CHAPTER 30

Transact-SQL Compatibility

About this chapter

Contents

Before you begin

Transact-SQL is the dialect of SQL supported by Sybase Adaptive Server
Enterprise.

This chapter is a guide for creating applications that are compatible with both
Adaptive Server Anywhere and Adaptive Server Enterprise. It describes
Adaptive Server Anywhere support for Transact-SQL language elements and
statements, and for Adaptive Server Enterprise system tables, views, and
procedures.

Topic Page
An overview of Transact-SQL support 782
Adaptive Server architectures 785
General guidelines for writing portable SQL 791
Configuring databases for Transact-SQL compatibility 792
Writing compatible SQL statements 801
Transact-SQL procedure language overview 805
Automatic translation of stored procedures 808
Returning result sets from Transact-SQL procedures 809
Variables in Transact-SQL procedures 810
Error handling in Transact-SQL procedures 811

For brevity, in this chapter, Adaptive Server Enterprise is occasionally
abbreviated to Enterprise, and Adaptive Server Anywhere is occasionally
abbreviated to Anywhere.

The dialect of SQL supported by Enterprise is called Transact-SQL. In this
chapter, the alternative dialect, supported by Anywhere, is called Watcom-
SQL.

781

An overview of Transact-SQL support

An overview of Transact-SQL support

Goals

How Transact-SQL
is supported

782

Adaptive Server Anywhere supports a large subset of Transact-SQL, which
is the dialect of SQL supported by Sybase Adaptive Server Enterprise. This
chapter describes compatibility of SQL between Anywhere and Enterprise.

The goals of Transact-SQL support in Adaptive Server Anywhere are as
follows:

¢

Application portability Many applications, stored procedures, and
batch files can be written to be used with both Enterprise and Anywhere
databases.

Data portability Data can be exchanged and replicated between
Anywhere and Enterprise databases with a minimum of effort.

The aim is to make it possible to write applications to work with both
Enterprise and Anywhere. Existing Adaptive Server Enterprise applications
will generally require some changes to run on a Anywhere database.

Transact-SQL support in Anywhere takes the following form:

¢

Many SQL statements are compatible between Anywhere and
Enterprise.

For some statements, particularly in the procedure language used in
procedures, triggers, and batches, a separate Transact-SQL statement is
supported together with the syntax supported in previous versions of
Adaptive Server Anywhere. For these statements, Adaptive Server
Anywhere supports two dialects of SQL. In this chapter, we name those
dialects Transact-SQL and Watcom-SQL.

A procedure, trigger, or batch is executed in either the Transact-SQL or
Watcom-SQL dialect. You must use control statements from one dialect
only throughout the batch or procedure. For example, each dialect has
different flow control statements.

The following diagram illustrates how the two dialects overlap.

Chapter 30 Transact-SQL Compatibility

Similarities and
differences

Transact-SQL only

Statements allowed

in both servers Transact-SQL statements

ASA-only statements

Transact-SQL control
statements, CREATE

ASA control statements,
CREATE PROCEDURE SELECT, INSERT,

statement, CREATE UPDATE, DELETE,.. ~ROCEDURE statement,
CREATE TRIGGER
TRIGGER statement,...
statement,...

Adaptive Server Anywhere supports a very high percentage of Transact-SQL
language elements, functions, and statements for working with existing data.
For example, all of the numeric functions are supported, all but one of the
string functions are supported, all aggregate functions are supported, and all
date and time functions are supported. As another example, Adaptive Server
Anywhere supports Transact-SQL outer joins (using =* and *= operators)
and extended DELETE and UPDATE statements using joins.

Further, a very high percentage of the Transact-SQL stored procedure
language is supported (CREATE PROCEDURE and CREATE TRIGGER
syntax, control statements, and so on), and many but not all aspects of
Transact-SQL data definition language statements are supported.

There are design differences in the architectural and configuration facilities
supported by each product. Device management, user management, and
maintenance tasks such as backups tend to be system-specific. Even here,
Transact-SQL system tables are provided in Adaptive Server Anywhere as
views, where the tables that are not meaningful in Adaptive Server
Anywhere have no rows. Also, a set of system procedures is provided for
some of the more common administrative tasks.

This chapter looks first at some system-level issues where differences are
most marked, before discussing data manipulation and data definition
language aspects of the dialects where compatibility is high.

There are SQL statements supported by Adaptive Server Anywhere that are
part of one dialect, but not the other. The two dialects cannot be mixed
within a procedure, trigger, or batch. For example: the following are
supported in Adaptive Server Anywhere, but as part of the Transact-SQL
dialect only:

¢ The Transact-SQL control statements IF and WHILE.
783

An overview of Transact-SQL support

Adaptive Server
Anywhere only

Notes

784

The Transact-SQL EXECUTE statement.

The Transact-SQL CREATE PROCEDURE and CREATE TRIGGER
statements.

The Transact-SQL BEGIN TRANSACTION statement.

SQL Statements not separated by semicolons are part of a Transact-SQL
procedure or batch.

The following statements are among those not supported in Adaptive Server

Enterprise:

¢ The control statements CASE, LOOP, and FOR

¢ The Adaptive Server Anywhere versions of IF and WHILE.

¢ The CALL statement.

¢ The Adaptive Server Anywhere versions of the CREATE
PROCEDURE, CREATE FUNCTION, and CREATE TRIGGER
statements.

¢ SQL Statements separated by semicolons are not supported in Adaptive

Server Enterprise.

The two dialects cannot be mixed within a procedure, trigger, or batch. That

1S:

¢

You can include Transact-SQL-only statements together with statements
that are part of both dialects in a batch, procedure, or trigger.

You can include statements not supported by Adaptive Server Enterprise
together with statements that are supported by both servers in a batch,
procedure, or trigger.

You cannot include Transact-SQL-only statements together with
Adaptive Server Anywhere-only statements in a batch, procedure, or
trigger.

Chapter 30 Transact-SQL Compatibility

Adaptive Server architectures

Adaptive Server Enterprise and Adaptive Server Anywhere are
complementary products, with architectures designed to suit their distinct
purposes. Adaptive Server Anywhere is designed as a workgroup or
departmental server requiring little administration, and as a personal
database. Adaptive Server Enterprise is designed as an enterprise-level server
for the largest databases.

This section describes architectural differences between Adaptive Server
Enterprise and Adaptive Server Anywhere. It also describes the Adaptive
Server Enterprise-like tools that Adaptive Server Anywhere includes for

compatible database management.

Servers and databases

No master
database in
Adaptive Server
Anywhere

The relationship between servers and databases is different in Adaptive
Server Enterprise and in Adaptive Server Anywhere.

In Adaptive Server Enterprise, each database exists inside a server, and each
server can contain several databases. Users are granted login rights to the
server, and can connect to the server. They can then use each database on
that server for which they have been granted permissions. System-wide
system tables, held in a master database, contain information common to all
databases on the server.

In Adaptive Server Anywhere, there is no level corresponding to the
Adaptive Server Enterprise master database. Instead, each database is an
independent entity, containing all of its system tables. Users are granted
connection rights to a database, not to the server. When a user connects, the
connection is to an individual database. There is no system-wide set of
system tables maintained at a master database level. Each Adaptive Server
Anywhere database server can dynamically load and unload multiple
databases, and users can maintain independent connections on each, but there
is no way of addressing more than one database from within a single
connection.

Adaptive Server Anywhere provides tools in its Transact-SQL support and in
its Open Server support to allow some tasks to be carried out in a Adaptive
Server Enterprise-like manner. For example, Adaptive Server Anywhere
provides an implementation of the Adaptive Server Enterprise sp_addlogin
system procedure that carries out the nearest equivalent action: adding a user
to a database.

& For information about Open Server support, see "Adaptive Server
Anywhere as an Open Server" on page 815.

785

Adaptive Server architectures

File manipulation
statements

The Transact-SQL statements CREATE DATABASE, DROP DAT

ABASE, DUMP DATABASE, and LOAD DATABASE are not supported in
Adaptive Server Anywhere, although Adaptive Server Anywhere does have
its own CREATE DATABASE statement that is different in syntax.

Device management

Adaptive Server Anywhere and Adaptive Server Enterprise use different
models for managing devices and disk space, reflecting the different uses for
the two products. While Adaptive Server Enterprise sets out a comprehensive
resource management scheme using a variety of Transact-SQL statements,
Adaptive Server Anywhere is designed to be able to manage its own
resources automatically, and its databases are regular operating system files.

Adaptive Server Anywhere does not support Transact-SQL DISK statements,
such as DISK INIT, DISK MIRROR, DISK REFIT, DISK REINIT, DISK
REMIRROR, and DISK UNMIRROR.

& For information on disk management, see "Working with Database
Files" on page 613

Defaults and rules

786

Adaptive Server Anywhere does not support the Transact-SQL CREATE
DEFAULT statement or CREATE RULE statement. The CREATE
DOMAIN statement allows a default and a rule (called a CHECK condition)
to be incorporated into the definition of a user-defined data type, and so
provides similar functionality to the Transact-SQL CREATE DEFAULT and
CREATE RULE statements.

In Adaptive Server Enterprise, the CREATE DEFAULT statement creates a
named default. This default can be used as a default value for columns by
binding the default to a particular column or as a default value for all
columns of a user-defined data type by binding the default to the data type. A
default is bound to a data type or column using the sp_bindefault system
procedure.

The CREATE RULE statement creates a named rule which can be used to
define the domain for columns by binding the rule to a particular column or
which can be used as a rule for all columns of a user-defined data type by
binding the rule to the data type. A rule is bound to a data type or column
using the sp_bindrule system procedure.

Chapter 30 Transact-SQL Compatibility

System tables

In Adaptive Server Anywhere, a user-defined data type can have a default
value and a CHECK condition associated with it, which are applied to all
columns defined on that data type. The user-defined data type is created
using the CREATE DATATYPE statement.

Default values and rules, or CHECK conditions, can be defined for
individual columns using the CREATE TABLE statement or the ALTER
TABLE statement.

& For a description of the Adaptive Server Anywhere syntax for these
statements, see "SQL Statements" on page 339 of the book Adaptive Server
Anywhere Reference Manual.

In addition to its own system tables, Adaptive Server Anywhere provides a
set of system views that mimic relevant parts of the Adaptive Server
Enterprise system tables. These are listed and described individually in
"Views for Transact-SQL Compatibility" on page 851 of the book Adaptive
Server Anywhere Reference Manual, which describes the system catalogs of
the two products. This section provides a brief overview of the differences.

The Adaptive Server Anywhere system tables are held entirely within each
database, while the Adaptive Server Enterprise system tables are held partly
inside each database and partly in the master database. The Adaptive Server
Anywhere architecture does not include a master database.

In Adaptive Server Enterprise, the system tables are owned by the database
owner, user ID dbo. In Adaptive Server Anywhere, the system tables are
owned by the system owner, user ID SYS. The Adaptive Server Enterprise-
compatible system views provided by Adaptive Server Anywhere are owned
by a dbo user ID.

Administrative roles

Adaptive Server
Enterprise roles

Adaptive Server Enterprise has a more elaborate set of administrative roles
than Adaptive Server Anywhere. In Adaptive Server Enterprise there is a set
of distinct roles, although more than one login account on a Adaptive Server
Enterprise can be granted any role, and one account can possess more than
one role.

In Adaptive Server Enterprise the following are distinct roles:

¢ System Administrator Responsible for general administrative tasks
unrelated to specific applications; can access any database object.

787

Adaptive Server architectures

System Security Officer Responsible for security-sensitive tasks in
Adaptive Server Enterprise, but has no special permissions on database
objects.

Database Owner Has full permissions on objects inside the database
that he or she owns, can add users to a database and can grant other
users the permission to create objects and execute commands within the
database.

Data definition statements Permissions can be granted to users for
specific data definition statements, such as CREATE TABLE or
CREATE VIEW, enabling the user to use those statements to create
database objects.

Object owner Each database object has an owner, who may grant
permissions to other users to access the object. The owner of an object
automatically has all permissions on the object.

In Adaptive Server Anywhere, the following database-wide permissions have
administrative roles:

¢

The Database Administrator (DBA permissions) has, like the Adaptive
Server Enterprise database owner, full permissions on objects inside the
database that he or she owns and can grant other users the permission to
create objects and execute commands within the database. The default
database administrator is user ID DBA.

The RESOURCE permission allows a user to create any kind of object
within a database. This is instead of the Adaptive Server Enterprise
scheme of granting permissions on individual CREATE statements.

Adaptive Server Anywhere has object owners in the same way that
Adaptive Server Enterprise does. The owner of an object automatically
has all permissions on the object, including the right to grant
permissions.

For seamless access to data held in both Adaptive Server Enterprise and
Adaptive Server Anywhere, you should create user IDs with appropriate
permissions in the database (RESOURCE in Adaptive Server Anywhere, or
permission on individual CREATE statements in Adaptive Server
Enterprise) and create objects from that user ID. If the same user ID is used
in each environment, object names and qualifiers can be identical in the two
databases, helping to ensure compatible access.

Users and groups

There are some differences between the Adaptive Server Enterprise and
Adaptive Server Anywhere models of users and groups.

788

Chapter 30 Transact-SQL Compatibility

In Adaptive Server Enterprise, connections are made to a server, and each
user requires a login ID and password to the server as well as a user ID for
each database they will access on that server. Each user of a database can be
a member of at most one group.

In Adaptive Server Anywhere, where connections are made to a database,
there is nothing corresponding to the login ID. Instead, each user is granted a
user ID and password on a database in order to use that database. Users can
be members of many groups, and group hierarchies are allowed.

Both servers support user groups, so that you can grant permissions to many
users at one time. However, there are differences in the specifics of groups in
the two servers. For example, Adaptive Server Enterprise allows each user to
be a member of only one group, while Adaptive Server Anywhere has no
such restriction. You should compare the documentation on users and groups
in the two products for specific information.

Both Adaptive Server Enterprise and Adaptive Server Anywhere have a
public group, for defining default permissions. Every user is automatically a
member of the public group.

Adaptive Server Anywhere supports the following Adaptive Server
Enterprise system procedures for managing users and groups.

& For the arguments to each procedure, see "Adaptive Server Enterprise
system and catalog procedures" on page 767 of the book Adaptive Server
Anywhere Reference Manual.

System procedure | Description

sp_addlogin In Adaptive Server Enterprise, this adds a user to the
server. In Adaptive Server Anywhere, this adds a user to
a database.

sp_adduser In Adaptive Server Enterprise and Adaptive Server

Anywhere, this adds a user to a database. While this is a
distinct task from sp_addlogin in Adaptive Server
Enterprise, in Adaptive Server Anywhere, they are the

same.

sp_addgroup Adds a group to a database.

sp_changegroup Adds a user to a group, or moves a user from one group
to another.

sp_droplogin In Adaptive Server Enterprise, removes a user from the

server. In Adaptive Server Anywhere, removes a user
from the database.

sp_dropuser Removes a user from the database.

sp_dropgroup Removes a group from the database.

789

Adaptive Server architectures

Database object
permissions

Database-wide
permissions

790

In Adaptive Server Enterprise, login IDs are created on a server-wide basis.
In Adaptive Server Anywhere, users are created for individual databases. |

The Adaptive Server Enterprise and Adaptive Server Anywhere GRANT and
REVOKE statements for granting permissions on individual database objects
are very similar. Both allow SELECT, INSERT, DELETE, UPDATE, and
REFERENCES permissions on database tables and views, and UPDATE
permissions on selected columns of database tables. Both allow EXECUTE
permissions to be granted on stored procedures.

For example, the following statement is valid in both Adaptive Server
Enterprise and Adaptive Server Anywhere:

GRANT INSERT, DELETE
ON TITLES
TO MARY, SALES

This statement grants permission to use the INSERT and DELETE
statements on the titles table to user Mary and to the sales group.

The WITH GRANT OPTION clause, allowing the recipient of permission to
grant them in turn, is supported in both Adaptive Server Anywhere and
Adaptive Server Enterprise, although Adaptive Server Anywhere does not
permit WITH GRANT OPTION to be used on a GRANT EXECUTE
statement.

Adaptive Server Enterprise and Adaptive Server Anywhere use different
models for database-wide user permissions. These are discussed in "Users
and groups" on page 788. Adaptive Server Anywhere employs DBA
permissions to allow a user full authority within a database. This permission
is enjoyed by the System Administrator in Adaptive Server Enterprise, for all
databases on a server. However, DBA authority on an Adaptive Server
Anywhere database is different from the permissions of a Adaptive Server
Enterprise Database Owner, who must use the Adaptive Server Enterprise
setuser statement to gain permissions on objects owned by other users.

Adaptive Server Anywhere employs RESOURCE permissions to allow a
user the right to create objects in a database. A closely corresponding
Adaptive Server Enterprise permission is GRANT ALL used by a Database
Owner.

Chapter 30 Transact-SQL Compatibility

General guidelines for writing portable SQL

When writing SQL that will be used on more than one database management
system, you should be as explicit as possible in your SQL statements. Even if
a given SQL statement is supported by more than one server, it may be a
mistake to assume that default behavior when an option is not specified is the
same on each system. The following general guidelines apply when writing
compatible SQL:

¢
¢

Spell out all of the available options, rather than using default behavior.

Make the order of execution within statements explicit using
parentheses, rather than assuming identical default order of precedence
for operators.

Use the Transact-SQL convention of an @ sign preceding variable
names for Adaptive Server Enterprise portability.

In procedures, triggers, and batches, declare variables and cursors
immediately following a BEGIN statement. This is required by Adaptive
Server Anywhere, although Adaptive Server Enterprise allows
declarations to be made anywhere in a procedure, trigger, or batch.

Avoid using reserved words from either Adaptive Server Enterprise or
Adaptive Server Anywhere as identifiers in your databases.

791

Configuring databases for Transact-SQL compatibility

Configuring databases for Transact-SQL
compatibility

Some differences in behavior between Adaptive Server Anywhere and
Adaptive Server Enterprise can be eliminated by selecting appropriate
options when creating a database or, if you are working on an existing
database, when rebuilding the database. Other differences can be controlled
by connection level options using the SET TEMPORARY OPTION
statement in Adaptive Server Anywhere or the SET statement in Adaptive
Server Enterprise.

Creating a Transact-SQL-compatible database

Quick start

Make the database
case-sensitive

792

This section describes choices that must be made when a database is created
or rebuilt.

Here are the steps you need to take. The remainder of the section describes
what the options are that .

To create a Transact-SQL compatible database from Sybase Central:

¢ One page of the Create Database wizard is named Choosing the
Database Attributes. This page provides a button that sets each of the
available choices to emulate Adaptive Server Enterprise..

To create a Transact-SQL compatible database using dbinit:

¢ Enter the following command at a system prompt:

dbinit -b -c -k db-name.db

To create a Transact-SQL compatible database using the CREATE
DATABASE statement:

¢ Enter the following statement, for example in Interactive SQL:

CREATE DATABASE 'db-name.db'
ASE COMPATIBLE

In this statement, ASE COMPATIBLE meanse compatible with
Adaptive Server Enterprise.

By default, string comparisons in Adaptive Server Enterprise databases are
case-sensitive, while those in Adaptive Server Anywhere are case
insensitive.

Chapter 30 Transact-SQL Compatibility

Ignore trailing
blanks in
comparisons

Remove historical
system views

When building a Adaptive Server Enterprise-compatible database using
Adaptive Server Anywhere, you should choose the case-sensitive option.

¢ Ifyou are using Sybase Central, this option is in the Create Database
wizard.

¢ Ifyou are using the dbinit command-line utility, specify the -c
command-line switch.

When building an Adaptive Server Enterprise-compatible database using
Adaptive Server Anywhere, you should choose the option to ignore trailing
blanks in comparisons.

¢ Ifyou are using Sybase Central, this option is in the Create Database
wizard.

¢ Ifyou are using Interactive SQL for Windows 3.x, this option is on the
Create Database dialog box that appears when you select Create
Database from the Database Tools window and click Create.

¢ Ifyou are using the dbinit command line utility, specify the —-b
command line switch.

With this option chosen, the following two strings are considered equal by
both Adaptive Server Enterprise and Adaptive Server Anywhere:
'ignore the trailing blanks '

'ignore the trailing blanks'

If this option is not chosen, the two strings above are considered different by
Adaptive Server Anywhere.

A side effect of this option is that strings are padded with blanks when
fetched by a client application.

Older versions of Adaptive Server Anywhere employed two system views
whose names conflict with the Adaptive Server Enterprise system views
provided for compatibility. These views are SYSCOLUMNS and
SYSINDEXES. If you are not using Watcom SQL 4.0 and you are using
Open Client or JDBC interfaces, you should create your database excluding
these views. You can do this with the dbinit -k command-line switch.

If you do not use this option when creating your database, the following two
statements return different results:

SELECT * FROM SYSCOLUMNS ;

SELECT * FROM dbo.SYSCOLUMNS ;

< To drop the system views from an existing database:

1 Connect to the database as a user with DBA authority.

793

Configuring databases for Transact-SQL compatibility

2 Execute the following statements:
DROP VIEW SYS.SYSCOLUMNS ;

DROP VIEW SYS.SYSINDEXES

Caution
Ensure that you do not drop the dbo.SYSCOLUMNS or
dbo.SYSINDEXES system view.

Setting options for Transact-SQL compatibility

Set the
allow_nulls_by_def
ault option

Set the
quoted_identifier
option

794

Adaptive Server Anywhere database options are set using the SET OPTION
statement. Several database option settings are relevant to Transact-SQL
behavior.

By default, Adaptive Server Enterprise does not allow NULLSs on new
columns unless they are explicitly declared to allow NULLs. Adaptive
Server Anywhere permits NULL in new columns by default, which is
compatible with the SQL/92 ISO standard.

To make Adaptive Server Enterprise behave in a SQL/92-compatible
manner, use the sp_dboption system procedure to set the
allow_nulls_by_default option to true.

To make Adaptive Server Anywhere behave in a Transact-SQL-compatible
manner, set the allow_nulls_by_default option to OFF. You can do this
using the SET OPTION statement as follows:

SET OPTION PUBLIC.allow nulls by default = 'OFF'

By default, the Adaptive Server Enterprise treatment of identifiers and of
strings differs from the Adaptive Server Anywhere behavior, which matches
the SQL/92 ISO standard.

The quoted_identifier option is available in both Adaptive Server Enterprise
and Adaptive Server Anywhere. You should ensure that the option is set to
the same value in both databases, for identifiers and strings to be treated in a
compatible manner.

For SQL/92 behavior, set the quoted_identifier option to ON in both
Adaptive Server Enterprise and Adaptive Server Anywhere.

For Transact-SQL behavior, set the quoted_identifier option to OFF in both
Adaptive Server Enterprise and Adaptive Server Anywhere. If you choose
this, you can no longer use identifiers that are the same as identifiers,
enclosed in double quotes.

Chapter 30 Transact-SQL Compatibility

Set the automatic_
timestamp option
to ON

Set the
string_rtruncation
option

Case-sensitivity

Case sensitivity of
data

& For more information on the quoted_identifier option, see
"QUOTED_IDENTIFIER option" on page 170 of the book Adaptive Server
Anywhere Reference Manual.

Transact-SQL defines a timestamp column with special properties. With the
automatic_timestamp option set to ON, the Adaptive Server Anywhere
treatment of timestamp columns is more similar to Adaptive Server
Enterprise behavior.

With the automatic_timestamp option set to ON in Adaptive Server
Anywhere (the default setting is OFF), any new columns with the
TIMESTAMP data type that do not have an explicit default value defined are
given a default value of timestamp.

& For information on timestamp columns, see "The special Transact-
SQL timestamp column and data type" on page 797.

Both Adaptive Server Enterprise and Adaptive Server Anywhere support the
string_rtruncation option, which affects whether or not error messages are
reported when an INSERT or UPDATE string is truncated. You should
ensure that the option is set to the same value in each database.

& For more information on the STRING_RTRUNCATION option, see
"STRING_RTRUNCATION option" on page 173 of the book Adaptive
Server Anywhere Reference Manual.

& For more information on database options for Transact-SQL
compatibility, see "Transact-SQLcompatibility options" on page 134 of the
book Adaptive Server Anywhere Reference Manual.

Case sensitivity in databases refers to the following:

¢ Data The case sensitivity of the data is reflected in indexes, in the
results of queries, and so on.

¢ Identifiers Identifiers include table names, column names, and so on.

¢ UserIDs and passwords Case sensitivity of user IDs and passwords
is treated differently to other identifiers.

The case-sensitivity of Adaptive Server Anywhere data in comparisons is
decided when the database is created. By default, Adaptive Server Anywhere
databases are case-insensitive in comparisons, although data is always held
in the case in which it is entered.

795

Configuring databases for Transact-SQL compatibility

Case sensitivity of
identifiers

User IDs and
passwords

Adaptive Server Enterprise's sensitivity to the case (upper or lower) of data
depends on the sort order installed on the Adaptive Server Enterprise system.
Case sensitivity can be changed for single-byte character sets by
reconfiguring the Adaptive Server Enterprise sort order.

Adaptive Server Anywhere does not support case-sensitive identifiers. In
Adaptive Server Enterprise, the case sensitivity of identifiers follows the case
sensitivity of the data.

In Adaptive Server Enterprise, user-defined data type names are case
sensitive. In Adaptive Server Anywhere, they are case insensitive, with the
exception of Java data types.

In Adaptive Server Anywhere, user IDs and passwords follow the case
sensitivity of the data. The default user ID and password for case sensitive
databases are upper case DBA and SQL, respectively.

In Adaptive Server Enterprise, the case sensitivity of user IDs and passwords
follows the case sensitivity of the server.

Ensuring compatible object names

796

Each database object must have a unique name within a certain name space.
Outside this name space, duplicate names are allowed. There are some
database objects that occupy different name spaces in Adaptive Server
Enterprise and Adaptive Server Anywhere.

In Adaptive Server Anywhere, indexes and triggers are owned by the owner
of the table on which they are created. Index and trigger names must be
unique for a given owner. For example, while the tables t1 owned by user
userl and t2 owned by user user2 may have indexes of the same name, no
two tables owned by a single user may have an index of the same name.

Adaptive Server Enterprise has a less restrictive name space for index names
than Adaptive Server Anywhere. Index names must be unique on a given
table, but any two tables may have an index of the same name. For
compatible SQL, you should stay within the Adaptive Server Anywhere
restriction of unique index names for a given table owner.

Adaptive Server Enterprise has a more restrictive name space on trigger
names than Adaptive Server Anywhere. Trigger names must be unique in the
database. For compatible SQL, you should stay within the Adaptive Server
Enterprise restriction and make your trigger names unique in the database.

Chapter 30 Transact-SQL Compatibility

The special Transact-SQL timestamp column and data type

Creating a
Transact-SQL
timestamp column
in Adaptive Server
Anywhere

The data type of a
timestamp column

Adaptive Server Anywhere supports the Transact-SQL special timestamp
column. The timestamp column is used together with the tsequal system
function to check whether a row has been updated.

Two meanings of timestamp

Adaptive Server Anywhere has a TIMESTAMP data type, which holds
accurate date and time information. This is distinct from the special
Transact-SQL TIMESTAMP column and data type.

To create a Transact-SQL timestamp column, create a column that has the
(Adaptive Server Anywhere) data type TIMESTAMP and has a default
setting of timestamp. The column can have any name, although the name
timestamp is commonly used.

For example, the following CREATE TABLE statement includes a Transact-
SQL timestamp column:

CREATE TABLE table name (

column 1 INTEGER ,

column 2 TIMESTAMP default timestamp
)

The following ALTER TABLE statement adds a Transact-SQL timestamp
column to the sales_order table:

ALTER TABLE sales order
ADD timestamp TIMESTAMP default timestamp

In Adaptive Server Enterprise a column with the name timestamp and no
data type specified is automatically given a TIMESTAMP data type. In
Adaptive Server Anywhere you must explicitly assign the data type yourself.

If you have the AUTOMATIC _TIMESTAMP database option set to ON,
you do not need to set the default value: any new column created with
TIMESTAMP data type and with no explicit default is given a default value
of timestamp. The following statement sets AUTOMATIC _TIMESTAMP
to ON:

SET OPTION PUBLIC.AUTOMATIC TIMESTAMP='ON'

Adaptive Server Enterprise treats a timestamp column as a user-defined data
type that is VARBINARY(8), allowing NULL, while Adaptive Server
Anywhere treats a timestamp column as the TIMESTAMP data type, which
consists of the date and time, with fractions of a second held to six decimal
places.

797

Configuring databases for Transact-SQL compatibility

Timestamping an
existing table

Using tsequal for
updates

798

When fetching from the table for later updates, the variable into which the
timestamp value is fetched should correspond to the way the column is
described.

If you add a special timestamp column to an existing table, all existing rows
have a NULL value in the timestamp column. To enter a timestamp value
(the current timestamp) for existing rows, update all rows in the table such
that the data does not change. For example, the following statement updates
all rows in the sales_order table, without changing the values in any of the
TOWS:

UPDATE sales order
SET region = region

In Interactive SQL, you may need to set the TIMESTAMP_FORMAT option
to see the differences in values for the rows. The following statement sets the
TIMESTAMP_FORMAT option to display all six digits in the fractions of a

second:

SET OPTION TIMESTAMP FORMAT='YYYY-MM-DD
HH:MM:ss.SSSSSS'

If all six digits are not shown, some timestamp column values may appear to
be equal: they are not.

With the tsequal system function you can tell whether a timestamp column
has been updated or not.

For example, an application may SELECT a timestamp column into a
variable. When an UPDATE of one of the selected rows is submitted, it can
use the tsequal function to check that the row has not been changed. The
tsequal function compares the timestamp value in the table with the
timestamp value obtained in the SELECT. If they are the same, the row has
not been changed; if they differ, the row has been changed since the
SELECT was carried out.

The following is a typical UPDATE statement using the tsequal function:

UPDATE publishers

SET city = 'Springfield'

WHERE pub id = '0736'

AND TSEQUAL (timestamp, '1995/10/25 11:08:34.173226")

The first argument to the tsequal function is the name of the special
timestamp column; the second argument is the timestamp retrieved in the
SELECT statement. In Embedded SQL, the second argument is likely to be a
host variable containing a TIMESTAMP value from a recent FETCH on the
column.

Chapter 30 Transact-SQL Compatibility

The special IDENTITY column

To create an IDENTITY column, use the following CREATE TABLE
syntax:

CREATE TABLE table-name (
column-name numeric(n,0) IDENTITY NOT NULL,

)

where 7 is large enough to hold the value of the maximum number of rows
that may be inserted into the table.

The IDENTITY column is used to store sequential numbers, such as invoice
numbers or employee numbers, which are automatically generated. The
value of the IDENTITY column uniquely identifies each row in a table.

In Adaptive Server Enterprise, each table in a database can have one
IDENTITY column. The data type must be numeric with scale zero, and the
IDENTITY column should not allow nulls.

In Adaptive Server Anywhere, the IDENTITY column is implemented as a
column default setting. Values that are not part of the sequence may be
explicitly inserted into the column with an INSERT statement. Adaptive
Server Enterprise does not allow INSERTS into identity columns unless the
identity_insert option is set to on. In Adaptive Server Anywhere, you need
to set the NOT NULL property yourself and ensure that no more than one
column is an IDENTITY column. Adaptive Server Anywhere allows any
numeric data type to be used as an IDENTITY column.

In Adaptive Server Anywhere the identity column is identical to the
AUTOINCREMENT default setting for a column.

Retrieving IDENTITY Column Values with @@identity

The first time you insert a row into the table, a value of 1 is assigned to an
IDENTITY column. On each subsequent insert, the value of the column is
incremented by one. The value most recently inserted into an identity column
is available in the @@identity global variable.

The value of @@identity changes each time a statement attempts to insert a
row into a table.

¢ Ifthe statement affects a table without an IDENTITY column,
@@jidentity is set to 0.

¢ If the statement inserts multiple rows, @@jidentity reflects the last value
inserted into the IDENTITY column.

799

Configuring databases for Transact-SQL compatibility

This change is permanent. @@identity does not revert to its previous value if
the statement fails or if the transaction that contains it is rolled back Also, the
value for @@identity within a stored procedure or trigger does not affect the

value outside the stored procedure or trigger.

800

Chapter 30 Transact-SQL Compatibility

Writing compatible SQL statements

This section describes some issues of compatibility between Adaptive Server
Enterprise and Adaptive Server Anywhere at the SQL statement level.

Creating compatible tables

Temporary tables

Adaptive Server Anywhere does not support named constraints or named
defaults, but does support user-defined data types which allow constraint and
default definitions to be encapsulated in the data type definition. It also
supports explicit defaults and CHECK conditions in the CREATE TABLE
statement.

You can create a temporary table by preceding the table name in a CREATE
TABLE statement with a pound sign (#). These temporary tables are
Adaptive Server Anywhere declared temporary tables, and are available only
in the current connection. For information about declared temporary tables in
Adaptive Server Anywhere, see "DECLARE LOCAL TEMPORARY
TABLE statement" on page 441 of the book Adaptive Server Anywhere
Reference Manual.

By default, columns in Adaptive Server Enterprise default to NOT NULL,
whereas in Adaptive Server Anywhere the default setting is NULL, to allow
NULL values. This setting can be controlled using the
allow_nulls_by_default option. You should explicitly specify NULL or
NOT NULL to make your data definition statements transferable.

& For information on this option, see "Setting options for Transact-SQL
compatibility" on page 794.

Physical placement of a table is carried out differently in Adaptive Server
Enterprise and in Adaptive Server Anywhere. The ON segment-name clause
is supported in Adaptive Server Anywhere, but segment-name refers to an
Adaptive Server Anywhere dbspace.

&> For information about the CREATE TABLE statement, see "CREATE
TABLE statement" on page 415 of the book Adaptive Server Anywhere
Reference Manual.

Writing compatible queries

There are two criteria for writing a query that runs on both Adaptive Server
Anywhere and Adaptive Server Enterprise databases:

801

Writing compatible SQL statements

Syntax

Parameters

Notes

802

¢ Ensure that the data types, expressions, and search conditions in the
query are compatible.

¢ Ensure that the syntax of the SELECT statement itself is compatible.

This section is concerned with compatible SELECT statement syntax, and
assumes compatible data types, expressions, and search conditions. The
examples assume that the QUOTED IDENTIFIER setting is OFF: the
default Adaptive Server Enterprise setting, but not the default Adaptive
Server Anywhere setting.

The following subset of the Transact-SQL SELECT statement is supported
in Adaptive Server Anywhere.

SELECT [ALL | DISTINCT] select-list
...[INTO #temporary-table-name]
...l FROM table-spec [HOLDLOCK | NOHOLDLOCK],
table-spec [HOLDLOCK | NOHOLDLOCK]], ...]
...l WHERE search-condition]
...l GROUP BY column-name, ...]
...l HAVING search-condition]
...| [ORDER BY expression [ASC | DESC], ...] |
| [ORDER BY integer[ASC | DESC], ...] |

select-list:
{ table-name | alias-name = expression }...

table-spec:
[owner . Jtable-name
[[AS] correlation-name]
[(INDEX index_name [PREFETCH size]J[LRU | MRU])]

alias-name:
identifier | 'string' | "string"

& For a full description of the SELECT statement, see "SELECT
statement" on page 542 of the book Adaptive Server Anywhere Reference
Manual.

The following keywords and clauses of the Transact-SQL SELECT
statement syntax are not supported by Adaptive Server Anywhere:

¢ The SHARED keyword.

¢ The COMPUTE clause.

¢ The FOR BROWSE clause.

¢ The GROUP BY ALL clause.

¢ The INTO table name clause, which creates a new table based on the
SELECT statement result set, is supported only for declared temporary
tables where the table name starts with a #. Declared temporary tables
exist for a single connection only.

Chapter 30 Transact-SQL Compatibility

Adaptive Server Anywhere does not support the Transact-SQL
extension to the GROUP BY clause allowing references to columns and
expressions that are not used for creating groups. In Adaptive Server
Enterprise, this extension produces summary reports.

The FOR READ ONLY clause and the FOR UPDATE clause are
parsed, but have no effect.

The performance parameters part of the table specification is parsed, but
has no effect.

The HOLDLOCK keyword is supported by Adaptive Server Anywhere.
It makes a shared lock on a specified table or view more restrictive by
holding it until the completion of a transaction (instead of releasing the
shared lock as soon as the required data page is no longer needed,
whether or not the transaction has been completed). For the purposes of
the table for which the HOLDLOCK is specified, the query is carried
out at isolation level 3.

The HOLDLOCK option applies only to the table or view for which it is
specified, and only for the duration of the transaction defined by the
statement in which it is used. Setting the isolation level to 3 applies a
holdlock for each select within a transaction. You cannot specify both a
HOLDLOCK and NOHOLDLOCK option in a query.

The NOHOLDLOCK keyword is recognized by Adaptive Server
Anywhere, but has no effect.

Transact-SQL uses the SELECT statement to assign values to local
variables:

SELECT @localvar = 42

The corresponding statement in Adaptive Server Anywhere is the SET
statement:

SET localvar = 42

However, using the Transact-SQL SELECT to assign values to variables
is supported inside batches.

The following clauses of the SELECT statement syntax are not
supported by Adaptive Server Enterprise:

¢ INTO host-variable-list
¢ INTO variable-list.
¢ Parenthesized queries.

Adaptive Server Enterprise does not support the use of the FROM clause
and the ON condition for joins. Instead, it uses join operators in the
WHERE clause.

803

Writing compatible SQL statements

Compatibility of joins

804

In Transact-SQL, joins are specified in the WHERE clause, using the
following syntax:

Start of select, update, insert, delete, or subquery
FROM {table-list | view-list WHERE [NOT]
...[table-name.| view name.]Jcolumn-name
Jjoin-operator
...[table-name.| view-name.]column_name
..[{ AND | OR }[NOT]
... [table-name.| view-name.lcolumn_name
join-operator
[table-name.| view-name.]Jcolumn-name

ena.of select, update, insert, delete, or subquery

The join_operator in the WHERE clause may be any of the comparison
operators, or may be either of the following outer-join operators:

¢ *= Left outer join operator

¢ =* Right outer join operator.

The Transact-SQL outer-join operators are supported in Adaptive Server
Anywhere as an alternative to the native SQL/92 syntax. You cannot mix
dialects within a query. This rule applies also to views used by a queryl an
outer-join query on a view must follow the dialect used by the view-defining
query.

Adaptive Server Anywhere also provides a SQL/92 syntax for joins other
than outer joins, in which the joins are placed in the FROM clause rather
than the WHERE clause.

& For information about joins in Adaptive Server Anywhere and in
SQL/92, see "FROM clause" on page 476 of the book Adaptive Server
Anywhere Reference Manual.

& For more information on Transact-SQL compatibility of joins, see
"Transact-SQL outer joins" on page 155.

Chapter 30 Transact-SQL Compatibility

Transact-SQL procedure language overview

The stored procedure language is that part of SQL used in stored
procedures, triggers, and batches.

Adaptive Server Anywhere supports a large part of the Transact-SQL stored
procedure language in addition to the Watcom-SQL dialect based on
SQL/92.

Transact-SQL stored procedure overview

Adaptive Server
Anywhere support
for Transact-SQL
stored procedures

The Adaptive Server Anywhere stored procedure language is based on the
ISO/ANSI draft standard, which differs from the Transact-SQL dialect in
many ways. Many of the concepts and features are similar, but the syntax is
different. Adaptive Server Anywhere support for Transact-SQL takes
advantage of the similar concepts by providing automatic translation between
dialects. However, a procedure must be written in one of the two dialects
exclusively, not in a mixture.

There are several aspects to Adaptive Server Anywhere support for Transact-
SQL stored procedures:

Passing parameters

Returning result sets

Returning status information

Providing default values for parameters

Control statements

* & & o o

Error handling

Transact-SQL trigger overview

Trigger compatibility requires compatibility of trigger features and of trigger
syntax. This section provides an overview of the feature compatibility of
Transact-SQL and Adaptive Server Anywhere triggers.

Adaptive Server Enterprise triggers are executed after the triggering
statement has completed: they are statement level, after triggers. Adaptive
Server Anywhere supports both row level triggers (which execute before or
after each row has been modified) and statement level triggers (which
execute after the entire statement has been executed).

805

Transact-SQL procedure language overview

Description of
unsupported or
different Transact-
SQL triggers

Row-level triggers are not discussed here, as they are not part of the
Transact-SQL compatibility features. For information on row-level triggers
in Adaptive Server Anywhere, see "Using Procedures, Triggers, and
Batches" on page 221.

The following list describes some features of Transact-SQL triggers that are
either not supported or are different in Adaptive Server Anywhere:

¢

Triggers firing other triggers Suppose a trigger carries out an action
that would, if carried out directly by a user, fire another trigger.
Adaptive Server Anywhere and Adaptive Server Enterprise have slightly
different behavior for this case. The default Adaptive Server Enterprise
behavior is for triggers to fire other triggers up to a configurable nesting
level, which has the default value of 16. The nesting level can be
controlled by the Adaptive Server Enterprise option nested triggers. In
Adaptive Server Anywhere, triggers fire other triggers without limit
unless memory is exhausted.

Triggers firing themselves Suppose a trigger carries out an action
that would, if carried out directly by a user, fire the same trigger.
Adaptive Server Anywhere and Adaptive Server Enterprise have
different behavior for this case.

In Adaptive Server Anywhere, non-Transact-SQL triggers fire
themselves recursively, while Transact-SQL dialect triggers do not fire
themselves recursively.

The default Adaptive Server Enterprise behavior is that a trigger does
not call itself recursively, but you can turn on the self recursion option
to allow triggers to call themselves recursively.

ROLLBACK statement in triggers Within a trigger, Adaptive Server
Enterprise permits the ROLLBACK TRANSACTION statement, which
rolls back the entire transaction of which the trigger is a part. Adaptive
Server Anywhere does not permit ROLLBACK (or ROLLBACK
TRANSACTION) statements in triggers. A triggering action and its
trigger together form an atomic statement, and Adaptive Server
Anywhere does not permit ROLLBACKs within atomic statements.

Transact-SQL batch overview

806

In Transact-SQL, a batch is a set of SQL statements submitted together and
executed as a group, one after the other. Batches can be stored in command
files. The Interactive SQL utility in Adaptive Server Anywhere and the isg/
utility in Adaptive Server Enterprise provide similar capabilities for
executing batches interactively.

Chapter 30 Transact-SQL Compatibility

The control statements used in procedures can also be used in batches.
Adaptive Server Anywhere supports the use of control statements in batches
and the Transact-SQL-like use of non-delimited groups of statements
terminated with a GO statement to signify the end of a batch.

For batches stored in command files, Adaptive Server Anywhere supports
the use of parameters in command files. Adaptive Server Enterprise does not
support parameters.

& For information on parameters, see "PARAMETERS statement" on
page 518 of the book Adaptive Server Anywhere Reference Manual.

807

Automatic translation of stored procedures

Automatic translation of stored procedures

In addition to supporting Transact-SQL alternative syntax, Adaptive Server
Anywhere provides aids for translating statements between the Watcom-SQL
and Transact-SQL dialects. The following functions return information about
SQL statements and enable automatic translation of SQL statements:

¢
¢

SQLDialect(statement) Returns Watcom-SQL or Transact-SQL.

WatcomSQL(statement) Returns the Watcom-SQL syntax for the
statement.

TransactSQL(statement) Returns the Transact-SQL syntax for the
statement.

These are functions, and so can be accessed, for example, using a select
statement from Interactive SQL. For example, the following statement:

select SglDialect('select * from employee')

returns the value WatcomSQL.

Using Sybase Central to translate stored procedures

808

Sybase Central has facilities for creating, viewing, and altering procedures
and triggers.

< To translate a stored procedure using Sybase Central:

1

Connect to a database using Sybase Central, either as owner of the
procedure you wish to change, or as a DBA user.

Double-click the Procedures folder for the database to list the stored
procedures in the database.

Using the right mouse button, click the procedure you wish to translate,
and choose the dialect you wish to translate it to from the popup menu:
either Watcom-SQL or Transact-SQL.

The procedure is displayed in the selected dialect. If the selected dialect
is not the one in which the procedure is stored, it is translated to that
dialect by the server. Any untranslated lines are displayed as comments.

Rewrite any untranslated lines as needed, and click the Execute Script
button to save the translated version to the database. You can also export
the text to a file for editing outside Sybase Central.

Chapter 30 Transact-SQL Compatibility

Returning result sets from Transact-SQL

procedures

Example of
Transact-SQL
procedure

Example of
Watcom-SQL
procedure

Notes

Adaptive Server Anywhere uses a RESULT clause to specify returned result
sets. In Transact-SQL procedures, the column names or alias names of the
first query are returned to the calling environment.

The following Transact-SQL procedure illustrates how result sets are
returned from Transact-SQL stored procedures:

CREATE PROCEDURE showdept @deptname varchar (30)
AS
SELECT employee.emp lname, employee.emp fname
FROM department, employee
WHERE department.dept name = @deptname
AND department.dept id = employee.dept id

The following is the corresponding Adaptive Server Anywhere procedure:

CREATE PROCEDURE showdept (in deptname varchar (30))
RESULT (lastname char(20), firstname char (20))
ON EXCEPTION RESUME
BEGIN
SELECT employee.emp lname, employee.emp fname
FROM department, employee
WHERE department.dept name = deptname
AND department.dept id = employee.dept id
END

Multiple result sets with a different number of columns or incompatible
data types cannot be returned from procedures in Adaptive Server
Anywhere.

When a RESULT clause is not specified (as is the case with Transact-
SQL procedures), Adaptive Server Anywhere determines the result set
from the first SELECT statement in the procedure. The first SELECT
statement is identified without regard for IF statements or other control
statements: you cannot have a procedure return one result set under one
set of conditions and an incompatible result set under other conditions.

809

Variables in Transact-SQL procedures

Variables in Transact-SQL procedures

Adaptive Server Anywhere uses the SET statement to assign values to
variables in a procedure. In Transact-SQL, values are assigned using the
SELECT statement with an empty table-list. The following simple procedure
illustrates how the Transact-SQL syntax works:

CREATE PROCEDURE multiply
@multl int,
@mult2 int,
@result int output
AS
SELECT @result = @multl * @mult2

This procedure can be called as follows:
CREATE VARIABLE @product int ;
EXECUTE multiply 5, 6, @product OUTPUT;
The variable @product has a value of 30 after the procedure is executed.

& For more information on using the SELECT statement to assign
variables, see "Writing compatible queries" on page 801. For more
information on using the SET statement to assign variables, see "SET
statement” on page 546 of the book Adaptive Server Anywhere Reference
Manual.

810

Chapter 30 Transact-SQL Compatibility

Error handling in Transact-SQL procedures

Default procedure error handling is different in the Watcom-SQL and
Transact-SQL dialects. By default, Watcom-SQL dialect procedures exit
when an error is encountered, returning SQLSTATE and SQLCODE values
to the calling environment.

Explicit error handling can be built into Watcom-SQL stored procedures
using the EXCEPTION statement, or the procedure can be instructed by the
ON EXCEPTION RESUME statement to continue execution at the next
statement when an error is encountered.

When an error is encountered in a Transact-SQL dialect procedure, execution
continues at the following statement. The global variable @@error holds
the error status of the most recently executed statement. You can check this
variable following a statement to force return from a procedure. For example,
the following statement causes an exit if an error occurs.

IF QQRerror != 0 RETURN

When the procedure completes execution, a return value indicates the
success or failure of the procedure. This return status is an integer, and can
be accessed as follows:

DECLARE @status INT
EXECUTE @status = proc_sample
IF @status = 0

PRINT 'procedure succeeded'
ELSE

PRINT 'procedure failed'

The following table describes the built-in procedure return values and their

meanings:

Value Meaning

0 Procedure executed without error

-1 Missing object

-2 Data type error

-3 Process was chosen as deadlock victim
-4 Permission error

-5 Syntax error

-6 Miscellaneous user error

-7 Resource error, such as out of space
-8 Non-fatal internal problem

-9 System limit was reached

811

Error handling in Transact-SQL procedures

Value Meaning

-10 Fatal internal inconsistency
-11 Fatal internal inconsistency
-12 Table or index is corrupt
-13 Database is corrupt

-14 Hardware error

The RETURN statement can be used to return integers other than these, with
their own user-defined meanings.

Using the RAISERROR statement in procedures

812

The RAISERROR statement is a Transact-SQL statement for generating
user-defined errors. It has a similar function to the SIGNAL statement.

& For a description of the RAISERROR statement, see "RAISERROR
statement" on page 526 of the book Adaptive Server Anywhere Reference
Manual.

By itself, the RAISERROR statement does not cause an exit from the
procedure, but it can be combined with a RETURN statement or a test of the
@@error global variable to control execution following a user-defined
error.

If you set the CONTINUE AFTER RAISERROR database option to ON,
the RAISERROR statement no longer signals an execution-ending error.
Instead, the RAISERROR status code and message are stored and the most
recent RAISERROR is returned when the procedure completes. If the
procedure that caused the RAISERROR was called from another procedure,
the RAISERROR is not returned until the outermost calling procedure
terminates.

Intermediate RAISERROR statuses and codes are lost after the procedure
terminates. If at return time an error occurs along with the RAISERROR then
the error information is returned and the RAISERROR information is lost.
The application can query intermediate RAISERROR statuses by examining
@@error global variable at different execution points.

Chapter 30 Transact-SQL Compatibility

Transact-SQL-like error handling in the Watcom-SQL dialect

You can make a Watcom-SQL dialect procedure handle errors in a Transact-
SQL-like manner by supplying the ON EXCEPTION RESUME clause to the
CREATE PROCEDURE statement:

CREATE PROCEDURE sample proc()
ON EXCEPTION RESUME
BEGIN

END

Explicit exception handling code is not executed if an ON EXCEPTION
RESUME clause is present.

813

Error handling in Transact-SQL procedures

814

