an
existing request.

A reread occurs when a read request for a page is received
by the database 10 subsystem while an asynchronous read
10 operation has been posted to the operating system but
has not completed. Rereads Queued/sec is the rate at which
this condition is occurring.

651

Monitoring database performance

652

Statistic Description
Rereceived Rereceived Packets/sec is the rate at which duplicate
Packets/sec network packets are being received.

Retransmitted
Packets/sec

Rollback Log
Pages

Rollback/sec

Adaptive Server
Anywhere

Sends Failed/sec

Statement

TotalBuffers
Trigger Pages

Unscheduled
requests

View Pages
Voluntary

blocks/sec

Waitread Full
Compare/sec

Waitread
Optimizer/sec

Waitread Other/sec

Waitread
SysConnection/sec

Waitread

Retransmitted Packets/sec is the rate at which network
packets are being retransmitted.

Rollback Log Pages is the number of pages in the rollback
log.

Rollback/sec is the rate at which Rollback requests are
being handled.

The Adaptive Server Anywhere object provides information
about the database server.

Sends Failed/sec is the rate at which the underlying
protocol(s) failed to send a packet.

Statement is the number of prepared statements that are
currently being maintained by the engine.

TotalBuffers number of network buffers.

Trigger Pages is the number of relocatable heap pages used
for triggers.

Unscheduled requests is the number of requests that are
currently queued up waiting for an available engine thread.

View Pages is the number of relocatable heap pages used
for views.

Voluntary blocks/sec is the rate at which engine threads
voluntarily block on pending disk IO.

Waitread Full Compare/sec is the rate at which read
requests associated with a full comparison (a comparison
beyond the hash value in an index) must be satisfied by a
synchronous read operation.

Waitread Optimizer/sec is the rate at which read requests
posted by the optimizer must be satisfied by a synchronous
read operation.

Waitread Other/sec is the rate at which read requests from
other sources must be satisfied by a synchronous read
operation.

Waitread SysConnection/sec is the rate at which read
requests posted from the system connection must be
satisfied by a synchronous read operation. The system
connection is a special connection that is used as the context
before a connection is made and for operations performed
outside of a client connection.

Waitread Temporary Table/sec is the rate at which read

Chapter 24 Monitoring and Improving Performance

Statistic | Description
Temporary requests for a temporary table must be satisfied by a
Table/sec synchronous read operation.

653

