CHAPTER 28
Accessing Remote Data

About this chapter

Contents

This chapter describes how to configure Adaptive Server Anywhere to
access remote data.

Adaptive Server Anywhere can access data located on different servers, both
Sybase and non-Sybase, as if the data were stored on the local server.

Topic Page
Introduction 732
Basic concepts 734
Working with remote servers 736
Working with external logins 741
Working with proxy tables 743
Example: a join between two remote tables 748
Accessing multiple local databases 750
Sending native statements to remote servers 751
Using remote procedure calls (RPCs) 752
Transaction management and remote data 753
Internal operations 755
Troubleshooting remote data access 759

731

Introduction

Introduction

Using Adaptive Server Anywhere you can:
¢ Access data in relational databases such as Sybase, Oracle, and DB2.

¢ Access desktop data such as Excel spreadsheets, MS-Access databases,
FoxPro, and text files.

¢ Access any other data source that supports an ODBC interface.
¢ Perform joins between local and remote data.

¢ Perform joins between tables in separate Adaptive Server Anywhere
databases.

¢ Use Adaptive Server Anywhere features on data sources that would
normally not have that ability. For instance, you could use a Java
function against data stored in Oracle, or perform a subquery on
spreadsheets. Adaptive Server Anywhere will compensate for features
not supported by a remote data source by operating on the data after it is
retrieved.

¢ Use Adaptive Server Anywhere to move data from one location to
another using insert-select.

¢ Access remote servers directly using passthrough mode.
¢ Execute remote procedure calls to other servers.

Adaptive Server Anywhere allows access to the following external data
sources:

Adaptive Server Anywhere
Adaptive Server Enterprise

IBM DB2
Microsoft SQL Server

¢
¢
¢ Oracle
L4
L4
¢ Other ODBC data sources

Platform availability
The remote data access features are supported on the Windows 95 and
Windows NT platforms only.

732

Chapter 28 Accessing Remote Data

Accessing remote data from PowerBuilder DataWindows

You can access remote data can be accessed from a PowerBuilder
DataWindow by setting the DBParm Block parameter to 1 on connect.

¢

In the design environment, you can set the Block parameter by accessing
the Transaction tab in the Database Profile Setup dialog and setting the
Retrieve Blocking Factor to 1.

In a connection string, use the following phrase:

DBParm="Block=1"

733

Basic concepts

Basic concepts

This section describes the basic concepts required to access remote data.

Remote table mappings

Administering
remote table
mappings

734

Adaptive Server Anywhere presents tables to a client application as if all the
data in the tables were stored in the database to which the application is
connected. Internally, when a query involving remote tables is executed, the
storage location is determined, and the remote location is accessed so that
data can be retrieved.

To have remote tables appear as local tables to the client, you create local
proxy tables that map to the remote data.

To create a proxy table:

1 Define the server where the remote data is located. This specifies the
type of server and location of the remote server.

& For more information, see "Working with remote servers" on page
736.

2 Map the local user login information to the remote server user login
information if the logins on the two servers are different.

& For more information, see "Working with external logins" on page
741.

3 Create the proxy table definition. This specifies the mapping of a local
proxy table to the remote table. This includes the server where the
remote table is located, and the database name, owner name, table name,
and column names of the remote table.

& For more information, see "Working with proxy tables" on page
743.

To manage remote table mappings and remote server definitions, you can
either use Sybase Central (Java Edition) or you can use a tool such as
Interactive SQL and execute the SQL statements directly.

Chapter 28 Accessing Remote Data

Server classes

A server class is assigned to each remote server. The server class specifies
the access method used to interact with the server. Different types of remote
servers require different access methods. The server classes provide
Adaptive Server Anywhere detailed server capability information. Adaptive
Server Anywhere adjusts its interaction with the remote server based on
those capabilities.

There are currently two groups of server classes. The first is JDBC-based;
the second is ODBC-based.

The JDBC-based server classes are:
¢ asajdbc for Adaptive Server Anywhere (version 6 and later)

¢ asejdbc for Adaptive Server Enterprise and SQL Server (version 10 and
later)

The ODBC-based server classes are:
¢ asaodbc for Adaptive Server Anywhere (version 5.5 and later)

¢ aseodbc for Adaptive Server Enterprise and SQL Server (version 10
and later)

db2odbc for IBM DB2

¢

¢ mssodbc for Microsoft SQL Server

¢ oraodbc for Oracle servers (version 8.0 and later)
L4

odbc for all other ODBC data sources

& For a full description of remote server classes, see "Server Classes for
Remote Data Access" on page 761.

735

Working with remote servers

Working with remote servers

Before you can map remote objects to a local proxy table, you must define
the remote server where the remote object is located. When you define a
remote server, an entry is added to the sysservers table for the remote server.
This section describes how to create, alter, and delete a remote server
definition.

Creating remote servers

Example 1

Example 2

736

Use the CREATE SERVER statement to set up remote server definitions.
You can execute the statements directly, or use Sybase Central (Java
Edition).

For ODBC connections, each remote server corresponds to an ODBC data
source. For some systems, including Adaptive Server Anywhere, each data
source describes a database, so a separate remote server definition is needed
for each database.

The following statement creates an entry in the sysservers table for the
Adaptive Server Enterprise named ASEserver:

CREATE SERVER ASEserver
CLASS 'asejdbc'
USING 'rimu:6666"'

where:
¢ ASEserver isthe name of the remote server

¢ asejdbc specifies the server is an Adaptive Server Enterprise and the
connection to it is JDBC-based

¢ rimu:6666 is the machine name and the TCP/IP port number where the
remote server is located

The following statement creates an entry in the sysservers table for the
ODBC-based Adaptive Server Anywhere named testasa:

CREATE SERVER testasa
CLASS 'asaodbc'
USING 'test4d'

where:

¢ testasa isthe name by which the remote server is known within this
database.

¢ asaodbc specifies that the server is an Adaptive Server Anywhere and
the connection to it uses ODBC.

Chapter 28 Accessing Remote Data

¢

test4 is the ODBC data source name.

& For a full description of the CREATE SERVER statement, see
"CREATE SERVER statement" on page 413 of the book Adaptive Server
Anywhere Reference Manual.

Creating remote servers using Sybase Central

Notes

« To create a remote server using Sybase Central (Java):

1

Connect to the host database from Sybase Central (Java) using a JDBC
connection.

In the left panel, open the Remote Server folder. Then double-click Add
Remote Server on the right panel.

On the first page of the Wizard, enter a name to use for the remote
server. This is the name you use to refer to the remote server will be
from within the local database, and need not correspond to the server
name the server supplies. Then click Next.

On the next page, select an appropriate class for the server and click
Next.

Select a data access method (JDBC or ODBC) and supply connection
information:

¢ For JDBC, supply a URL in the form machine-name:port-number
¢ For ODBC, supply a data source name.

Click Finish to create the remote server definition.

The data access method (JDBC or ODBC) is the method used by

Adaptive Server Anywhere to access the remote database. This is
different from that used by Sybase Central to connect to your database.

Deleting remote servers

Example

Use the DROP SERVER statement to drop a remote server from the
Adaptive Server Anywhere system tables. All remote tables defined on that
server must already be dropped for this statement to succeed. You can
execute the statements directly, or use Sybase Central (Java Edition).

The following statement drops the server named testasa:

DROP SERVER testasa

737

Working with remote servers

& For a full description of the DROP SERVER statement, see "DROP
SERVER statement" on page 457 of the book Adaptive Server Anywhere
Reference Manual.

Deleting remote servers using Sybase Central

.

% To delete a remote server using Sybase Central (Java):

1 Connect to the host database from Sybase Central (Java) using a JDBC
connection.

2 Inthe left panel, open the Remote Server folder. Then right-click the
remote server on the right panel.

3 Select Delete from the popup menu.

Altering remote servers

Use the ALTER SERVER statement to modify the attributes of a server.
These changes do not take effect until the next connection to the remote
server. You can execute the statements directly, or use Sybase Central (Java
Edition).

Example The following statement changes the server class of the server named
ASEserver to aseodbc:

ALTER SERVER ASEserver
CLASS 'aseodbc'

The Data Source Name for the server is ASEserver.

The ALTER SERVER statement can also be used to enable or disable a
server's known capabilities.

& For a complete description of the ALTER SERVER statement, see
"ALTER SERVER statement" on page 349 of the book Adaptive Server
Anywhere Reference Manual.

Altering remote servers using Sybase Central

.

% To alter the properties of a remote server using Sybase Central

(Java):
1 Connect to the host database from Sybase Central (Java) using a JDBC
connection.

738

Chapter 28 Accessing Remote Data

2 Inthe left panel, open the Remote Server folder. Then right-click the
remote server on the right panel.

3 Select Properties from the popup menu and make the changes you need
in the server property sheet.

Listing the remote tables on a server

It may be helpful when you are configuring your Adaptive Server Anywhere
to get a list of the remote tables available on a particular server. The
sp_remote_tables procedure returns a list of the tables on a server.

Sp _remote tables servername
[, tablename]
[, owner]
[, database]

If tablename, owner, or database is given, the list of tables is limited to only
those that match.

For example, to get a list of all of the Microsoft Excel worksheets available
from an ODBC data source named excel:

sp_remote tables excel

Or to get a list of all of the tables in the production database in an ASE
named asetest, owned by 'fred":

sp _remote tables asetest, null, fred, production

& For more information, see "sp_remote tables system procedure" on
page 758 of the book Adaptive Server Anywhere Reference Manual.

Listing remote server capabilities

The sp_servercaps procedure displays information about a remote server's
capabilities. Adaptive Server Anywhere uses this capability information to
determine how much of a SQL statement can be passed of to a remote server.

The system tables which contain server capabilities are not populated until
after Adaptive Server Anywhere first connects to the remote server. This
information comes from the SYSCAPABILITY and
SYSCAPABILITYNAME system tables. The servername specifed must be
the same servername used in the CREATE SERVER statement.

Issue the stored sp_servercaps as follows:

Sp_servercaps servername

739

Working with remote servers

& For more information, see "sp_servercaps system procedure" on page
759 of the book Adaptive Server Anywhere Reference Manual.

740

Chapter 28 Accessing Remote Data

Working with external logins

By default, Adaptive Server Anywhere uses the names and passwords of its
clients whenever it connects to a remote server on behalf of those clients.
However, this default can be overridden by creating external logins. External
logins are alternate login names and passwords to be used when
communicating with a remote server.

Creating external logins
The following statement allows the local user fred to gain access to the
server ASEserver, using the remote login frederick with password banana.

CREATE EXTERNLOGIN fred
TO ASEserver

REMOTE LOGIN frederick
IDENTIFIED BY banana

& For more information, see "CREATE EXTERNLOGIN statement" on
page 395 of the book Adaptive Server Anywhere Reference Manual.

Creating external logins from Sybase Central

% To create an external login using Sybase Central (Java):

1 Connect to the host database from Sybase Central (Java) using a JDBC
connection.

2 Inthe left panel, open the Remote Server folder. Then right-click the
remote server on the right panel.

3 Select Properties from the popup menu. Change to the External Logins
tab and make the changes you need in the property sheet.

4 Click OK to save the changes.

Dropping external logins

Use the DROP EXTERNLOGIN statement to remove external logins from
the Adaptive Server Anywhere system tables.

Example The following statement drops the external login for the local user fred
created in the example above:

DROP EXTERNLOGIN fred TO ASEserver

741

Working with external logins

& For more information, see "DROP EXTERNLOGIN statement" on
page 455 of the book Adaptive Server Anywhere Reference Manual.

742

Chapter 28 Accessing Remote Data

Working with proxy tables

Location transparency of remote data is enabled by creating a local proxy
table that maps to the remote object. To create a proxy table you use one of
the following statements:

¢ Ifthe table already exists at the remote storage location, use the
CREATE EXISTING TABLE statement. This statement defines the
proxy table for an existing table on the remote server.

¢ Ifthe table does not exist at the remote storage location, use the
CREATE TABLE statement. This statement creates a new table on the
remote server, and also defines the proxy table for that table.

Specifying proxy table locations

Server

Database

The AT keyword is used with both CREATE TABLE and CREATE
EXISTING TABLE to define the location of an existing object. This location
string has 4 components that are separated by either a period or a semicolon.
Semicolons allow filenames and extensions to be used in the database and
owner fields.

. AT 'server.database.owner.tablename'

This is the name by which the server is known in the current database, as
specified in the CREATE SERVER statement. This field is mandatory for all
remote data sources.

The meaning of the database field depends on the data source. In some cases
this field does not apply and should be left empty. The periods are still
required, however.

¢ Adaptive Server Enterprise Specifies the database where the table
exists. For example master or pubs2.

¢ Adaptive Server Anywhere This field does not apply; leave it empty.

The database name for an Adaptive Server Anywhere ODBC data
source should be specified when the data source name is defined in the
ODBC Administrator.

For jConnect-based connections, the database should be specified in the
USING clause of the CREATE SERVER statement.

For both ODBC and JDBC based connections to Adaptive Server
Anywhere, you need a separate CREATE SERVER statement for each
Adaptive Server Anywhere database being accessed.

743

Working with proxy tables

¢ Excel, Lotus Notes, Access For these file-based data sources, the
database name is the name of the file containing the table. Since file
names can contain a period, a semicolon should be used as the delimiter
between server, database, owner, and table.

Owner If the database supports the concept of ownership, this field represents the
owner name. This field is only required when several owners have tables
with the same name.

Tablename Tablename specifies the name of the table. In the case of an Excel
spreadsheet, this is the name of the "sheet" in the workbook. If the table
name is left empty, the remote table name is assumed to be the same as the
local proxy table name.

Examples: The following examples illustrate the use of location strings:

¢ Adaptive Server Anywhere:
'testasa..dba.employee'

¢ Adaptive Server Enterprise:
'ASEServer.pubs2.dbo.publishers'

¢ Excel:
'excel;d:\pcdb\quarter3.xls;;sheetl$"

¢ Access:

'access; \\serverl\production\inventory.mdb; ;parts'

Creating proxy tables using Sybase Central

You must use the Java version of Sybase Central to create remote tables,
unless you choose to construct the SQL statements yourself. You cannot use
the Windows version of Sybase Central.

% To create a proxy table using Sybase Central (Java):

1 Connect to the host database from Sybase Central (Java) using a JDBC
connection.

2 Inthe left panel, open the Remote Server folder. Then open the server
for which you wish to create a proxy table.

3 Double-click Add Proxy Table, and follow the instructions in the
wizard:

¢ On the first page, enter the remote database name. For Adaptive
Server Anywhere, leave this blank.

744

Chapter 28 Accessing Remote Data

Notes

& For more information on identifying proxy tables, see
"Specifying proxy table locations" on page 743.

¢ On the next page, enter the name and owner of the remote table, as
they are specified in the remote database. Also, add a name for the
proxy table. This can be different from the remote table name if you
wish.

4 Click Finish to create the proxy table. You may have to refresh the
display to show the proxy table.

¢ The proxy table is displayed under the remote server, inside the remote
servers folder.

¢ The proxy table also appears in database tables folder. It is distinguished
from other tables by a letter P on the icon.

¢ You can display the column properties for the proxy table by double
clicking the table.

Using the CREATE EXISTING TABLE statement

Example 1

The CREATE EXISTING TABLE statement creates a proxy table that maps
to an existing table on the remote server. Adaptive Server Anywhere derives
the column attributes and index information from the object at the remote
location.

To create a proxy table named p_employee on the current server to a remote
table named employee on the server named asademol, use the following
syntax:

CREATE EXISTING TABLE p employee
AT 'asademol..dba.employee'

p_employee employee
proxy table

SN
HEN

~. N~

asademo
server

mapping

-

7

local server

745

Working with proxy tables

Example 2

The following statement maps the proxy table al to the Microsoft Access file
mydbfile.mdb. In this example, the AT keyword uses the semicolon (;) as a
delimiter. The server defined for Microsoft Access is named access.

CREATE EXISTING TABLE al
AT'access;d: \mydbfile.mdb;;al"

& For a full description of the CREATE EXISTING TABLE statement,
see "CREATE EXISTING TABLE statement" on page 393 of the book
Adaptive Server Anywhere Reference Manual.

Using the CREATE TABLE statement

Example

The CREATE TABLE statement creates a new table on the remote server,
and defines the proxy table for that table when you use the AT option. You
enter the CREATE TABLE statement using Adaptive Server Anywhere data
types. Adaptive Server Anywhere automatically converts the data into the
remote server's native types.

The following statement creates a table named members on the remote
server asademol, and creates a proxy table named employee that maps to
the remote location:

CREATE TABLE members

(membership id INTEGER NOT NULL,
member name CHAR (30) NOT NULL,
office held CHAR(20) NULL)

AT 'asademol..dba.employee'

& For a complete description of the CREATE TABLE statement, see
"CREATE TABLE statement" on page 415 of the book Adaptive Server
Anywhere Reference Manual.

Listing the columns on a remote table

746

If you are entering a CREATE EXISTING statement and you are specifying
a column list, it may be helpful to get a list of the columns that are available
on a remote table. The sp_remote_columns system procedure produces a list
of the columns on a remote table and a description of those data types.

sp_remote columns servername [,tablename] [, owner] [,
database]

If a table name, owner, or database name is given, the list of columns is
limited to only those that match.

For example, to get a list of the columns in the sysobjects table in the
production database in an Adaptive Server Enterprise server named asetest:

Chapter 28 Accessing Remote Data

sp_remote columns asetest, sysobjects, null, production

& For more information, see "sp_remote columns system procedure" on
page 758 of the book Adaptive Server Anywhere Reference Manual.

747

Example: a join between two remote tables

Example: a join between two remote tables

The following figure illustrates the remote Adaptive Server Anywhere tables
employee and department in the sample database mapped to the local server
named testasa.

p_employee employee
proxy table table
p_department department

proxy table able

L

emp_fname |emp_Iname

]

dept_id dept_name

\
asademo \
server

testasa server

This example shows how to:

¢ Define the remote testasa server

¢ Create the proxy tables employee and department

¢ Perform a join between the remote employee and department tables.

In real-world cases, you may use joins between tables on different Adaptive
Server Anywhere databases. Here we describe a simple case using just one
database, which may not be particularly useful, to illustrate the principles.

% To perform a join between two remote tables, using Interactive SQL.:
1 Create a new database named empty.db.

This database holds no data. We will use it only to define the remote
objects, and access the sample database from it.

2 Start a database server running both empty.db and the sample database.
You can do this using the following command line, executed from the
installation directory:

dbeng6 asademo empty

3 Connect to empty.db it from Interactive SQL using user ID dba and
password sql.

4 In the new database, create a remote server named testasa. Its server
class is asajdbe, and the connection information is 'ASA 6.0 Sample':

748

Chapter 28 Accessing Remote Data

CREATE SERVER testasa
CLASS 'asaodbc'
USING 'ASA 6.0 Sample'

In this example, we use the same user ID and password on the remote
database as on the local database, so no external logins are needed.

Define the employee proxy table:

CREATE EXISTING TABLE employee
AT 'testasa..dba.employee'

Define the department proxy table:

CREATE EXISTING TABLE department
AT 'testasa..dba.department'

Use the proxy tables in the SELECT statement to perform the join.

SELECT emp fname, emp Iname, dept name
FROM employee JOIN department

ON employee.dept id = department.dept id
ORDER BY emp lname

749

Accessing multiple local databases

Accessing multiple local databases

An Adaptive Server Anywhere server may have several local databases
running at one time. By defining tables in other local Adaptive Server
Anywhere databases as remote tables, you can perform cross database joins.

For example, if you are using database db1 and you want to access data in
tables in database db2, you need to set up proxy table definitions that point
to the tables in database db2. For instance, on an Adaptive Server Anywhere
named testasa, you might have three databases available, dbl, db2, and db3.

¢ Ifusing ODBC, create an ODBC data source name entry for each
database you will be accessing.

¢ Connect to one of the databases that you will be performing joins from.
For example, connect to dbl.

¢ Perform a CREATE SERVER for each other local database you will be
accessing. This sets up a loopback connection to your Adaptive Server
Anywhere server

CREATE SERVER local db2

CLASS 'asaodbc'
USING 'testasa db2'

CREATE SERVER local db3
CLASS 'asaodbc'
USING 'testasa db3'

or using JDBC:

CREATE SERVER local_de
CLASS 'asajdbc'
USING 'mypcl:2638/db2"'

CREATE SERVER local_db3
CLASS 'asajdbc'
USING 'mypcl:2638/db3"

¢ Create proxy table definitions using CREATE EXISTING to the tables
in the other databases you want to access.

CREATE EXISTING TABLE employee
AT 'local dbZ2...employee'

750

Chapter 28 Accessing Remote Data

Sending native statements to remote servers

Example 1

Example 2

Use the FORWARD TO statement to send one or more statements to the
remote server in its native syntax. This statement can be used in two ways:

¢ To send a statement to a remote server

¢ To place Adaptive Server Anywhere into passthrough mode for sending
a series of statements to a remote server

If a connection cannot be made to the specified server, the reason is
contained in a message returned to the user. If a connection is made, any
results are converted into a form that can be recognized by the client
program.

The FORWARD TO statement can be used to verify that a server is
configured correctly. If you send a statement to the remote server and
Adaptive Server Anywhere does not return an error message, the remote
server is configured correctly.

The following statement verifies connectivity to the server named
ASEserver by selecting the version string:
FORWARD TO ASEserver {SELECT @@version}

The following statements show a passthrough session with the server named
ASEserver:

FORWARD TO ASEserver

select * from titles

select * from authors
FORWARD TO

& For a complete description of the FORWARD TO statement, see
"FORWARD TO statement" on page 474 of the book Adaptive Server
Anywhere Reference Manual.

751

Using remote procedure calls (RPCs)

Using remote procedure calls (RPCs)

752

Adaptive Server Anywhere users can issue procedure calls to remote servers
that support the feature.

Sybase Adaptive Server Anywhere and Adaptive Server Enterprise, Oracle,
and DB2 support this feature. Issuing a remote procedure call is similar to
using a local procedure call.

To issue a remote procedure call:
1 First define the procedure to Adaptive Server Anywhere.

The syntax is the same as a local procedure definition except instead of
using SQL statements to make up the body of the call, a location string
is given defining the location where the procedure resides.

CREATE PROCEDURE remotewho ()
AT 'bostonase.master.dbo.sp who'

2 Execute the procedure as follows:

call remotewho ()

Here is an example with a parameter:

CREATE PROCEDURE remoteuser (IN uname char (30))
AT 'bostonase.master.dbo.sp helpuser'

call remoteuser ('joe')

Chapter 28 Accessing Remote Data

Transaction management and remote data

Transactions provide a way to group SQL statements so that they are treated
as a unit—either all work performed by the statements is committed to the
database, or none of it is.

For the most part, transaction management with remote tables is the same as
transaction management for local tables in Adaptive Server Anywhere, but
there are some differences. They are discussed in the following section.

& For a general discussion of transactions, see "Using Transactions and
Locks" on page 367.

Remote transaction management overview

The method for managing transactions involving remote servers uses a two-
phase commit protocol. Adaptive Server Anywhere implements a strategy
that ensures transaction integrity for most scenarios. However, when more
than one remote server is invoked in a transaction, there is still a chance that
a distributed unit of work will be left in an undetermined state. Even though
two-phase commit protocol is used, no recovery process is included.

The general logic for managing a user transaction is as follows:

1 Adaptive Server Anywhere prefaces work to a remote server with a
BEGIN TRANSACTION notification.

2 When the transaction is ready to be committed, Adaptive Server
Anywhere sends a PREPARE TRANSACTION notification to each
remote server that has been part of the transaction. This ensures the that
remote server is ready to commit the transaction.

3 Ifa PREPARE TRANSACTION request fails, all remote servers are
told to roll back the current transaction.

If all PREPARE TRANSACTION requests are successful, the server
sends a COMMIT TRANSACTION request to each remote server
involved with the transaction.

Any statement preceded by BEGIN TRANSACTION can begin a
transaction. Other statements are sent to a remote server to be executed as a
single, remote unit of work.

Restrictions on transaction management

Restrictions on transaction management are as follows:

753

Transaction management and remote data

754

Savepoints are not propagated to remote servers.

If nested BEGIN TRANSACTION and COMMIT TRANSACTION
statements are included in a transaction that involves remote servers,
only the outermost set of statements is processed. The innermost set,
containing the BEGIN TRANSACTION and COMMIT
TRANSACTION statements, is not transmitted to remote servers.

Chapter 28 Accessing Remote Data

Internal operations

This section describes the underlying operations on remote servers
performed by Adaptive Server Anywhere on behalf of client applications.

Query parsing

When a statement is received from a client, it is parsed. An error is raised if
the statement is not a valid Adaptive Server Anywhere SQL statement.

Query normalization

The next step is called query normalization. During this step, referenced
objects are verified and some data type compatibility is checked.

For example, consider the following query:

SELECT *
FROM t1
WHERE cl = 10

The query normalization stage verifies that table t1 with a column el exists
in the system tables. It also verifies that the data type of column ¢l is
compatible with the value 10. If the column's data type is datetime, for
example, this statement is rejected.

Query preprocessing

Query preprocessing prepares the query for optimization. It may change the
representation of a statement so that the SQL statement Adaptive Server
Anywhere generates for passing to a remote server will be syntactically
different from the original statement.

Preprocessing performs view expansion so that a query can operate on tables
referenced by the view. Expressions may be reordered and subqueries may
be transformed to improve processing efficiency. For example, some
subqueries may be converted into joins.

Server capabilities

The previous steps are performed on all queries, both local and remote.

755

Internal operations

The following steps depend on the type of SQL statement and the
capabilities of the remote servers involved.

Each remote server defined to Adaptive Server Anywhere has a set of
capabilities associated with it. These capabilities are stored in the
syscapabilities system table. These capabilities are initialized during the first
connection to a remote server. The generic server class odbc relies strictly on
information returned from the ODBC driver to determine these capabilities.
Other server classes such as db2odbc have more detailed knowledge of the
capabilities of a remote server type and use that knowledge to supplement
what is returned from the driver.

Once syscapabilities is initialized for a server, the capability information is
retrieved only from the system table. This allows a user to alter the known
capabilities of a server.

Since a remote server may not support all of the features of a given SQL
statement, Adaptive Server Anywhere must break the statement into simpler
components to the point that the query can be given to the remote server.
SQL features not passed off to a remote server must be evaluated by
Adaptive Server Anywhere itself.

For example, a query may contain an ORDER BY statement. If a remote
server cannot perform ORDER BY, the statement is sent to a the remote
server without it and Adaptive Server Anywhere performs the ORDER BY
on the result returned, before returning the result to the user. The result is
that the user can employ the full range of Adaptive Server Anywhere
supported SQL without concern for the features of a particular back end.

Complete passthrough of the statement

756

The most efficient way to handle a statement is usually to hand as much of
the original statement as possible off to the remote server involved. Adaptive
Server Anywhere will attempt to pass off as much of the statement as is
possible. In many cases this will be the complete statement as originally
given to Adaptive Server Anywhere.

Adaptive Server Anywhere will hand off the complete statement when:
¢ Every table in the statement resides in the same remote server.

¢ The remote server is capable of processing all of the syntax in the
statement.

In rare conditions, it may actually be more efficient to let Adaptive Server
Anywhere do some of the work instead of passing it off. For example,
Adaptive Server Anywhere may have a better sorting algorithm. In this case
you may consider altering the capabilities of a remote server using the
ALTER SERVER statement.

Chapter 28 Accessing Remote Data

& For more information see "ALTER SERVER statement" on page 349
of the book Adaptive Server Anywhere Reference Manual.

Partial passthrough of the statement

Select

Joins

Update and delete

If a statement contains references to multiple servers, or uses SQL features
not supported by a remote server, the query is decomposed into simpler
parts.

SELECT statements are broken down by removing portions that cannot be
passed on and letting Adaptive Server Anywhere perform the feature. For
example, let's say a remote server can not process the atan2() function in the
following statement:

select a,b,c where atan2(b,10) > 3 and c = 10

The statement sent to the remote server would be converted to:

select a,b,c where ¢ = 10

Locally, Adaptive Server Anywhere would apply "where atan2(b,10) > 3" to
the intermediate result set.

Adaptive Server Anywhere processes joins using a nested loop algorithm.
When two tables are joined, one table is selected to be the outer table. The
outer table is scanned based on the WHERE conditions that apply to it. For
every qualifying row found, the other table, known as the inner table is
scanned to find a row that matches the join condition.

This same algorithm is used when remote tables are referenced. Since the
cost of searching a remote table is usually much higher than a local table
(due to network 1/0), every effort is made to make the remote table the
outermost table in the join.

If Adaptive Server Anywhere cannot pass off an UPDATE or DELETE
statement entirely to a remote server, it must change the statement into a
table scan containing as much of the original WHERE clause as possible,
followed by positioned UPDATE or DELETE "where current of cursor"
when a qualifying row is found.

For example, when the function atan2 is not supported by a remote server:

UPDATE t1
SET a = atan2 (b, 10)
WHERE b > 5

Would be converted to the following:

SELECT a,b
FROM tl
WHERE b > 5

757

Internal operations

758

Each time a row is found, Adaptive Server Anywhere would calculate the
new value of a and issue:

UPDATE t1

SET a = 'new value'
WHERE CURRENT OF CURSOR

If a already has a value that equals the "new value", a positioned UPDATE
would not be necessary and would not be sent remotely.

In order to process an UPDATE or DELETE that requires a table scan, the
remote data source must support the ability to perform a positioned
UPDATE or DELETE ("where current of cursor"). Some data sources do not
support this capability.

Temporary tables cannot be updated

In this release of Adaptive Server Anywhere an UPDATE or DELETE
cannot be performed if an intermediate temporary table is required in
Adaptive Server Anywhere. This occurs in queries with ORDER BY and
some queries with subqueries.

Chapter 28 Accessing Remote Data

Troubleshooting remote data access

This section provides some hints for troubleshooting remote servers.

Features not supported for remote data

Case sensitivity

The following Adaptive Server Anywhere features are not supported on
remote data. Attempts to use these features will therefore run into problems:

* & & 6 o o o o o

ALTER TABLE statement against remote tables

Triggers defined on proxy tables will not fire

SQL Remote

Java data types

Foreign keys that refer to remote tables are ignored

The READTEXT, WRITETEXT, and TEXTPTR functions.
Positioned UPDATE and DELETE

UPDATE and DELETE requiring an intermediate temporary table.

Backwards scrolling on cursors opened against remote data. Fetch
statements must be NEXT or RELATIVE 1.

If a column on a remote table has a name that is a keyword on the
remote server, you cannot access data in that column. Adaptive Server
Anywhere cannot know all of the remote server reserved words. You
can execute a CREATE EXISTING TABLE statement, and import the
definition but you cannot select that column.

The case sensitivity setting of your Adaptive Server Anywhere database
should match the settings used by any remote servers accessed.

Adaptive Server Anywhere databases are created case insensitive by default.
With this configuration, unpredictable results may occur when selecting from
a case sensitive database. Different results will occur depending on whether
ORDER BY or string comparisons are pushed off to a remote server or
evaluated by the local Adaptive Server Anywhere.

759

Troubleshooting remote data access

Connectivity problems

Take the following steps to be sure you can connect to a remote server:

¢ Determine that you can connect to a remote server using a client tool
such as Interactive SQL before configuring Adaptive Server Anywhere.

¢ Perform a simple passthrough statement to a remote server to check your
connectivity and remote login configuration. For example:

FORWARD TO testasa {select @@version}

¢ Turn on remote tracing for a trace of the interactions with remote
servers.

SET OPTION cis option = 2

General problems with queries

If you are faced with some type of problem with the way Adaptive Server
Anywhere is handling a query against a remote table, it is usually helpful to
understand how Adaptive Server Anywhere is executing that query. You can
display remote tracing as well as a description of the query execution plan:

SET OPTION cis option = 6

Queries blocked on themselves

If you access multiple databases on a single Adaptive Server Anywhere
server, you may need to increase the number of threads used by the database
server on Windows NT using the —gx command-line switch.

You must have enough threads available to support the individual tasks that
are being run by a query. Failure to provide the number of required tasks can
lead to a query becoming blocked on itself.

760

