CHAPTER 4
Queries: Selecting Data from a Table

About this chapter The SELECT statement retrieves data from the database. You can use it to
retrieve a subset of the rows in one or more tables and to retrieve a subset of
the columns in one or more tables.

This chapter focuses on the basics of single-table SELECT statements.
Advanced uses of SELECT are described later in this manual.

Contents .
Topic Page
Query overview 86
The SELECT clause: specifying columns 89
The FROM clause: specifying tables 97
The WHERE clause: specifying rows 98

85

Query overview

Query overview

A query requests data from the database and receives the results. This
process is also known as data retrieval. All SQL queries are expressed using
the SELECT statement.

& This chapter assumes a familiarity with very simple queries. For an
introduction to queries, see "Selecting Data from Database Tables" on page
231 of the book First Guide to SQL Anywhere Studio.

Queries are made up of clauses

86

You construct SELECT statements from clauses. In the following SELECT
syntax, each new line is a separate clause. Only the more common clauses
are listed here.

SELECT select-list
[FROM table-expression]
[ON search-condition]
[WHERE search-condition]
[GROUP BY column-name |
[HAVING search-condition]
[ORDER BY { expression | integer}]

The clauses in the SELECT statement are as follows:

¢ The SELECT clause specifies the columns you want to retrieve. It is the
only required clause in the SELECT statement.

¢ The FROM clause specifies the tables from which columns are pulled. It
is required in all queries that retrieve data from tables. In the current
chapter, the table-expression is a single table name. SELECT statements
without FROM clauses have a different meaning, and we ignore them in
this chapter.

¢ The ON clause specifies how tables in the FROM clause are to be
joined. It is used only for multi-table queries and is not discussed in this
chapter.

¢ The WHERE clause specifies the rows in the tables you want to see.
¢ The GROUP BY clause allows you to collect aggregate data.

¢ The HAVING clause specifies rows on which aggregate data is to be
collected.

¢ By default, rows are returned from relational databases in an order that
has no meaning. You can use the ORDER BY clause to sort the rows in
the result set.

Chapter 4 Queries: Selecting Data from a Table

Entering queries

Keywords and line
breaks

Case sensitivity of
strings and
identifiers

Qualifying
identifiers

Most of the clauses are optional, but if they are included then they must
appear in the correct order.

& For a complete listing of the syntax of the SELECT statement syntax,
see "SELECT statement" on page 542 of the book Adaptive Server Anywhere
Reference Manual.

This chapter discusses only the following set of queries:

¢ Queries with only a single table in the FROM clause. For information on
multi-table queries, see "Joins: Retrieving Data from Several Tables" on
page 129.

¢ Queries with no GROUP BY, HAVING, or ORDER BY clauses. For
information on these, see "Summarizing, Grouping, and Sorting Query
Results" on page 109.

In this manual, SELECT statements and other SQL statements are displayed
with each clause on a separate row, and with the SQL keywords in upper
case. This is not a requirement. You can enter SQL keywords in any case,
and you break lines at any point.

For example, the following SELECT statement finds the first and last names
of contacts living in California from the Contact table.

SELECT first name, last name
FROM Contact
WHERE state = 'CA'

It is equally valid, though not as readable, to enter this statement as follows:

SELECT first name,
last name from contact
wHere state

= 'CA'

Identifiers (that is, table names, column names, and so on) are case
insensitive in Adaptive Server Anywhere databases.

Strings are case sensitive by default, so that 'CA', 'ca’, 'cA’, and 'Ca' are
equivalent, but if you create a database as case-sensitive then the case of
strings is significant. The sample database is case insensitive.

You can qualify the names of database identifiers if there is ambiguity about
which object is being referred to. For example, the sample database contains
several tables with a column called city, so you may have to qualify
references to city with the name of the table. In a larger database you may
also have to use the name of the owner of the table to identify the table.

87

Query overview

88

SELECT dba.contact.city
FROM contact
WHERE state = 'CA'

Since the examples in this chapter involve single-table queries, column
names in syntax models and examples are usually not qualified with the
names of the tables or owners to which they belong.

These elements are left out for readability; it is never wrong to include
qualifiers.

The remaining sections in this chapter analyze the syntax of the SELECT
statement in more detail.

Chapter 4 Queries: Selecting Data from a Table

The SELECT clause: specifying columns

The select list

The select list commonly consists of a series of column names separated by
commas, or an asterisk as shorthand to represent all columns.

More generally, the select list can include one or more expressions, separated
by commas. The general syntax for the select list looks like this:

SELECT expression [, expression]...

If any table or column name in the list does not conform to the rules for valid
identifiers, you must enclose the identifier in double quotes.

The select list expressions can include * (all columns), a list of column
names, character strings, column headings, and expressions including
arithmetic operators. You can also include aggregate functions, which are
discussed in "Summarizing, Grouping, and Sorting Query Results" on page
109.

& For a complete listing of what expressions can consist of, see
"Expressions" on page 183 of the book Adaptive Server Anywhere Reference
Manual.

The following sections provide examples of the kinds of expressions you can
use in a select list.

Selecting all columns from a table

Example

The asterisk (*) has a special meaning in SELECT statements. It stands for
all the column names in all the tables specified by the FROM clause. You
can use it to save typing time and errors when you want to see all the
columns in a table.

When you use SELECT *, the columns are returned in the order in which
they were defined when the table was created

The syntax for selecting all the columns in a table is:

SELECT *
FROM table-expression

SELECT * finds all the columns currently in a table, so that changes in the
structure of a table such as adding, removing, or renaming columns
automatically modify the results of SELECT *. Listing the columns
individually gives you more precise control over the results.

The following statement retrieves all columns in the department table. No
WHERE clause is included; and so this statement retrieves every row in the
table:

89

The SELECT clause: specifying columns

SELECT *
FROM department

The results look like this:

dept_id dept_name dept_head_id
100 R&D 501

200 Sales 904

300 Finance 1293

400 Marketing 1576

500 Shipping 703

You get exactly the same results by listing all the column names in the table
in order after the SELECT keyword:

SELECT dept id, dept name, dept head id
FROM department

Like a column name, "*" can be qualified with a table name, as in the
following query:

SELECT department.*
FROM department

Selecting specific columns from a table

To SELECT only specific columns in a table, use this syntax:

SELECT column_name [, column_name 1...
FROM ({able-name

You must separate each column name from the column name that follows it
with a comma, for example:

SELECT emp lname, emp fname
FROM employee

Rearranging the The order in which you list the column names determines the order in which

order of columns the columns are displayed. The two following examples show how to specify
column order in a display. Both of them find and display the department
names and identification numbers from all five of the rows in the department
table, but in a different order.

SELECT dept id, dept name
FROM department

90

Chapter 4 Queries: Selecting Data from a Table

dept_id dept_name
100 R&D

200 Sales

300 Finance

400 Marketing
500 Shipping

SELECT dept name, dept id
FROM department

dept_name dept_id
R&D 100
Sales 200
Finance 300
Marketing 400
Shipping 500

Renaming columns using aliases in query results

Query results consist of a set of columns. By default, the heading for each
column is the expression supplied in the select list.

When query results are displayed, each column's default heading is the name
given to it when it was created. You can specify a different column heading,
or alias, in one of the following ways:

SELECT column-name AS alias
SELECT column-name alias
SELECT alias = column-name

Providing an alias can produce more readable results. For example, you can
change dept_name to Department in a listing of departments as follows:

SELECT dept name AS Department,
dept id AS "Identifying Number"
FROM department

91

The SELECT clause: specifying columns

Using spaces and
keywords in alias

Department Identifying Number
R&D 100
Sales 200
Finance 300
Marketing 400
Shipping 500

The Identifying Number alias for dept_id is enclosed in double quotes
because it is an identifier. You also use double quotes if you wish to use
keywords in aliases. For example, the following query is invalid without the
quotation marks:

SELECT dept name AS Department,
dept id AS "integer"
FROM department

If you wish to ensure compatibility with Adaptive Server Enterprise, you
should use quoted aliases of 30 bytes or less.

Character strings in query results

92

The SELECT statements you have seen so far produce results that consist
solely of data from the tables in the FROM clause. Strings of characters can
also be displayed in query results by enclosing them in single quotation
marks and separate them from other elements in the select list with commas.

To enclose a quotation mark in a string, you precede it with another
quotation mark.

For example:

SELECT 'The department''s name is' AS " ",
Department = dept name
FROM department

Department
The department's name is R&D
The department's name is Sales
The department's name is Finance
The department's name is Marketing
The department's name is Shipping

Chapter 4 Queries: Selecting Data from a Table

Computing values in the select list

Arithmetic
operations

The expressions in the select list can be more complicated than just column
names or strings. For example, you can perform computations with data from
numeric columns in a select list.

To illustrate the numeric operations you can carry out in the select list, we
start with a listing of the names, quantity in stock, and unit price of products
in the sample database. The number of zeroes in the unit_price column is
truncated for readability.

SELECT name, quantity, unit price
FROM product

name quantity unit_price
Tee Shirt 28 9.00
Tee Shirt 54 14.00
Tee Shirt 75 14.00
Baseball Cap 112 9.00
Baseball Cap 12 10.00
Visor 36 7.00
Visor 28 7.00
Sweatshirt 39 24.00
Sweatshirt 32 24.00
Shorts 80 15.00

Suppose the practice is to replenish the stock of a product when there are ten
items left in stock. The following query lists the number of each product that
must be sold before re-ordering:

SELECT name, quantity - 10
AS "Sell before reorder"
FROM product

name Sell before reorder
Tee Shirt 18

Tee Shirt 44

Tee Shirt 65

Baseball Cap 102

Baseball Cap 2

93

The SELECT clause: specifying columns

Arithmetic operator
precedence

94

name Sell before reorder
Visor 26
Visor 18
Sweatshirt 29
Sweatshirt 22
Shorts 70

You can also combine the values in columns. The following query lists the
total value of each product in stock:

SELECT name,
quantity * unit price AS "Inventory value"
FROM product

name Inventory value
Tee Shirt 252.00
Tee Shirt 756.00
Tee Shirt 1050.00
Baseball Cap 1008.00
Baseball Cap 120.00
Visor 252.00
Visor 196.00
Sweatshirt 936.00
Sweatshirt 768.00
Shorts 1200.00

When there is more than one arithmetic operator in an expression,
multiplication, division, and modulo are calculated first, followed by
subtraction and addition. When all arithmetic operators in an expression have
the same level of precedence, the order of execution is left to right.
Expressions within parentheses take precedence over all other operations.

For example, the following SELECT statement calculates the total value of
each product in inventory, and then subtracts five dollars from that value.

SELECT name, quantity * unit price - 5
FROM product

To avoid misunderstandings, it is recommended that you use parentheses.
The following query has the same meaning and gives the same results as the
previous one, but some may find it easier to understand:

Chapter 4 Queries: Selecting Data from a Table

String operations

Date and time
operations

SELECT name, (quantity * unit price) - 5
FROM product

You can concatenate strings using a string concatenation operator. You can
use either || (SQL/92 compliant) or + (supported by Adaptive Server
Enterprise) as the concatenation operator.

The following example illustrates the use of the string concatenation operator
in the select list:

SELECT empiid, emp fname || ' ' || emp lname AS Name
FROM employee

emp_id Name

102 Fran Whitney
105 Matthew Cobb
129 Philip Chin
148 Julie Jordan

Although you can use operators on date and time columns, this typically
involves the use of functions. For information on SQL functions, see "SQL
Functions" on page 267 of the book Adaptive Server Anywhere Reference
Manual.

Eliminating duplicate query results

The optional DISTINCT keyword eliminates duplicate rows from the results
of a SELECT statement.

If you do not specify DISTINCT, you get all rows, including duplicates.
Optionally, you can specify all before the select list to get all rows. For
compatibility with other implementations of SQL, Adaptive Server syntax
allows the use of ALL to explicitly ask for all rows. ALL is the default.

For example, if you search for all the cities in the contact table without
DISTINCT, you get 60 rows:

SELECT city
FROM contact

You can eliminate the duplicate entries using DISTINCT. The following
query returns only 16 rows.:

SELECT DISTINCT city
FROM contact

95

The SELECT clause: specifying columns

NULL values are
not distinct

96

The DISTINCT keyword treats NULL values as duplicates of each other. In
other words, when DISTINCT is included in a SELECT statement, only one
NULL is returned in the results, no matter how many NULL values are
encountered.

Chapter 4 Queries: Selecting Data from a Table

The FROM clause: specifying tables

Qualifying table
names

Using correlation
names

The FROM clause is required in every SELECT statement involving data
from tables or views.

& The FROM clause can include JOIN conditions linking two or more
tables, and can include joins to other queries (derived tables). For
information on these features, see "Joins: Retrieving Data from Several
Tables" on page 129.

In the FROM clause, the full naming syntax for tables and views is always
permitted, such as:

SELECT select-1list
FROM owner.table name

Qualifying table and view names is necessary only when there might be
some confusion about the name.

You can give table names correlation names to save typing. You assign the
correlation name in the FROM clause by entering it after the table name, like
this:

SELECT d.dept id, d.dept name

FROM Department d

All other references to the Department table, for example in a WHERE
clause, must use the correlation name. Correlation names must conform to
the rules for valid identifiers.

97

The WHERE clause: specifying rows

The WHERE clause: specifying rows

98

The WHERE clause in a SELECT statement specifies the search conditions
for exactly which rows are retrieved. The general format is:

SELECT select_list
FROM table_list
WHERE search-condition

Search conditions, (also called qualifications or predicates), in the WHERE
clause include the following:

¢

Comparison operators (=, <, >, and so on) For example, you can list
all employees earning more than $50,000:

SELECT emp lname
FROM employee
WHERE salary > 50000

Ranges (BETWEEN and NOT BETWEEN) For example, you can list
all employees earning between $40,000 and $60,000:

SELECT emp lname
FROM employee
WHERE salary BETWEEN 40000 AND 60000

Lists (IN, NOT IN) For example, you can list all customers in Ontario,
Quebec, or Manitoba:

SELECT company name , state
FROM customer
WHERE state IN('ON', 'PQ', 'MB')

Character matches (LIKE and NOT LIKE) For example, you can list
all customers whose phone numbers start with 415. (The phone number
is stored as a string in the database):

SELECT company name , phone
FROM customer
WHERE phone LIKE '415%"'

Unknown values (IS NULL and IS NOT NULL) For example, you
can list all departments with managers:

SELECT dept name
FROM Department
WHERE dept_head_id IS NOT NULL

Combinations (AND, OR) For example, you can list all employees
earning over $50,000 whose first name begins with the letter A.

SELECT emp fname, emp lname
FROM employee
WHERE salary > 50000

Chapter 4 Queries: Selecting Data from a Table

AND emp fname like 'A%

In addition, the WHERE keyword can introduce the following:

¢ Transact-SQL join conditions Joins are discussed in "Joins:
Retrieving Data from Several Tables" on page 129.

& The following sections describe how to use WHERE clauses. For a
complete listing of search conditions, see "Search conditions" on page 194 of
the book Adaptive Server Anywhere Reference Manual.

Using comparison operators in the WHERE clause

Notes on
comparisons

You can use comparison operators in the WHERE clause. The operators
follow the syntax:

WHERE expression comparison-operator expression

& For a listing of comparison operators, see "Comparison conditions" on
page 195 of the book Adaptive Server Anywhere Reference Manual. For a
description of what an expression can be, see "Expressions" on page 183 of
the book Adaptive Server Anywhere Reference Manual.

¢ Sortorders Incomparing character data, < means earlier in the sort
order and > means later in the sort order. The sort order is determined by
the collation chosen when the database is created. You can find out the
collation by running the dbinfo command-line utility against the
database:

dbinfo -c "uid=dba;pwd=sqgl"

You can also find the collation from Sybase Central. It is on the
Extended Information tab of the database property sheet.

¢ Trailing blanks When you create a database, you indicate whether
trailing blanks are to be ignored or not for the purposes of comparison.

By default, databases are created with trailing blanks not ignored. For
example, 'Dirk' is not the same as 'Dirk '. You can create databases with
blank padding, so that trailing blanks are ignored. Trailing blanks are
ignored by default in Adaptive Server Enterprise databases.

¢ Comparing dates In comparing dates, < means earlier and > means
later.

¢ Case sensivitivity When you create a database, you indicate whether
string comparisons are case sensitive or not.

By default, databases are created case insensitive. For example, 'Dirk’ is
the same as 'DIRK'. You can create databases to be case sensitive, which
is the default behavior for Adaptive Server Enterprise databases.

99

The WHERE clause: specifying rows

Here are some SELECT statements using comparison operators:

SELECT *
FROM product
WHERE quantity < 20

SELECT E.emp lname, E.emp fname
FROM employee E
WHERE emp lname > 'McBadden'

SELECT id, phone
FROM contact
WHERE state != 'CA'

The NOT operator The NOT operator negates an expression. Either of the following two queries
will find all Tee shirts and baseball caps that cost $10 or less. However, note
the difference in position between the negative logical operator (NOT) and
the negative comparison operator (!>).

SELECT id, name, quantity

FROM product

WHERE (name = 'Tee Shirt' OR name = 'BaseBall Cap')
AND NOT unit price > 10

SELECT id, name, quantity

FROM product

WHERE (name = 'Tee Shirt' OR name = 'BaseBall Cap')
AND unit price !> 10

Using ranges (between and not between) in the WHERE clause

The BETWEEN keyword specifies an inclusive range, in which the lower
value and the upper value are searched for as well as the values they bracket.

< To list all the products with prices between $10 and $15, inclusive:

¢ Enter the following query:

SELECT name, unit price
FROM product
WHERE unit price BETWEEN 10 AND 15

name unit_price
Tee Shirt 14.00
Tee Shirt 14.00
Baseball Cap 10.00
Shorts 15.00

100

Chapter 4 Queries: Selecting Data from a Table

You can use NOT BETWEEN to find all the rows that are not inside the
range.

< To list all the products cheaper than $10 or more expensive than
$15:

¢ Enter the following query:

SELECT name, unit price
FROM product
WHERE unit_price NOT BETWEEN 10 AND 15

name unit_price
Tee Shirt 9.00

Tee Shirt 9.00

Visor 7.00

Visor 7.00
Sweatshirt 24.00
Sweatshirt 24.00

Using lists in the WHERE clause

The IN keyword allows you to select values that match any one of a list of
values. The expression can be a constant or a column name, and the list can
be a set of constants or, more commonly, a subquery.

For example, without in, if you want a list of the names and states of all the
contacts who live in Ontario, Manitoba, or Quebec, you can type this query:

SELECT company name , state
FROM customer
WHERE state = 'ON' OR state = 'MB' OR state = 'PQ'

However, you get the same results if you use IN. The items following the IN
keyword must be separated by commas and enclosed in parentheses. Put
single quotes around character, date, or time values. For example:

SELECT company name , state
FROM customer
WHERE state IN('ON', 'MB', 'PQ')

Perhaps the most important use for the IN keyword is in nested queries, also
called subqueries.

101

The WHERE clause: specifying rows

Matching character strings in the WHERE clause

Examples

102

The LIKE keyword indicates that the following character string is a matching
pattern. LIKE is used with character, binary, or date and time data.

The syntax for like is:

{ WHERE | HAVING } expression [NOT] LIKE match-expression
The expression to be matched is compared to a match-expression that can
include these special symbols:

Symbols Meaning
% Matches any string of 0 or more characters
_ Matches any one character
[specifier] The specifier in the brackets may take the following forms:

4 Range A range is of the form rangespeci-rangespec2, where
rangespecl indicates the start of a range of characters, the hyphen
indicates a range, and rangespec? indicates the end of a range of
characters

4 Set A setcan be comprised of any discrete set of values, in any order.
For example, [a2bR].

Note that the range [a-f], and the sets [abcdef] and [fcbdae] return the same
set of values.

["specifier] The caret symbol (") preceding a specifier indicates non-inclusion. ["a-f]
means not in the range a-f; [*a2bR] means not a, 2, b, or R.

You can match the column data to constants, variables, or other columns that
contain the wildcard characters shown in the table. When using constants,
you should enclose the match strings and character strings in single quotes.

All the following examples use LIKE with the last_name column in the
Contact table. Queries are of the form:

SELECT last name
FROM contact
WHERE last name LIKE match-expression

The first example would be entered as

SELECT last name
FROM contact
WHERE last name LIKE 'Mc%'

Chapter 4 Queries: Selecting Data from a Table

Wildcards require
LIKE

Using LIKE with
date and time
values

Using NOT LIKE

Match Description Returns
expression
'Mc%' Search for every name that begins with the McEvoy

letters Mc
'Yoer' Search for every name that ends with er Brier, Miller,

Weaver, Rayner

'%en%' Search for every name containing the letters Pettengill,

en. Lencki, Cohen
' ish' Search for every four-letter name ending in Fish

ish.
'Br[iy][ae]r' Search for Brier, Bryer, Briar, or Bryar. Brier
'[M-Z]owell' | Search for all names ending with owell that Powell

begin with a single letter in the range M to Z.
'M["c]%' Search for all names beginning with M' that Moore, Mulley,

do not have c as the second letter

Miller, Masalsky

Wildcard characters used without LIKE are interpreted as literals rather than
as a pattern: they represent exactly their own values. The following query
attempts to find any phone numbers that consist of the four characters 415%

only. It does not find phone numbers that start with 415.

SELECT phone
FROM Contact
WHERE phone = '415%"'

You can use LIKE on date and time fields as well as on character data. When
you use LIKE with date and time values, the dates are converted to the
standard DATETIME format, and then to VARCHAR.

One feature of using LIKE when searching for DATETIME values is that,
since date and time entries may contain a variety of date parts, an equality
test has to be written carefully in order to succeed.

For example, if you insert the value 9:20 and the current date into a column
named arrival_time, the clause:

WHERE arrival time = '9:20'

fails to find the value, because the entry holds the date as well as the time.
However, the clause below would find the 9:20 value:

WHERE arrival time LIKE '%9:20%'

With NOT LIKE, you can use the same wildcard characters that you can use
with LIKE. To find all the phone numbers in the Contact table that do not
have 415 as the area code, you can use either of these queries:

103

The WHERE clause: specifying rows

SELECT phone
FROM Contact
WHERE phone NOT LIKE '415%'

SELECT phone
FROM Contact
WHERE NOT phone LIKE '415%'

Character strings and quotation marks

Quotation marks in
strings

104

When you enter or search for character and date data, you must enclose it in
single quotation marks, as in the following example.
SELECT first name, last name

FROM contact
WHERE first name = 'John'

If the quoted_identifier database option is set to OFF (it is ON by default),
you can also use double quotes around character or date data.

To set the quoted_identifier option off for the current user ID:
¢ Type the following command:

SET OPTION quoted identifier = 'OFF'

The quoted_identifier option is provided for compatibility with Adaptive
Server Enterprise. By default, the Adaptive Server Enterprise option is
quoted_identifier OFF and the Adaptive Server Anywhere option is
quoted_identifier ON.

There are two ways to specify literal quotations within a character entry. The
first method is to use two consecutive quotation marks. For example, if you
have begun a character entry with a single quotation mark and want to
include a single quotation mark as part of the entry, use two single quotation
marks:

'T don''t understand.’'

With double quotation marks (quoted identifier OFF):

"He said, ""It is not really confusing.

The second method, applicable only with quoted_identifier OFF, is to
enclose a quotation in the other kind of quotation mark. In other words,
surround an entry containing double quotation marks with single quotation
marks, or vice versa. Here are some examples:

'George said, "There must be a better way."'
"Isn't there a better way?"

'George asked, "Isn''t there a better way?"'

Chapter 4 Queries: Selecting Data from a Table

Unknown Values: NULL

Entering NULL

When NULLs are
retrieved

A NULL in a column means that the user or application has made no entry in
that column. A data value for the column is unknown or not available

NULL does not mean the same as zero (numerical values) or blank
(character values). Rather, NULL values allow you to distinguish between a
deliberate entry of zero for numeric columns or blank for character columns
and a non-entry, which is NULL for both numeric and character columns.

NULL can be entered in a column where NULL values are permitted, as
specified in the create table statement, in two ways:

¢ Default Ifno datais entered, and the column has no other default
setting, NULL is entered.

¢ Explicitentry You can explicitly enter the value NULL by typing the
word NULL (without quotation marks).

If the word NULL is typed in a character column with quotation marks,
it is treated as data, not as a null value.

For example, the dept_head_id column of the department table allows nulls.
You can enter two rows for departments with no manager as follows:

INSERT INTO department (dept id, dept name)
VALUES (201, 'Eastern Sales')

INSERT INTO department
VALUES (202, 'Western Sales', null)

When NULLS are retrieved, displays of query results in Interactive SQL
show (NULL) in the appropriate position:

SELECT *
FROM department

dept_id dept_name dept_head_id
100 R&D 501

200 Sales 904

300 Finance 1293

400 Marketing 1576

500 Shipping 703

201 Eastern Sales (NULL)

202 Western Sales (NULL)

105

The WHERE clause: specifying rows

Testing a column for NULL

106

You can use IS NULL in search conditions to compare column values to
NULL and to select them or perform a particular action based on the results
of the comparison. Only columns that return a value of TRUE are selected or
result in the specified action; those that return FALSE or UNKNOWN do
not.

The following example selects only rows for which unit_price is less than
$15 or is NULL:

SELECT quantity , unit price
FROM product

WHERE unit price < 15

OR unit price IS NULL

The result of comparing NULL is UNKNOWN, since it is not possible to
determine whether NULL is equal (or not equal) to a given value or to
another NULL. The following cases return TRUE when expression is any
column, variable or literal, or combination of these, which evaluates as
NULL:

¢ expression IS NULL
¢ expression=NULL

¢ expression = x where x is a variable or parameter containing NULL.
This exception facilitates writing stored procedures with null default
parameters.

¢ expression != n where n is a literal not containing NULL and expression
evaluates to NULL.

The negative versions of these expressions return TRUE when the expression
does not evaluate to NULL:

¢ expression IS NOT NULL
¢ expression != NULL
¢ expression = x

Note that the far right side of these exceptions is a literal null, or a variable or
parameter containing NULL. If the far right side of the comparison is an
expression (such as @nullvar + 1), the entire expression evaluates to NULL.

There are some conditions that never return true, so that queries using these
conditions do not return result sets. For example, the following comparison
can never be determined to be true, since NULL means having an unknown
value:

WHERE columnl > NULL

Chapter 4 Queries: Selecting Data from a Table

Properties of NULL

This logic also applies when you use two column names in a WHERE
clause, that is, when you join two tables. A clause containing the condition

WHERE columnl = column2
does not return rows where the columns contain NULL.
You can also find NULL or non-NULL with this pattern:
WHERE column name IS [NOT] NULL
For example:

WHERE advance < $5000 OR advance IS NULL

The following list expands on the properties of NULL.

¢ The difference between FALSE and UNKNOWN Although neither
FALSE nor UNKNOWN returns values, there is an important logical
difference between FALSE and UNKNOWN, because the opposite of
false ("not false") is true. For example,

1 =2
evaluates to false and its opposite,
1 !=2
evaluates to true. But "not unknown" is still unknown. If null values are

included in a comparison, you cannot negate the expression to get the
opposite set of rows or the opposite truth value.

¢ Substituting a value for NULLs Use the isnull built-in function to
substitute a particular value for nulls. The substitution is made only for
display purposes; actual column values are not affected. The syntax is:

isnull (expression, value)

For example, use the following statement to select all the rows from test,
and display all the null values in column t1 with the value unknown.

SELECT ISNULL(tl, 'unknown')
FROM test

¢ Expressions that evaluate to NULL An expression with an arithmetic
or bitwise operator evaluates to NULL if any of the operands are null.
For example:

1 4+ columnl
evaluates to NULL if column1 is NULL.

¢ Concatenating strings and NULL If you concatenate a string and
NULL, the expression evaluates to the string. For example:

107

The WHERE clause: specifying rows

SELECT 'abc' || NULL || 'def'

returns the string abcdef.

Connecting conditions with logical operators

The logical operators AND, OR, and NOT are used to connect search
conditions in WHERE clauses.

Using AND The AND operator joins two or more conditions and returns results only
when all of the conditions are true. For example, the following query finds
only the rows in which the contact's last name is Purcell and the contact's
first name is Beth. It does not find the row for Beth Glassmann.

SELECT *
FROM contact
WHERE first name = 'Beth'
AND last name = 'Purcell'
Using OR The OR operator also connects two or more conditions, but it returns results

when any of the conditions is true. The following query searches for rows
containing variants of Elizabeth in the first name column.

SELECT *
FROM contact
WHERE first name = 'Beth'
OR first name = 'Liz'
Using NOT The NOT operator negates the expression that follows it. The following
query lists all the contacts who do not live in California:
SELECT *
FROM contact
WHERE NOT state = 'CA'

When more than one logical operator is used in a statement, AND operators
are normally evaluated before OR operators. You can change the order of
execution with parentheses. For example:

SELECT *
FROM contact
WHERE (city = 'Lexington'
OR city = 'Burlington')
AND state = 'MA'

108

