CHAPTER 3

Working with Database Objects

About this chapter This chapter describes the mechanics of creating, altering, and deleting
database objects such as tables, views, and indexes. The SQL statements for
carrying out these tasks are called the Data Definition Language (DDL).

The definitions of the database objects form the database schema: you can
think of the schema as the database without any data.

& Procedures and triggers are also database objects, but are discussed in
"Using Procedures, Triggers, and Batches" on page 221.

Contents Topic Page
Tools for working with database objects 66
Working with databases 68
Working with tables 71
Working with views 77
Working with indexes 83

65

Tools for working with database objects

Tools for working with database objects

Adaptive Server Anywhere includes two utilities for working with database
objects: Sybase Central and Interactive SQL. In addition, SQL Modeler can
be used for designing and creating whole databases.

Sybase Central is the primary tool for working with database

objects

You can use Sybase Central to create, modify, and delete all kinds of
database objects, including tables, procedures, triggers, views, indexes, users
and groups.

This chapter is concerned with the SQL statements for working with
database objects. If you are using Sybase Central, these SQL statements are
generated for you. The primary source of information about Sybase Central
is the Sybase Central online Help. In this chapter, only brief pointers are
given for tasks that you can carry out using Sybase Central.

& For an introduction to using Sybase Central, see "Managing Databases
with Sybase Central" on page 45 of the book First Guide to SQL Anywhere
Studio.

Using Interactive SQL to work with database objects

Interactive SQL
command file

66

Interactive SQL is a utility for entering SQL statements. If you are using
Interactive SQL to work with your database schema, instead of executing the
SQL statements one at a time you should build up the set of commands in an
Interactive SQL command file. This file can then be executed in Interactive
SQL to build the database.

If you are using a tool other than Interactive SQL, all the information in this
chapter concerning SQL statements still applies.

If you have not created your database using command files, you can create a
command file that would recreate your database by unloading the database.

& For a description of the Unload utility, see "The Unload utility" on page
110 of the book Adaptive Server Anywhere Reference Manual.

An Interactive SQL command file is a text file with semicolons placed at the
end of commands (see "Running command files" on page 80 of the book
First Guide to SOQL Anywhere Studio) as shown below.

CREATE TABLE tl1 (..);
CREATE TABLE t2 (..);

Chapter 3 Working with Database Objects

CREATE INDEX i2 ON t2 (..);

Anlnteractive SQL command file is usually given a name with the extension
.sql. To execute a command file, either paste the contents of the file into the
Interactive SQL command window (if the file has less than 500 lines) or
enter a command that reads the file into the command window. For example:

read makesdb

reads the Interactive SQL commands in the file makedb.sql.

67

Working with databases

Working with databases

Some application design systems, such as Powersoft PowerBuilder, contain
facilities for creating database objects. These tools construct SQL statements
that are submitted to the server, typically through its ODBC interface. If you
are using one of these tools, you do not need to construct SQL statements to
create tables, assign permissions, and so on.

This chapter describes the SQL statements for defining database objects. You
can use these statements directly if you are building your database from an
interactive SQL tool, such as Interactive SQL. Even if you are using an
application design tool, you may want to use SQL statements to add features
to the database if they are not supported by the design tool.

For more advanced use, database design tools such as Powersoft
PowerDesigner provide a more thorough and reliable approach to developing
well-designed databases.

Initializing a database

Database file
compatibility

Using the CREATE
DATABASE
statement

68

Initializing a database creates the file for storing your data and the system
tables, which hold the schema definition as you build your database.

You create a database using the database initialization utility or the CREATE
DATABASE statement. Once the database is initialized, you can connect to
it and build the tables and other objects that you need in the database.

An Adaptive Server Anywhere database is an operating system file. It can be
copied to other locations just like any other file is copied.

Database files are compatible among all operating systems. A database
created from any operating system can be used from another operating
system by copying the database file(s). Similarly, a database created with a
personal server can be used with a network server. Adaptive Server
Anywhere servers can manage databases created with earlier versions, but
old servers cannot manage new databases.

You can use the CREATE DATABASE statement to create databases. For
example, the following statement creates a database file c:\temp\temp.db.

CREATE DATABASE 'c:\\temp\\temp.db'

The directory path is relative to the database server. The permissions
required to execute this statement are set on the server command line, using
the —gu command-line option. The default setting is to require DBA
authority.

Chapter 3 Working with Database Objects

Accessing the
initialization utility

& For a full description, see "CREATE DATABASE statement" on page
385 of the book Adaptive Server Anywhere Reference Manual.

A full description of the initialization utility, with the options available when
you create a database is given in "The Initialization utility" on page 84 of the
book Adaptive Server Anywhere Reference Manual. The initialization utility
can be accessed in the following ways:

¢ In Sybase Central, click the Database Utilities folder in the left panel,
then double-click Create Database to start the Create Database Wizard,
which leads you through the process.

¢ Use the dbinit command (dbinitw for Windows 3.x). For a full
description of dbinit command, see "The Initialization utility" on page
84 of the book Adaptive Server Anywhere Reference Manual.

For example, the following command will create a database called
company.db:

dbinit company.db

¢ Command line parameters allow different options for the database. For
example, the following command creates a database with a 4K page
size:

dbinit -p 4096 company.db

Creating Windows CE databases from Sybase Central

Sybase Central has features to make database creation easy for Windows CE
databases. If you have Windows CE services installed on your Windows 95
or Windows NT desktop, you get an option to create a Windows CE database
when you create a database from Sybase Central (Windows Edition). Sybase
Central enforces the requirements for Windows CE databases, and optionally
copies the resulting database file to your Windows CE machine.

Erasing a database

Erasing a database deletes all tables and data from disk, including the
transaction log that records alterations to the database.

All database files are marked as read-only to prevent accidental modification
or deletion of the database files.

&> You can erase database files using the Erase utility. For a full
description of the Erase utility, see "The Erase utility" on page 80 of the
book Adaptive Server Anywhere Reference Manual.

69

Working with databases

Accessing the
Erase utility

70

You can access the Erase utility using any of the following methods:

¢

Using Sybase Central Click the Database Utilities folder, and double-
click Erase Database to display the Erase Database Wizard, which leads
you through the process.

Using the DBERASE command-line utility The following command
erases the database company.db and its transaction log:

dberase company.db

You will be asked to confirm that you really want to erase the files. To
erase the files, type y and press ENTER.

Using the DROP DATABASE statement For information on this
statement, see "DROP DATABASE statement" on page 453 of the book
Adaptive Server Anywhere Reference Manual.

Using the Interactive SQL Database Tools window To open this
window, select the Database Tools menu item from the Window menu.
Select Erase Database or Write File from the Tools list, and enter the
name of the database file in the Database File field. The database is
erased when you press the Erase button.

& For information on using multiple files for a database, and managing
other optional files, such as write files, see "Working with Database Files"
on page 613.

Chapter 3 Working with Database Objects

Working with tables

Creating tables

Creating tables in
Sybase Central

SQL statement for
creating tables

Example

When the database is initialized, the only tables in the database are the
system tables, which hold the database schema.

This section describes how to create, alter, and delete tables from a database
The examples can be executed in Interactive SQL, but the SQL statements
are independent of the administration tool you are using.

You should create command files containing the CREATE TABLE and
ALTER TABLE statements that define the tables in your database. In this
way, you can re-create the database when necessary.

Sybase Central provides a tool called the table editor. In the table editor,
you can create a table definition by filling out a spreadsheet-like form.

To create a table using Sybase Central:

1 Connect to the database.

2 Click the Tables folder for that database.

3 Double-click Add Table in the right panel.

4 Enter the features you want in the Table Editor.
5 Click OK to create the table.

The SQL statement for creating tables is the CREATE TABLE statement.

This section describes how to use the CREATE TABLE statement. The
examples in this section use the sample database. To try the examples, run
Interactive SQL and connect to the sample database with user ID DBA and
password SQL.

& For information on connecting to the sample database from Interactive
SQL, see "Connecting to the sample database from Interactive SQL" on page
35.

You can create tables with other tools in addition to Interactive SQL. The
SQL statements described here are independent of the tool you are using.

The following statement creates a new table to describe qualifications of
employees within a company. The table has columns to hold an identifying
number, a name, and a type (say technical or administrative) for each skill.

CREATE TABLE skill (
skill id INTEGER NOT NULL,

7

Working with tables

Altering tables

Example 1

Example 2

72

skill name CHAR(20) NOT NULL,
skill type CHAR(20) NOT NULL
)

You can execute this command by typing it into the Interactive SQL
command window, and pressing the execute key (F9).

¢ Each column has a data type. The skill_id is an integer (like 101), the
skill name is a CHARACTER string containing up to 20 characters,
and so on.

¢ All columns are mandatory as indicated by the phrase NOT NULL after
their data types.

¢ In general, you would not create a table that has no primary key.
Creating primary keys is dealt with separately, below.

Before creating the table, all previous changes to the database are made
permanent by internally executing the COMMIT statement. There is also a
COMMIT after the table is created.

&~ For a full description of the CREATE TABLE statement, see
"CREATE TABLE statement" on page 415 of the book Adaptive Server
Anywhere Reference Manual. For information about building constraints into
table definitions using CREATE TABLE, see "Ensuring Data Integrity" on
page 347.

This section describes how to change the structure of a table using the
ALTER TABLE statement.

The following command adds a column to the skill table to allow space for
an optional description of the skill:

ALTER TABLE skill
ADD skill description CHAR(254)

This statement adds a column called skill description that holds up to a few
sentences describing the skill.

Column attributes can also be modified with the ALTER TABLE statement.
The following statement shortens the skill description column of the sample
database from a maximum of 254 characters to a maximum of 80:

ALTER TABLE skill
MODIFY skill description CHAR(80)

Any current entries that are longer than 80 characters are trimmed to
conform to the 80-character limit, and a warning is displayed.

Chapter 3 Working with Database Objects

Example 3

Example 4

Example 5

Altering tables in
Sybase Central

Deleting tables

The following statement changes the name of the skill_type column to
classification:

ALTER TABLE skill
RENAME skill type TO classification

The following statement deletes the classification column.

ALTER TABLE skill
DROP classification

As a final example, the following statement changes the name of the entire
table:

ALTER TABLE skill
RENAME qualification

These examples show how to change the structure of the database. The
ALTER TABLE statement can change just about anything pertaining to a
table—foreign keys can be added or deleted, columns can be changed from
one type to another, and so on.

& For a complete description of the ALTER TABLE command, see
"ALTER TABLE statement" on page 351 of the book Adaptive Server
Anywhere Reference Manual. For information about building constraints into
table definitions using ALTER TABLE, see "Ensuring Data Integrity" on
page 347.

The property sheets for tables and columns display all the table or column
attributes. You can alter a table definition in Sybase Central by displaying
the property sheet for the table or column you wish to change, altering the
property, and clicking OK to commit the change.

The following DROP TABLE command deletes all the records in the skill
table and then removes the definition of the skill table from the database

DROP TABLE skill

Like the CREATE statement, the DROP statement automatically executes a
COMMIT statement before and after dropping the table. This makes all
changes to the database since the last COMMIT or ROLLBACK permanent.

& For a full description of the DROP statement, see "DROP statement" on
page 451 of the book Adaptive Server Anywhere Reference Manual.

To drop a table in Sybase Central:

1 Connect to the database.

73

Working with tables

2 Click the Tables folder for that database.

3 Right-click the table you wish to delete, and select Delete from the pop-
up menu.

Creating primary and foreign keys

Creating a primary
key

Creating a primary
key in Sybase
Central

74

o

The CREATE TABLE and ALTER TABLE statements allow many
attributes of tables to be set, including column constraints and checks. This
section shows how to set table attributes using the primary and foreign keys
as an example.

The following statement creates the same skill table as before, except that a
primary key is added:

CREATE TABLE skill (
Skill_id INTEGER NOT NULL,
skill name CHAR(20) NOT NULL,
skill type CHAR(20) NOT NULL,
primary key(skill id)

)

The primary key values must be unique for each row in the table which, in
this case, means that you cannot have more than one row with a given
skill_id. Each row in a table is uniquely identified by its primary key.

Columns in the primary key are not allowed to contain NULL. You must
specify NOT NULL on the column in the primary key.

To create a primary key in Sybase Central:
1 Connect to the database.
2 Click the Tables folder for that database.

3 Right-click the table you wish to modify, and select Properties from the
pop-up menu to display its property sheet.

4 Click the Columns tab, select the column name, and either click Add to
Key or Remove from Key.

& For more information, see the Sybase Central online Help.

Column order in multi-column primary keys

Primary key column order is based on the order of the columns during
table creation. It is not based on the order of the columns as specified in
the primary key declaration.

Chapter 3 Working with Database Objects

Creating foreign
keys

Single and double
quotes in SQL

You can create a table named emp_skill, which holds a description of each
employee's skill level for each skill in which they are qualified, as follows:

CREATE TABLE emp skill(
emp id INTEGER NOT NULL,
Skill_id INTEGER NOT NULL,
"skill level™ INTEGER NOT NULL,
PRIMARY KEY(emp id, skill id),
FOREIGN KEY REFERENCES employee,
FOREIGN KEY REFERENCES skill

)

The emp_skill table definition has a primary key that consists of two
columns: the emp_id column and the skill_id column. An employee may
have more than one skill, and so appear in several rows, and several
employees may possess a given skill, so that the skill_id may appear several
times. However, there may be no more than one entry for a given employee
and skill combination.

The emp_skill table also has two foreign keys. The foreign key entries
indicate that the emp_id column must contain a valid employee number from
the employee table, and that the skill id must contain a valid entry from the
skill table.

A table can only have one primary key defined, but it may have as many
foreign keys as necessary.

The skill level column name contains a space and is surrounded by quotation
marks ("double quotes"). You can use any characters in column names and
table names, but the names must be enclosed in quotation marks under the
following circumstances:

¢ Ifany characters other than letters, digits or the underscore are used
¢ If the name does not begin with a letter

¢ Ifthe name is the same as a keyword.

Remember, in SQL:

Single quotes (apostrophes) are used to indicate strings. For example:
"SMITH', '100 Apple St.', '1988-1-1'.

¢ Double quotes (quotation marks) are used to indicate table or column
names (for example, "skill level", "emp_id", "skill type").

¢ Toinclude a single quote inside a string, use two single quotes:

'""'"Plankton'', said the cat'

75

Working with tables

&> For more information about using primary and foreign keys, see
"Ensuring Data Integrity" on page 347.

Creating a foreign Each foreign key relationship lists a primary key in one column to a column
key in Sybase in another table, which becomes the foreign key.
Central

% To create a foreign key in Sybase Central:
1 Connect to the database.
2 Click the Tables folder for that database.

3 Click the table holding the primary key, and drag it to the foreign key
table.

4 When the primary key table is dropped on the foreign key table, the
Foreign Key Wizard is displayed, which leads you through the process
of creating the foreign key.

& For more information, see the Sybase Central online Help.

Table information in the system tables

All the information about tables in a database is held in the system tables.
The information is distributed among several tables.

& For more information, see "System Tables" on page 771 of the book
Adaptive Server Anywhere Reference Manual.

You can use Sybase Central or Interactive SQL to browse the information in
these tables. Type the following command in the Interactive SQL command
window to see all the columns in the SYS.SYSTABLE table:

SELECT *
FROM SYS.SYSTABLE
< To display the system tables in Sybase Central:
1 Connect to the database.

2 Right-click the database, and select Filter Objects from the pop-up
menu.

3 Select SYS and OK.

4 When you view the database tables or views with Show System Objects
checked, the system tables or views are also shown.

76

Chapter 3 Working with Database Objects

Working with views

Similarities
between views and
base tables

Differences
between views and
permanent tables

Benefits of tailoring
access

Creating views

Example

Views are computed tables. You can use views to show database users
exactly the information you want to present, in a format you can control.

Views are similar to the permanent tables of the database (a permanent table
is also called a base table) in many ways:

¢ You can assign access permissions to views just as to base tables.
¢ You can perform SELECT queries on views.

¢ You can perform UPDATE, INSERT, and DELETE operations on some
views.

¢ You can create views based on other views.

There are some differences between views and permanent tables:

¢ You cannot create indexes on views.

¢ You cannot perform UPDATE, INSERT, and DELETE operations on all
views.

¢ You cannot assign integrity constraints and keys to views.

¢ Views are recomputed each time they are invoked. Views refer to the
information in base tables, but do not hold copies of that information.

Views are used to tailor access to data in the database. Tailoring access
serves several purposes:

¢ Improved security By not allowing access to information that is not
relevant.

¢ Improved usability By presenting users and application developers
with data in a more easily understood form than in the base tables.

¢ Improved consistency By centralizing in the database the definition
of common queries.

A SELECT statement operates on one or more tables and produces a result
set that is also a table: just like a base table, a result set from a SELECT
query has columns and rows. A view gives a name to a particular query, and
holds the definition in the database system tables.

Suppose that you frequently need to list the number of employees in each
department. You can get this list with the following statement:

77

Working with views

Using views
Restrictions on

SELECT
statements

78

SELECT dept ID, count (*)
FROM employee
GROUP BY dept ID

You can create a view containing the results of this statement as follows:

CREATE VIEW DepartmentSize AS
SELECT dept ID, count (*)

FROM employee

GROUP BY dept ID

The information in a view is not stored separately in the database. Each time
you refer to the view, the associated SELECT statement is executed to
retrieve the appropriate data. On one hand, this is good because it means that
if someone modifies the employee table, the information in the
DepartmentSize view will be automatically up to date. On the other hand, if
the SELECT statement is complicated it may take a long time for SQL to
find the correct information every time you use the view.

To create a view in Sybase Central:

1 Connect to the database.

2 Click the Views folder for that database.
3 Double-click Add View.
4

Enter the table and the columns to be used. In this case employee and
dept ID. From the File menu select Execute Script and from the File
menu select Close.

& For more information, see the Sybase Central online Help.

There are some restrictions on the SELECT statements that you can use as
views. In particular, you cannot use an ORDER BY clause in the SELECT
query. It is a characteristic of relational tables that there is no significance to
the ordering of the rows or columns, and using an ORDER BY clause would
impose an order on the rows of the view. You can use the GROUP BY
clause, subqueries, and joins in view definitions.

To develop a view, you should tune the SELECT query by itself until it
provides exactly the results you need in the format you want. Once you have
the SELECT query just right, you can add a

CREATE VIEW viewname AS

phrase in front of the query to create the view.

Chapter 3 Working with Database Objects

Updating views

UPDATE, INSERT, and DELETE statements are allowed on some views,
but not on others, depending on its associated SELECT statement.

Views containing aggregate functions, such as COUNT(¥*), cannot be
updated. Views containing a GROUP BY clause in the SELECT statement
cannot be updated. Also, views containing a UNION operation cannot be
updated. In all these cases, there is no way to translate the UPDATE into an
action on the underlying tables.

Using the WITH CHECK OPTION clause

Examples using
the WITH CHECK
OPTION clause

Even when INSERT and UPDATE statements are allowed against a view, it
is possible that the inserted or updated rows in the underlying tables may not
meet the requirements for the view itself: the view would have no new rows

even though the INSERT or UPDATE does modify the underlying tables.

The following set of examples illustrates the meaning and usefulness of the
WITH CHECK OPTION clause. This optional clause is the final clause in
the CREATE VIEW statement.

To create a view displaying the employees in the sales department.
¢ Type the following statements:

CREATE VIEW sales employee
AS SELECT emp_id,
emp fname,
emp lname,
dept id
FROM employee
WHERE dept id = 200

The contents of this view are as follows:

SELECT *
FROM sales employee

emp_id emp_fname emp_lname dept_id
129 Philip Chin 200
195 Marc Dill 200
299 Rollin Overbey 200
467 James Klobucher 200
641 Thomas Powell 200

79

Working with views

¢ Transfer Philip Chin to the marketing department. This view update
causes the entry to vanish from the view, as it no longer meets the view
selection criterion.
UPDATE sales employee
SET dept id = 400
WHERE emp id = 129
¢ List all employees in the sales department Inspect the view.
SELECT *
FROM sales employee
emp_id emp_fname emp_lname dept_id
195 Marc Dill 200
299 Rollin Overbey 200
467 James Klobucher 200
641 Thomas Powell 200
667 Mary Garcia 200

When a view is created WITH CHECK OPTION, any UPDATE or INSERT
statement on the view is checked to ensure that the new row matches the
view condition. If it does not, the operation causes an error and is rejected.

The following modified sales_employee view rejects the update statement,
generating the following error message:

Invalid value for column 'dept_id' in table 'employee’

4 Create a view displaying the employees in the sales department
(second attempt) Use WITH CHECK OPTION this time.
CREATE VIEW sales employee
AS SELECT emp id, 7emp_fname, emp lname, dept id
FROM employee
WHERE dept id = 200
WITH CHECK OPTION
The check option is If a view (say V2) is defined on the sales _employee view, any updates or
inherited inserts on V2 that cause the WITH CHECK OPTION criterion on
sales_employee to fail are rejected, even if V2 is defined without a check
option.

80

Chapter 3 Working with Database Objects

Modifying views

Example

You can modify a view using the ALTER VIEW statement. The ALTER
VIEW statement replaces a view definition with a new definition; it does not
modify an existing view definition.

The ALTER VIEW statement maintains the permissions on the view.

For example, to replace the column names with more informative names in
the DepartmentSize view described above, you could use the following
statement:

ALTER VIEW DepartmentSize
(Dept ID, NumEmployees)
AS
SELECT dept ID, count (*)
FROM Employee
GROUP BY dept ID

Permissions on views

Deleting views

Dropping a view in
Sybase Central

An INSERT, DELETE, or UPDATE operation is allowed either if
permission on the view has been granted or if permission on the underlying
tables has been granted.

UPDATE permissions can be granted only on an entire view. Unlike tables,
UPDATE permissions cannot be granted on individual columns within a
view.

Behavior change

There was a behavior change with Version 5 of the software concerning
the permission requirements. Previously, permissions on the underlying
tables were required in order to grant permissions on views.

To delete a view from the database, you use the DROP statement. The
following statement removes the DepartmentSize view:

DROP VIEW DepartmentSize

To drop a view in Sybase Central, right-click the view you wish to delete and
select Delete from the pop-up menu.

& For more information, see the Sybase Central online Help.

81

Working with views

Views in the system tables

82

All the information about views in a database is held in the system table
SYS.SYSTABLE. The information is presented in a more readable format in
the system view SYS.SYSVIEWS. For more information about these, see
"SYSTABLE system table" on page 814 of the book Adaptive Server
Anywhere Reference Manual, and "SYSVIEWS system view" on page 850
of the book Adaptive Server Anywhere Reference Manual.

You can use Interactive SQL to browse the information in these tables. Type
the following statement in the Interactive SQL command window to see all
the columns in the SYS.SYSVIEWS view:

SELECT *
FROM SYS.SYSVIEWS

To extract a text file containing the definition of a specific view, use a
statement such as the following:

SELECT viewtext FROM SYS.SYSVIEWS
WHERE viewname = 'DepartmentSize';

OUTPUT TO viewtext.sqgl

FORMAT ASCIT

Chapter 3 Working with Database Objects

Working with indexes

When to use
indexes

Use indexes for
frequently-
searched columns

Performance is an important consideration when designing and creating your
database. Indexes can dramatically improve the performance of database
searches (operations using SELECT, UPDATE, and DELETE statements) on
specified columns.

An index is similar to a telephone book which first sorts people by their last
name, and then sorts all the people with the same last name by their first
name. Telephone books are indexed on the last name and first name. This
speeds up searches for phone numbers given a particular last name. Just as a
standard telephone book is no use at all for finding the phone number at a
particular address, so an index is useful only for searches on a specific
column or columns.

Indexes get more useful as the size of the table increases. The average time
to find a phone number at a given address increases with the size of the
phone book, while it does not take much longer to find the phone number of,
say, K. Kaminski, in a large phone book than in a small phone book.

Indexes share one other feature with a phone book: they can take up a great
deal of space for large data sets. For this reason, you should build indexes
only for columns that are searched frequently or when disk space is not an
issue.

If a column is already a primary key or foreign key, searches will be fast on
this column because Adaptive Server Anywhere has facilities to optimize
searches on these key columns. Thus, creating an index on a key column is
not necessary and generally not recommended. If a column is only part of a
key, an index may help.

When indexes on primary keys may be useful
One case where an index on a key column may assist performance is
when a large number of foreign keys reference a primary key.

Adaptive Server Anywhere automatically uses indexes to improve the
performance of any database statement whenever it can. There is no need to
refer to indexes once they are created. Also, the index is updated
automatically when rows are deleted, updated or inserted.

Indexes are created on a specified table. You cannot create an index on a
view.

If an index is no longer required, you can remove it from the database using
the DROP statement.

83

Working with indexes

Example

For more
information

Creating and
dropping indexes
in Sybase Central

In order to speed up a search on employee surnames in the sample database,
you could create an index called EmpNames with the following statement:

CREATE INDEX EmpNames
ON employee (emp lname, emp fname)

The following statement removes the index from the database:

DROP INDEX EmpNames

For more information about improving database performance, including
the use of indexes, see "Monitoring and Improving Performance" on
page 623.

For a detailed description of the CREATE INDEX statement, including
syntax and permission requirements, see "CREATE INDEX statement"
on page 399 of the book Adaptive Server Anywhere Reference Manual.

For a detailed description of the DROP statement, including syntax and
permission requirements, see "DROP statement" on page 451 of the
book Adaptive Server Anywhere Reference Manual.

To create an index on a table in Sybase Central:

1
2
3
4

Connect to the database.

Double-click the table you wish to modify.

Double-click the Indexes folder, and then double-click Add Index.
Fill in the dialog box and click OK to complete.

You can drop an index in Sybase Central by right-clicking it, and selecting
Delete from the pop-up menu.

& For more information, see the Sybase Central online Help.

Indexes in the system tables

84

All the information about indexes in a database is held in the system tables
SYS.SYSINDEX and SYS.SYSIXCOL. The information is presented in a
more readable format in the system view SYS.SYSINDEXES. You can use
Sybase Central or Interactive SQL to browse the information in these tables.

