CHAPTER 25

Query Optimization

About this chapter

Contents

Once each query is parsed, the optimizer analyzes it and decides on an access

plan that will compute the result using as few resources as possible. This

chapter describes the steps that the optimizer must go through to optimize a

query. It begins with the assumptions that underlie the design of the

optimizer, then proceeds to discuss selectivity estimation, cost estimation,

and the other steps of optimization.

Update, insert, and delete statements must also be optimized, but the focus of
this chapter is on queries. The optimization of these other commands follows

similar principles.

Topic Page
The role of the optimizer 654
Steps in optimization 656
Reading access plans 657
Underlying assumptions 659
Physical data organization and access 664
Indexes 667
Predicate analysis 669
Semantic query transformations 671
Selectivity estimation 675
Join enumeration and index selection 681
Cost estimation 683
Subquery caching 684

653

The role of the optimizer

The role of the optimizer

Cost based

Syntax
independent

A good plan, not
necessarily the
best plan

654

The role of the optimizer is to devise an efficient way to execute the SQL
statement. The optimizer expresses its chosen method in the form of an
access plan. The access plan describes which tables to scan, which index, if
any, to use for each table, and the order in which the tables are to be read.

Often, a great number of plans exist that all accomplish the same goal. Other
variables may further enlarge the number of possible access plans.

A single statement can contain multiple subqueries. A portion of an access
plan that describes how to satisfy a single subquery, including table
permutation and access methods, is called a join strategy. When a subquery
refers to many tables, the number of possible join strategies can become very
large. For example, if seven tables must be joined to execute a subquery,
then the optimizer must select one of the 7! = 5040 orders in which these
tables could be accessed. It must also decide which index, if any, to use when
accessing each table.

The optimizer begins selecting for the choices available using efficient, and
in some cases proprietary, algorithms. It bases its decisions on predictions of
the resources that each will require. The optimizer takes into account both
the cost of disk access operations and the estimated CPU cost of each
operation.

Most commands may be expressed in many different ways using the SQL
language. These expressions are semantically equivalent, in that they
accomplish the same task, but may differ substantially in syntax. With few
exceptions, the Anywhere optimizer devises a suitable access plan based
only on the semantics of each statement.

Syntactic differences, although they may appear substantial, usually have no
effect. For example, differences in the order of predicates, tables, and
attributes in the query syntax have no affect on the choice of access plan.
Neither is the optimizer affected by whether or not a query contains a view.

The goal of the optimizer is to find a good access plan. Ideally, the optimizer
would identify the most efficient access plan possible, but this goal is often
impractical. Given a complicated query, a great number of possibilities may
exist.

However efficient the optimizer, analyzing each option takes time and
resources. The optimizer is conscious of the resources it is using. It
periodically compares the cost of further optimization with the cost of
executing the best plan it has found so far. If a plan has been devised that has
a relatively low cost, the optimizer stops and allows execution of that plan to
proceed. Further optimization might consume more resources than would
execution of an access plan already found.

Chapter 25 Query Optimization

The governor limits
the optimizer's
work

The governor is the part of the optimizer that performs this limiting function.
It lets the optimizer run until it has analyzed a minimum number of
strategies. Once a reasonable number of strategies have been considered, the
governor cuts off further analysis.

In the case of expensive and complicated queries, the optimizer will work
longer. In the case of very expensive queries, it may run long enough to
cause a discernable delay.

655

Steps in optimization

Steps in optimization

656

The steps that the Anywhere optimizer follows in generating a suitable
access plan are as follows.

1

4
5

The parser converts the query, expressed in SQL, into an internal
representation. In doing so, it may rewrite the query, converting it to a
syntactically different, but semantically equivalent, form. These
conversions make the statement easier to analyze.

Optimization proper commences at OPEN CURSOR. Unlike many other
commercial database systems, Anywhere optimizes each statement at
the time it executes it.

Perform semantic optimization on the statement. The command is
rewritten whenever doing so will lead to better, more efficient, access
plans.

Perform join enumeration and group-by optimization for each subquery.

Optimize access order.

Because Anywhere performs just-in time optimization of each statement, the
optimizer has access to the value of host variables and stored procedure
variables. Hence, it can make better choices because it can perform better
selectivity analysis.

Should you execute the same query repeatedly, it is optimized again each
time. Because Anywhere saves statistics each time it executes a query, the
optimizer also is afforded the opportunity of learning from the experience of
executing previous plans and can adjust its choices when appropriate.

Chapter 25 Query Optimization

Reading access plans

Commas separate
tables within a join
strategy

Temporary tables

Colons separate
join strategies

The optimizer can tell you the plan it has chosen in response to any
statement. If you are using Interactive SQL, you can simply look to the
Statistics window. Otherwise, you can use the PLAN function to ask
Anywhere to return a plan

The optimizer can rewrite your query

The optimizer's job is to understand the semantics of your query and to
construct a plan that computes its result. This plan may not correspond
exactly to the syntax you used. The optimizer is free to rewrite your query
in any semantically equivalent form.

Join strategies in plans appear as a list of correlation names. Each correlation
name is followed immediately, in brackets, by the method to be used to
locate the required rows. This method is either the word seq, which indicates
that the table is to be scanned sequentially, or it is the name of an index. The
name of a primary index is the name of the table.

The following self-join creates a list of employees and their managers.

SELECT e.emp fname, m.emp fname
FROM employee AS e JOIN employee AS m
ON e.manager id = m.emp id

PLAN> e (seq), m (employee)

To compute this result, Adaptive Server Anywhere will first access the
employee table sequentially. For each row, it will access the employee table
again, but this time using the primary index.

To execute some query results, Adaptive Server Anywhere must use a
temporary table, or may choose to use one to lower the overall cost of
computing the result. When a temporary table will be used for a join strategy,
the words TEMPORARY TABLE precede the description of that strategy.

SELECT DISTINCT gquantity
FROM sales order items

PLAN> TEMPORARY TABLE sales_order_items (seq)

A temporary table is necessary in this case to compute the distinct quantities.

The following command contains two query blocks: the outer select
statement from the sales order items table, and the subquery that selects
from the product table.

SELECT *
FROM sales order AS o

KEY JOIN sales order items AS i
WHERE EXISTS

657

Reading access plans

The optimizer can
rewrite your query

658

(SELECT *
FROM product p
WHERE p.id = 300

PLAN> o (seq), i (id_fk): p (product)

Colons separate join strategies. Plans always list the join strategy for the
main block first. Join strategies for other query blocks follow. The order of
join strategies for these other query blocks may not correspond to the order
in your statement nor to the order in which they will be executed.

In this case, the optimizer has decided to first access o, the sales_order table,
sequentially and join it to i, the sales_order_items table, using the foreign
key index (contained in the primary index of the product table). At some
point, rows from p, the product table, will be located using the primary
index.

When the optimizer discovers a more efficient means of computing your
result, the access plan may not appear to follow the structure of your query.
Adding a condition to the subquery in the previous command causes the
optimizer to choose a different strategy.

SELECT *
FROM sales order AS o
KEY JOIN sales order items AS i
WHERE EXISTS
(SELECT *
FROM product p
WHERE p.id = 300
AND p.id = i.prod id)

PLAN> p (product), i (ky_prod_id), o (sales_order)

The optimizer rewrites this command as a single query block that consists of
single join between three tables.

&> For more information about the rules Adaptive Server Anywhere obeys
when rewriting your query, see "Rewriting sub-queries as exists predicates"
on page 661 and "Semantic query transformations" on page 671.

Chapter 25 Query Optimization

Underlying assumptions

Assumptions

A number of assumptions underlie the design direction and philosophy of the
Adaptive Server Anywhere query optimizer. You can improve the quality or
performance of your own applications through an understanding of the
optimizer's decisions. These assumptions provide a context in which you
may understand the information contained in the remaining sections.

The list below summarizes the assumptions upon which the Adaptive Server
Enterprise optimizer is based.

Assumption Implications

Minimal administration work ¢ Self-tuning design that requires fewer
performance controls.

No separate statistics-gathering utility

Applications tend to retrieve only
the first few rows of a cursor

Indices are used whenever possible

Use of temporary tables is discouraged

* | & & o

Selectivity statistics necessary for Optimization decisions are based on prior
optimization are available in the query execution.

Column Statistics Regist . - .
RISty 4 Dropping optimizer statistics makes the

optimizer ineffective.

An index can be found to satisfya | ¢ Performance is poor if a suitable index

join predicate in virtually all cases cannot be found.
Virtual memory is a scarce 4 Intermediate results are not materialized
resource unless absolutely necessary.

Minimal administration work

Traditionally, high-performance database engines have relied heavily on the
presence of a knowledgeable, dedicated, database administrator. This person
spent a great deal of time adjusting data storage and performance controls of
all kinds to achieve good database performance. These controls often
required continuing adjustment as the data in the database changed.

Anywhere learns and adjusts as the database grows and changes. Each query
betters its knowledge of the data distribution in the database. Anywhere
automatically stores and uses this information to optimize future queries.

659

Underlying assumptions

Every query both contributes to this internal knowledge and benefits from it.
Every user can benefit from knowledge that Anywhere has gained through
executing another user's queries.

Statistics gathering mechanisms are thus an integral part of the database
server. Because of this design, no external mechanism is required. Should
you find an occasion where it would help, you can provide the database
server with estimates of data distributions to use during optimization. If you
encode these into a trigger or procedure, for example, you then assume
responsibility for maintaining these estimates and updating them whenever
appropriate.

Only first few rows of a cursor used frequently

Many application programs examine only the first few rows of a cursor,
particularly when the cursor is ordered. Select the ordering carefully for best
results.

To accommodate this observation, the optimizer avoids materializing cursors
whenever possible. Since few rows of the cursor are likely to be fetched, this
strategy allows Adaptive Server Anywhere to reduce the time required to
pass the first row of the result to the application.

Statistics are present and correct

660

The optimizer is self-tuning. All the needed information is stored internally.
The column statistics registry is a persistent repository of data distributions
and predicate selectivity estimates. At the completion of each query,
Adaptive Server Anywhere uses statistics gathered during query execution to
update this registry. In consequence, all subsequent queries gain access to
more accurate estimates.

The optimizer relies heavily on these statistics and, because it does so, the
quality of the access plans it generates depends heavily on them. If you have
recently reloaded your database or inserted a lot of new rows, these statistics
may no longer accurately describe the data. You may find that your first
subsequent queries execute unusually slowly.

You can assist Anywhere in its efforts to correct its statistical information by
executing sample queries. As Anywhere executes these statements, it will
learn from its experience. Correct statistical information can dramatically
improve the efficiency of subsequent queries.

Chapter 25 Query Optimization

An index can usually be found to satisfy a predicate

Often, Anywhere can evaluate predicates with the aid of an index. By using
an index, the optimizer can speed access to data and reduce the amount of
information read. Whenever possible, Anywhere uses indices to satisfy
ORDER BY, GROUP BY, and DISTINCT clauses.

When the optimizer cannot find a suitable index, it must resort to a table
scan, which can be expensive. An index can improve performance
dramatically when joining tables. You should add indices to tables or rewrite
queries wherever doing so will facilitate the efficient processing of common
requests.

Virtual Memory is a scarce resource

The operating system and a number of applications frequently vie for the
memory of a typical computer. Adaptive Server Anywhere treats memory as
a scarce resource. Because it uses memory economically, Anywhere can run
on relatively small computers. This economy is important if you wish your
database to operate on portable computers or on older machines.

Reserving extra memory, for example to hold the contents of a cursor, may
be expensive. If the buffer cache is full, one or more pages may have to be
written to disk to make room for new pages. Some pages may need to be re-
read to complete a subsequent operation.

In recognition of this situation, Adaptive Server Anywhere associates a
higher cost with execution plans that require additional buffer cache
overhead. This cost discourages the optimizer from choosing plans that use
temporary tables.

On the other hand, it is careful to use memory where it will improve
performance. For example, caches the results of subqueries when they will
be needed repeatedly during the processing of the query.

Rewriting sub-queries as exists predicates

The assumptions which underlie the design of Anywhere require that it
conserve memory and that it return the first few results of a cursor quickly as
possible. In keeping with these objectives, Adaptive Server Anywhere
rewrites all set-operation sub-queries, such as IN, ANY, or SOME
predicates, as EXISTS predicates. By doing so, Anywhere avoids creating
unnecessary temporary tables and may more easily identify a suitable index
through which to access a table.

661

Underlying assumptions

Non-correlated
subquery

Correlated
subquery

662

Non-correlated sub-queries are sub-queries that contain no explicit
reference to the table or tables contained in the rest higher-level portions of
the tables.

The following is an ordinary query that contains a non-correlated subquery.
It selects information about all the customers who did not place an order on
January 1, 1998.

SELECT *
FROM customer c
WHERE c.id NOT IN
(SELECT o.cust_id
FROM sales order o
WHERE o.order date = '1998-01-01")

PLAN> c (seq): o (ky_so_customer)

One possible access plan is to first read the sales_order table and create a
temporary table of all the customers who placed orders on January 1, 1998,
then, read the customer table and extract one row for each customer listed in
the temporary table.

However, Adaptive Server Anywhere avoids materializing results. It also
gives preference to plans that return the first few rows of a result most
quickly. Thus, the optimizer rewrites such queries using EXISTS predicates.
In this form, the subquery becomes correlated: the subquery now contains
an explicit reference to the id column of the customer table.

SELECT *
FROM customer c
WHERE NOT EXISTS
(SELECT *
FROM sales order o
WHERE o.order date = '1993-01-01"'
AND (o.cust id = c.id
OR o.custiid IS NULL
OR c.id IS NULL))

PLAN> c (seq): o (seq)

This query is semantically equivalent to the one above, but when expressed
in this new syntax two advantages become apparent.

1 The optimizer can choose to use either the index on the cust_id attribute
or the order_date attribute of the sales_order table. (However, in the
sample database, only the id and cust_id columns are indexed.)

2 The optimizer has the option of choosing to evaluate the subquery

without materializing intermediate results.

Chapter 25 Query Optimization

Anywhere can cache the results of this subquery during processing. This
strategy lets Anywhere reuse previously computed results. In the case of
query above, caching will not help because customer identification numbers
are unique in the customer table.

& Further information on subquery caching is located in "Subquery
caching" on page 684.

663

Physical data organization and access

Physical data organization and access

Storage allocations for each table or entry have a large impact on the
efficiency of queries. The following points are of particular importance
because each influence how fast your queries execute.

Memory allocation for inserted rows

Anywhere inserts
each new row into
pages so that, if at
all possible, the
entire row can be
stored contiguously

Anywhere may
store rows in any
order

Space is not
reserved for NULL
columns

Once inserted rows
are immutable

664

Every new row that is smaller than the page size of the database file will
always be stored on a single page. If no present page has enough free space
for the new row, Anywhere will write the row to a new page. For example, if
the new row requires 600 bytes of space but only 500 bytes are available on a
partially filled page, then Anywhere will place the row on a new page at the
end of the table.

The engine locates space on pages and inserts rows in the order that it
receives them. It assigns each to a page, but the locations it chooses in the
table may not correspond to the order they were inserted. For example, the
engine may have to start a new page in order to store a long row
contiguously. Should the next row be short, it may fit in an empty location
on a previous page.

The rows of all tables are unordered. If the order that you receive or process
the rows is important, use an ORDER BY clause in your SELECT statement
to apply an ordering to the result. Applications that rely on the order of rows
in a table can fail without warning.

If you will frequently require the rows of table in a particular order, consider
creating an index on those columns. Anywhere always tries to take
advantage of indices when processing queries.

Whenever Anywhere inserts a row, it reserves only the space necessary to
show the row with the values it contains at the time of creation. It reserves no
space to store values which are NULL. It reserves no extra space to
accommodate fields, such as text strings, which may enlarge.

Once assigned a home position on a page, a row is never moved. If an update
changes any of the values in the row so that it will no longer fit in its
assigned location, then the row is split and the extra information is inserted
on another page.

Chapter 25 Query Optimization

A database never
shrinks

This characteristic deserves special attention, especially since Anywhere
allots no extra space at the time the row is inserted. For example, suppose
you insert a large number of empty rows into a table, then fill in the values,
one column at a time, using update statements. The result would be that
almost every value in a single row will be stored on a separate page. To
retrieve all the values from one row, the engine may need to read several disk
pages. This simple operation would become extremely and unnecessarily
slow.

You should consider filling new rows with data in the time of insertion. Once
inserted, they will then have sufficient room for the data that you expect
them to hold.

As you insert and delete rows from the database, the space they occupy is
automatically reused. Thus, Anywhere may insert a row into space formerly
occupied by another row.

Anywhere keeps a record of the amount of empty space on each page. When
you ask it to insert a new row, it first searches its record of space on existing
pages. If it finds enough space on an existing page, it places the new row on

that page, reorganizing the contents of the page if necessary. If not, it starts a
new page.

Over time, however, if a number of rows are deleted and no new rows small
enough to use the empty space are inserted, the information in the database
may become sparse. No utility exists to defragment the database file, as
moving even one row might involve updating numerous index entries.

Since Anywhere automatically reuses empty space, the presence of these
empty slots rarely affects performance. If necessary, you can reduce disk
fragmentation by unloading, then reloading, the database.

Reloading also accomplishes another task. Since you are likely to reload
each table in the order you frequently search them, the order the rows are
stored in pages during the reload is likely to correspond closely to your
preferred order. Hence, it is possible that this operation will improve
database performance, much as a defragmentation utility improves disk
performance by grouping all the pieces of each file together on the surface of
the disk.

Table and page sizes

The page size you choose for your database can affect both the performance
of your database. In general, smaller page sizes are likely to benefit
operations that retrieve relatively small rows from random locations.

665

Physical data organization and access

666

By contrast, larger pages tend to benefit queries that perform sequential
scans, particularly when the rows are stored on pages in close to the order
that the rows are retrieved via an index. In this situation, reading one page of
memory to obtain the values of one row may have the side effect of loading
the contents of the next few rows into memory. Often, the physical design of
disks permits them to retrieve few large blocks more efficiently than more
small ones.

Should you choose a larger page size, such as 4 kb pages, you may wish to
increase the size of the cache. Fewer large pages can fit into the same space;
for example, 1 Mb of memory can hold 1000 pages that are each 1 kb in size,
but only 250 pages that are 4 kb in size. How many pages is enough depends
entirely on your database and the nature of the queries your application
performs. You can conduct performance tests with various cache sizes. If
your cache can not hold enough pages, performance will suffer as Anywhere
begins swapping frequently-used pages to disk.

Anywhere attempts to fill pages as much as possible. Empty space
accumulates only when new objects are too large to fit empty space on
existing pages. Consequently, adjusting the page size may not significantly
affect the overall size of your database.

Chapter 25 Query Optimization

Indexes

Hash values

Composite indexes

There are many situations in which creating an index will improve the
performance of a database. An index provides an ordering of the rows of a
table on the basis of the values in some or all of the columns. An index
allows rows to be found quickly. It permits greater concurrency by limiting
the number of database pages accessed. An index also affords Anywhere a
convenient means of enforcing a uniqueness constraint on the rows in a table.

Adaptive Server Anywhere must represent values in an index in order to
decide how to order them. For example, if you index a column of names,
then it must know that Amos comes before Smith.

For each value in your index, Anywhere creates a corresponding hash value.
It stores the hash value in the index, rather than the actual value. Anywhere
can perform operations with the hash value, such as tell when two values are
equal or which of two values is greater.

When you index a small storage type, such as an integer, the hash value that
Anywhere creates takes the same amount of space as the original value. For
example, the hash value for an integer is 4 bytes in size, the same amount of
space as required to store an integer. Because the hash value is the same size,
Anywhere can use hash values that have a one-to-one correspondence to the
actual value. Anywhere can always tell whether two values are equal, or
which is greater, by comparing their hash values. However, it can retrieve the
actual value only by reading the entry from the corresponding table.

When you index a column that contains larger data types, the hash value will
often be shorter than the size of the type. For example, if you index a column
of string values, the hash value used is at most 9 bytes in length.
Consequently, Adaptive Server Anywhere can not always compare two
strings using only the hash values. If the hash values are equal, Anywhere
must retrieve and compare the actual two values from the table.

For example, suppose you index the titles of books, many of which are
similar. If you wish to search for a particular title, the index may identify
only a set of possible rows. In this case, Anywhere must retrieve each of the
candidate rows and examine the full title.

A composite index is one that is composed of an ordered sequence of
columns. However, each index key in these indexes is at most a 9 byte hash
value. Hence, the hash value can not necessarily identify the correct row
uniquely. When two hash values are equal, Anywhere must retrieve and
compare the actual values.

667

Indexes

The effect of column order in a composite index

Example

Primary indexes
and column order

668

When you create a composite index, the order of the columns affects the
suitability of the index to different tasks.

Suppose you create a composite index on two columns. One column contains
employee’s first names, the other their last names. You could create an index
that contains their first name, then their last name. Alternatively, you could
index the last name, then the first name. Although these two indices organize
the information in both columns, they have different functions.

CREATE INDEX fname lname
ON employee emp fname, emp lname;

CREATE INDEX lname fname
ON employee emp lname, emp lname;

Suppose you then want search for the first name John. The only index that is
of useful is the one that contains the first name in the first column of the
index. The index that is organized by last name then first name is of no use
because someone with the first name John could appear anywhere in the
index.

If you think it likely that you will need to look up people by first name only
or second name only, then you should consider creating both of these
indices.

Alternatively, you could make two indices that each index only one of the
columns. Remember, however, that Anywhere only uses one index to access
any one table while processing a single query. Even if you know both names,
it is likely Anywhere will need to read extra rows, looking for those with the
correct second name.

When you create an index using the CREATE INDEX command, as in the
example above, the order of the columns is that shown in your command.

Adaptive Server Anywhere uses a primary index to index primary keys.
The primary index is a combined index: it also contains the entries for all
foreign keys that reference this table, whether those foreign keys are located
in the same table or in a different table.

The order of the columns in the index of a primary index is always that in
which the columns appear in the definition of the primary table. In situations
where more than one column appears in a primary key, you should consider
the types of searches needed. If appropriate, you should switch the order of
the columns in the primary table definition so that the most frequently
searched for column appears first, or create separate indices, as required, for
the other columns.

Chapter 25 Query Optimization

Predicate analysis

Examples

A predicate is a conditional expression that, combined with the logical
operators AND and OR, makes up the set of conditions in a WHERE or
HAVING clause. In SQL, a predicate that evaluates to UNKNOWN is
interpreted as FALSE.

A predicate that can exploit an index to retrieve rows from a table is called
sargable. This name comes from the phrase search argument-able. Both
predicates that involve comparisons with constants and those that compare
columns from two or more different tables may be sargable.

The predicate in the following statement is sargable. Adaptive Server
Anywhere can evaluate it efficiently using the primary index of the employee
table.

SELECT *
FROM employee
WHERE employee.emp id = 123

PLAN> employee (employee)

In contrast, the following predicate is not sargable. Although the emp_id
column is indexed in the primary index, using this index does not expedite
the computation because the result contains all, or all except one, row.

SELECT *
FROM employee
employee.emp id <> 123

PLAN> employee (seq)

Similarly, no index can assist in a search for all employees whose first name
ends in the letter "k". Again, the only means of computing this result is to
examine each of the rows individually.

In each of these examples, attributes x and y are each columns of a single
table. Attribute z is contained in a separate table. Assume that an index exists
for each of these attributes.

Sargable Non-sargable
x=10 x<>10

x ISNULL x ISNOT NULL
x>25 x=40Ry=5
xX=z xX=y

xIN (4, 5, 6) xNOTIN (4, 5, 6)
x LIKE 'pat%' x LIKE '%tern’

669

Predicate analysis

670

Sometimes it may not be obvious whether a predicate is sargable. In these
cases, you may be able to rewrite the predicate so that it is sargable. For each
example, you could rewrite the predicate x LIKE 'pat%' using the fact that
"u" is the next letter in the alphabet after "t": x>="'pat' and x <'pau’'. In this
form, an index on attribute x is helpful in locating values in the restricted
range. Fortunately, Adaptive Server Anywhere makes this particular
transformation for you automatically.

A sargable predicate that is used for indexed retrieval on a table is known as
a matching predicate. A WHERE clause can have a number of matching
predicates. Which is most suitable can depend on the join strategy. The
optimizer re-evaluates its choice of matching predicates when considering
alternate join strategies.

In other cases, a predicate may not be sargable simply because no suitable
index exists. For example, consider the predicate X = Z. This predicate is
sargable if these two attributes reside in different tables and at least one of
them is the first attribute in an index. Should one of these conditions not be
satisfied, the same predicate becomes non-sargable.

Chapter 25 Query Optimization

Semantic query transformations

Example

In order to operate efficiently, Adaptive Server Anywhere usually rewrites
your query. It changes it, possibly in several steps, into a new form. It
ensures that the new version computes the same result, even though the
query is expressed in a new way. In other words, Anywhere rewrites your
queries into semantically equivalent, but syntactically different, forms.

Anywhere can perform a number of different rewrite operations. If you read
the access plans, you will frequently find that they do not correspond to a
literal interpretation of your statement. For example, the optimizer tries as
much as possible to rewrite subqueries with joins.The fact that the optimizer
has the freedom to rewrite your commands and some of the ways in which it
does so, are importance to you.

Unlike the SQL language definition, some languages mandate strict behavior
for AND and OR operations. Some guarantee that the left-hand condition
will be evaluated first. If the truth of the entire condition can then be
determined, the compiler guarantees that the right-hand condition will not be
evaluated.

This arrangement lets you combine conditions that would otherwise require
two nested IF statements into one. For example, in C you can test whether a
pointer is NULL before you use it as follows. You can replace the nested
conditions

if (X != NULL) {
if (X->var != 0) {
statements ...
}
}

with the more compact expression

if (X != NULL && X->var != 0) {
statements ...

}

Unlike C, SQL has no such rules concerning execution order. Anywhere is
free to rearrange the order of such conditions as it sees fit. The reordered
form is semantically equivalent because the SQL language specification
makes no distinction. In particular, query optimizers are completely free to
reorder predicates in a WHERE or HAVING clause.

671

Semantic query transformations

Types of semantic transformations

The optimizer can perform a number of transformations in search of more
efficient and convenient representations of your query. The following are
common manipulations. Because the optimizer performs these
transformations, the plan may look quite different than a literal interpretation
of your original query.

unnecessary DISTINCT elimination
subquery unnesting

predicate pushdown in UNION or GROUPed views

optimization for minimum or maximum functions

¢

¢

¢

¢ join elimination
¢

¢ OR, in-list optimization
¢

LIKE optimizations

The following subsections discuss each of these operations.

Unnecessary DISTINCT elimination

Examples

672

Sometimes a DISTINCT condition is not necessary. For example, the
properties of one or more column in your result may contains a UNIQUE
condition, either explicitly, or implicitly because it is in fact a primary key.

1 The distinct keyword in the following command is unnecessary because
the product table contains a primary key. This column is part of the
result set.

SELECT DISTINCT *
FROM product p

PLAN> p (seq)

2 Similarly, the result contains the primary keys of both tables so each row
in the result must be distinct.

SELECT DISTINCT o.id, o.custiid

FROM sales order o JOIN customer c
ON o.cust id = c.id

WHERE c.state = 'NY'

PLAN> c (seq), o (ky_so_customer)

Chapter 25 Query Optimization

Subquery unnesting

Examples

You may express statements as nested queries, given the convenient syntax
provided in the SQL language. However, these can often be more efficiently
executed and more effectively optimized if rewritten in the form of joins. By

doing so, Anywhere can take better advantage of highly selective conditions
in a subquery's WHERE clause.

1

The subquery in the following example can match at most one row for
each row in the outer block. Because it can match at most one row,
Anywhere recognizes that it can convert it to an inner join.

SELECT *
FROM sales order items s
WHERE EXISTS
(SELECT *
FROM product p
WHERE s.prod id = p.id
AND p.id = 300)

PLAN: p (product): s (ky_prod_id)

Following conversion, this same statement is expressed using join
syntax.

SELECT *

FROM product p JOIN sales order items s
ON p.id = s.prod id

WHERE p.id = 300

PLAN> p (product), s (prod-id)

Similarly, the following query contains a conjunctive EXISTS predicate
in the subquery. This subquery can match more than one row.

SELECT *
FROM product p
WHERE EXISTS
(SELECT *
FROM sales order items s
WHERE s.prod id = p.id
AND s.id = 2001)

PLAN> p (seq): s (ky_prod_id)
Anywhere converts this query to a inner join.

SELECT DISTINCT p.*

FROM product p JOIN sales order items s
ON p.id = s.prod id

WHERE s.id = 2001

PLAN> TEMPORARY TABLE s (id_fk), p (product)

673

Semantic query transformations

3 Anywhere can also eliminate subqueries in comparisons, when the

subquery can match at most one row for each row in the outer block.
Such is the case in the following query.

SELECT *
FROM product p
WHERE p.id =
(SELECT s.prod id

FROM sales order items s
WHERE s.id = 2001

AND s.line id = 1)

PLAN> p (seq): s (sales_order_items)
Anywhere rewrites this query as follows.
SELECT p.*

FROM product p, sales order items s
WHERE p.id = s.prod id

AND s.id = 2001

AND s.line id =1

PLAN> s (sales_order_items), p (product)

674

Chapter 25 Query Optimization

Selectivity estimation

Selectivity is a ratio
that measures how
frequently a
predicate is true.

The scan factor is
the fraction of
pages in a table
that need to be
read.

The selectivity of a predicate measures how often the predicate evaluates to
TRUE. Selectivity is defined as the ratio of the number of times the predicate
will evaluate to true, to the total number of possible instances that must be
tested. Selectivity is most commonly expressed as a percentage. For
example, if 2% of employees have the last name Smith, then the selectivity
of the following predicate is 2%.

emp lname = 'Smith'

Selectivity is second only to join enumeration in importance to the process of
optimization. Hence, the performance of the optimizer relies heavily on the
presence of accurate selectivity information.

Adaptive Server Anywhere can obtain estimates of selectivity from four
possible sources. It assumes no correlation between columns of a table and
so calculates the selectivity of each column independently.

¢ Column-statistics registry Each time Anywhere performs a query, it
saves selectivity information about the data in a column for future
reference.

¢ Partial index scans The optimizer can examine the upper levels of an
index to obtain a selectivity estimate for a condition on an indexed
column.

¢ User-supplied values You can supply selectivity estimates in your
SQL statement. If you do so, Anywhere will use them in preference to
those from other sources.

¢ Default values If no other source is available, Anywhere can fall back
on the built-in default values.

The scan factor queries the fraction of pages in a table that needs to be read
to compute the result. It is also usually expressed as a percentage. For
example, to find the first name of the employee with employee number 123,
Anywhere may have to read two index pages and, finally, the name
contained in the appropriate row. If there are 1000 pages in the employee
table, then the scan factor for this query would be 0.3%, meaning 3 pages out
of 1000.

Although the scan factor is frequently small when the selectivity is small,
this is not always the case. Consider a request to find all employees who live
on Phillip Street. Less than one percent of employees may live on this street,
yet, because street names are not indexed, Anywhere can only find the
records by examining every row in the employee table.

675

Selectivity estimation

Column-statistics registry

Do not give
Anywhere
amnesial

Adaptive Server Anywhere caches skewed predicate selectivity values and
column distribution statistics. It stores this information in the database.
Anywhere stores, logs, and checkpoints this information like other data.
Adaptive Server Anywhere updates these statistics automatically during
query processing.

The optimizer automatically retrieves and uses these cached statistics when
processing subsequent queries. This selectivity information is available to all
transactions, regardless of the user or connection.

Adaptive Server Anywhere manages the column-statistics registry on a first-
in, first-out basis. It is limited in size to 15,000 entries. Anywhere saves the
following types of information.

¢ column distribution statistics
¢ LIKE predicate selectivity statistics

¢ equality predicate statistics

You can reset the optimizer statistics using the DROP OPTIMIZER
STATISTICS command. If you do so, you erase all the statistics that
Anywhere has accumulated.

Caution

Use the DROP OPTIMIZER STATISTICS command only when you have
made recent wholesale changes that render previous statistical
information invalid. Otherwise, you should avoid this command because it
can cause the optimizer to choose very inefficient access plans.

If you erase the statistics, Anywhere must resort to initial guesses about the
distribution of your data as though accessing it for the first time. All
performance improvements that the statistics could provide will be lost.

Subsequent queries will gradually restore the statistics. In the interim, the
performance of many commands can suffer seriously. Consequently, this
command rarely improves performance and certainly never provides a long-
term solution.

Partial index scans

676

When cached results are not available to the optimizer, it can decide to probe
the directory of an index to estimate the proportion of entries that may satisfy
a given predicate. Depending on the predicate and the index, this information
may be very accurate.

Chapter 25 Query Optimization

User estimates

For example, the optimizer might examine an index of dates to estimate what
proportion refer to days before a given date, such as March 3, 1998. To
obtain such an estimate, Anywhere examines the upper pages of the index
that you have created on that column. It locates the approximate position of
the given date, then, from its relative position in the index, estimates the
proportion of values that occur before it.

Some cost may be involved in performing such scans because some index
pages may need to be retrieved from disk, should they not already be
available in the buffer cache. In addition, indices for very large tables, or
primary indices for tables pointed to by a large number of foreign keys, may
be extremely large. Low fan-out may mean that the optimizer could only
obtain specific estimates by examining many pages. To limit this expense,
the optimizer examines at most two levels of the index.

Naturally, this method is effective only when the column about which
selectivity information is sought is the first column of the index. Should the
column comprise the second or more column of the index, the index is of no
help because the values will be distributed though out the index.

Similarly, estimates of LIKE selectivity values may be obtained by this
method only when the first few letters of the pattern are available. In cases
where only the middle or final sections of a word pattern appear, the
optimizer must rely on one of the other three sources of selectivity
information.

Adaptive Server Anywhere allows you, as the user, to supply selectivity
estimates of any predicate. These estimates are expressed as a percentage and
must be supplied as a floating-point value. You may explicitly state such an
estimate for any predicate you choose.

In cases where a user-supplied estimate is available, the optimizer will
always use it in preference to an estimate available from any other source. In
this situation, it even ignores cached selectivity values for that predicate.

Because the optimizer always uses any explicit estimates you provide, you
can use these estimates to guide the optimizer in its choice of access plan.

You should use explicit estimates with care. Estimates in triggers or stored
procedures are easily forgotten. Anywhere has no means to update them. For
these reasons, all responsibility for their maintenance rests with the author of
the procedure or administrator of the database. Should the distribution of
data change over time, the values may prove inappropriate and lead the
optimizer to choose access plans that are no longer optimal.

677

Selectivity estimation

Default selectivity estimates

When all else fails and it can obtain estimates from none of the other three
sources, the optimizer must fall back on default selectivity estimates.

Anywhere assumes that statistics in the column statistics registry are both
present and accurate. For example, if the optimizer is considering a LIKE
predicate, it looks in the column-statistics registry. If the registry contains no
entry for that predicate, it assumes that none is stored because the selectivity
is less than a small threshold value. Since default selectivity estimates are not
specific to your data, they can mislead the optimizer into selecting a poor
access plan.

When Anywhere executes that plan, it will use the results to save better
selectivity estimates in the column statistics registry. If you execute the same
query later, it will find these more accurate estimates and adjust the access
plan if appropriate. For this reason, performance may be poor the first time
or two you execute a particular query on a new database, or after dropping
the optimizer statistics.

Anywhere uses the following default selectivities.

Predicate Default selectivity
Column comparisons: equality to 0.035%

a constant, IS NULL, or LIKE (if not stored in registry)
Column comparisons: inequality to 25%

a constant

Other LIKE or EXISTS 50%

Other equalities 5%

Other inequalities 25%

Other IS NULL or BETWEEN 6%

Equijoin selectivity estimation

What is an
equijoin?

Join selectivity for
equijoins

678

Frequently, you will need to join two or more tables to obtain the results you
need. Equijoins join two tables through equality conditions on one or more
columns, as in the case of the following query.

SELECT *
FROM tablea AS a JOIN tableb AS b
ON a.x = b.y

In the case of equijoins, Anywhere calculates the selectivity of the join based
on the cardinality of the individual tables according to the following formula.

Chapter 25 Query Optimization

Key joins—a rare
case where syntax
matters

selectivity = cardinality(a JOIN b))/(cardinality(a) cardinality(b))

If the join condition involves two columns, then the optimizer uses data
distribution estimates from the column statistics registry to estimate the
cardinality of the result, and hence the selectivity of the join. Otherwise, if
the join condition involves a mathematical expression, the join predicate
selectivity estimate defaults to 5%.

The optimizer takes advantage of joins that are based on foreign key
relationships. You can identify these to Adaptive Server Anywhere using the
KEY JOIN syntax. When you use this syntax, the optimizer can estimate
selectivity accurately using special information contained in the primary
index. Anywhere only takes full advantage of these relationships when you
explicitly use the KEY JOIN syntax. As such, it is a rare exception to the
general rule that Anywhere optimizes your commands based on their
semantics, not their syntax. When estimating the selectivity of key joins, the
Anywhere optimizer assumes a uniform distribution of the values in the table
that contains the foreign key.

Diagnosing and solving selectivity problems

Selectivity estimation problems are the root of most optimization problems.
The following sources of information are available to help you.

Displaying estimates and their source

Anywhere can tell you the value of a selectivity estimate and the source of
that estimate. You have access to this information through the built-in
functions ESTIMATE and ESTIMATE-SOURCE.

The following command displays the selectivity estimate that the optimizer
will use for queries which select entries from table T which in which column
x contains a value greater than 20.

SELECT ESTIMATE (quantity, 20, '>'")
FROM product

Anywhere displays the result of this command as a percentage.

Similarly, the following command displays the source of that estimate. The
optimizer can contain estimates from a number of sources, including column
statistics registry and user supplied values.

SELECT ESTIMATE SOURCE (quantity, 20, '>")
FROM product

679

Selectivity estimation

Solving selectivity problems

Maintain or remove
hard-coded
selectivity
estimates

680

If you find that Anywhere is obtaining an incorrect selectivity value from the
registry, you can easily reset the value by issuing any command that will
perform a complete scan of the table for that condition. For example, the
following SQL statement will cause Anywhere to locate all the entries in
product table which have quantities equal to 20.

SELECT *
FROM product
WHERE quantity = 20

PLAN> product (seq)

Whenever Anywhere completes execution of a statement such as this one, it
automatically updates the column statistics registry based on the results.

You can use a similar tactic to load initial selectivity information into a new
database. Simply issue commands that contain conditions that will appear in
common statements. When the optimizer later prepares to execute a
statement, it will generate a better plan because the correct statistics will be
available.

Users can supply and hard-code selectivity estimates in triggers or stored
procedures while developing the database. Once encoded, the database
administrator assumes responsibility for their maintenance as Anywhere has
no means to update them automatically.

Unfortunately, these hard-coded values are hidden and may become
inaccurate as the information in the database grows and changes. For this
reason, you should avoid using them, except in very unusual cases where you
can encourage the optimizer to choose a better access plan by no other
means. Often, you can avoid using them by priming the database using
sample queries as described above.

Chapter 25 Query Optimization

Join enumeration and index selection

Join enumeration

Cache size affects
the access plan

Join enumeration, the process of costing each possible join strategy and
making a selection, is the heart of any optimizer. Adaptive Server Anywhere
uses a proprietary join enumeration algorithm to search for an optimal access
plan. This algorithm considers the cost of various strategies and works to
find an inexpensive strategy.

When processing any query, Anywhere always accesses any one table by one
method. It either scans the table sequentially, or selects one—and only one—
index and accesses the rows through it.

In selecting a join strategy, Anywhere considers the following pieces of
information.

¢ selectivity estimates of the number of rows in each intermediate result
¢ estimates of scan factor for each indexed retrieval

¢ the size of the cache—different cache sizes can lead to different join
strategies.

Anywhere begins by using selectivity information, as determined in the
previous step, to select an access order.

Anywhere derives the estimates of scan factors from estimates of index fan-
out. The fan-out of an index can vary greatly depending on the type of index
and the page size that you selected when you launched the engine or created
the database. Larger fan-out is better, because it allows Anywhere access to

locate specific rows using fewer pages and hence fewer resources.

The amount of cache space available to Anywhere can affect the outcome of
the optimizer's choice of join strategy. The larger the fraction of space
consumed by any one query, the more likely that pages will need to be
swapped for those on disk. If Anywhere decides that a particular strategy will
result in using excessive cache space, it assigns that strategy a higher cost.

The number of possible join strategies can be huge. A join of » tables allows
n! possible join orders. For example, a join of 10 tables may have
10! = 3,628,800 possible orders.

When faced with joins that involve a large number of tables, Anywhere
attempts to prune the set of possible strategies. It eliminates those that fall
into certain categories, so as to focus effort on investigating possibilities
which are more likely to be efficient.

681

Join enumeration and index selection

Anywhere chooses Anywhere always selects plans that minimize the number of Cartesian
plans with fewer products required to compute the result. Instead, it favors indexed access.
Cartesian products

Index selection

In addition to selecting an order, the optimizer must choose a method of
accessing each of these tables. It can choose to either scan a table
sequentially, or to access it by through an index. Some tables may have a few
indexes, further increasing the number of possible strategies.

The optimizer analyzes each join strategy to determine which type of
access—indexed or sequential scan—would best suit each table in that
strategy. Although one index may be well suited to one join strategy, it can
be a poor choice for another strategy that joins the tables in a different order.
By making a custom index selection for each join order, the optimizer gains
the opportunity to choose a better access plan.

Anywhere decides to use an index instead of embarking on a sequential scan
whenever an index is available and the selectivity is less than 20%.

682

Chapter 25 Query Optimization

Cost estimation

Associate high cost
with temporary
tables

The optimizer bases its selection of access plan on the expected cost of each
plan. It uses a mix of metrics to estimate the cost of an access plan:

¢ expected number of rows

¢ use of temporary tables

¢ anticipated amount of CPU and I/O for the access plan
¢ amount of cache utilized

In recognition that disk access is substantially more time-consuming than
other operations, Anywhere gives it particular weight.

In keeping with the assumption that Anywhere is to use both disk and
memory efficiently, it avoids using temporary tables. To achieve this goal,
the optimizer assigns significant cost to plans that use them.

Anywhere bases its estimate of the cost of temporary table on both the row
size and the expected number of rows that the table will contain. The
optimizer often pessimistically overestimates the actual cost of using a
temporary table. When few queries are competing for cache space, the actual
cost of a plan with a temporary table can be significantly less than the
estimate.

Costing index access

Anywhere calculates a scan factor for each table accessed. For this
calculation, it uses both selectivity estimates and the fan-out of the index.

If the index is a key index, then Anywhere assumes that the entries are
uniformly distributed in the corresponding table. However, Anywhere
assumes that values in the primary-key index are clustered near similar
values. This assumption is usually valid. For example, suppose you use a
auto-increment column to generate primary-key values. The rows in the table
will lie in roughly the same order in the pages of the table as they do in the
primary index.

When the rows in a table are arranged on the database pages in the order you
wish to read them, less cache space is required because Anywhere can avoid
rereading the same pages from disk.

683

Subquery caching

Subquery caching

684

New to Adaptive Server Anywhere 6.0 is the ability to cache the result of
evaluating a subquery. When Anywhere processes a subquery, it caches the
result. Should it need to re-evaluate the subquery for the same value, it can
simply be retrieve the result from the cache. In this way, Anywhere can
avoid many repetitious and redundant computations.

At the end of each subquery, Anywhere releases the stored values. Since
values may change between queries, these values may not be reused to
process subsequent queries. For example, another transaction might modify
values in a table involved in the subquery.

As the processing of a query progresses, Anywhere monitors the frequency
with which cached subquery values are reused. If the values of the correlated
variable rarely repeat, then Anywhere needs to compute most values only
once. In this situation, Anywhere recognizes that it is more efficient to
recompute occasional duplicate values, than to cache numerous entries that
occur only once.

Anywhere also does not cache if the size of the dependent column is more
than 255 bytes. In such cases, you may wish to rewrite your query or add
another column to your table to make such operations more efficient.

As soon as Adaptive Server Anywhere recognizes that few values are
repeated, it suspends subquery caching for the remainder of the statement
and proceeds to re-evaluate the subquery for each and every row in the outer
query block.

