CHAPTER 6

Joins: Retrieving Data from Several Tables

About this chapter

Before your start

When you create a database, you normalize the data by placing information

specific to different objects in different tables, rather than one large table

with many redundant entries.

A join operation recreates a larger table using the information from two or
more tables (or views). By using different joins, you can construct a variety

of these virtual tables, each suited to a particular task.

This chapter assumes some knowledge of queries and the syntax of the select
statement. Information about queries is located in "Queries: Selecting Data

from a Table" on page 85. You may also wish to review the introductory

material on joins, located in "Joining Tables" on page 243 of the book First

Guide to SOQL Anywhere Studio.

Contents

Topic Page
How joins work 130
How joins are structured 132
Key joins 134
Natural joins 136
Joins using comparisons 137
Inner, left-outer, and right-outer joins 139
Self-joins and correlation names 143
Cross joins 146
How joins are processed 149
Joining more than two tables 151
Joins involving derived tables 154
Transact-SQL outer joins 155

129

How joins work

How joins work

A relational database stores information about different types of objects in
different tables. For example, you should store information particular to
employees in one table, and information that pertains to departments in
another. The employee table contains information such as an employee’s
name and address. The department table contains information about one
department, such as the name of the department and who is the department
head.

Most questions can only be answered using a combination of information
from the various tables; for example, the question "Who manages the Sales
department?" To find the name of this person, you must identify the correct
person using information from the department table, then look up that
person’s name in the employee table.

Joins are a means of answering such questions by forming a new virtual table
that includes information from multiple tables. For example, you could
create a list of the department heads by combining the information contained
in the employee table and the department table. You specify which tables
contain the information you need using the FROM clause.

To make the join useful, you must combine the correct columns of each
table. To list department heads, each row of the combined table should
contain the name of a department and the name of the employee who
manages it. You control how columns are matched in the composite table
either by specifying a particular type of join operation or by using the ON
phrase.

Joins and the relational model

130

The join operation is the hallmark of the relational model of database
management. More than any other feature, the join distinguishes relational
database management systems from other types of database management
systems.

In structured database management systems, often known as network and
hierarchical systems, relationships between data values are predefined. Once
a database has been set up, it is difficult to make queries about unanticipated
relationships among the data.

Chapter 6 Joins: Retrieving Data from Several Tables

In a relational database management system, on the other hand, relationships
among data values are left unstated in the definition of a database. They
become explicit when the data is manipulated: when you query the database,
not when you create it. You can ask any question that comes to mind about
the data stored in the database, regardless of what was intended when the
database was set up.

According to the rules of good database design, called normalization rules,
each table should describe one kind of entity—a person, place, event, or
thing. That is why, when you want to compare information about two or
more kinds of entities, you need the join operation. Relationships among data
stored in different tables are discovered by joining them.

A corollary of this rule is that the join operation gives you unlimited
flexibility in adding new kinds of data to your database. You can always
create a new table that contains data about a different kind of entity. If the
new table has a field with values similar to those in some field of an existing
table or tables, it can be linked to those other tables by joining.

131

How joins are structured

How joins are structured

A join operation may appear within a variety of statements, such as within
the from clause of a select statement. The columns named after the FROM
keyword are the columns to be included in the query results, in your desired
order.

When two or more tables contain a column with the same name, you must
qualify the column name explicitly to avoid ambiguity. For example, the
product table and the sales_order_items table in the sample database both
contain a column named id. If you wish to select either of these two
columns, you need to identify the column you mean explicitly. If only one
table uses a particular column name, the column name alone suffices.

SELECT product.id, sales order items.id, size
FROM ...

You do not have to qualify the column name size because there is no
ambiguity about the table to which it belongs—although these qualifiers
often make your statement clearer, so it is a good idea to get in the habit of
including them.

As in any select statement, column names in the select list and table names in
the FROM clause must be separated by commas.

& For information about queries use a single table, see "Queries:
Selecting Data from a Table" on page 85.

The FROM clause

Join operators

132

Use the FROM clause to specify which tables and views to join. You can
name any two or more tables or views.

Adaptive Server Anywhere provides four join operations:
¢ key joins

¢ natural joins

¢ joins using a condition, such as equality

¢ cross joins

Key joins, natural joins and joins on a condition may be of type inner, left-
outer, or right-outer. These join types differ in the way they treat rows that
have no matching row in the other table.

Chapter 6 Joins: Retrieving Data from Several Tables

Data types in join columns

The columns being joined must have the same or compatible data types. Use
the convert function when comparing columns whose datatypes cannot be
implicitly converted.

If the datatypes used in the join are compatible, Adaptive Server Anywhere
automatically converts them. For example, Anywhere converts among any of
the numeric type columns, such as INT or FLOAT, and among any of the
character type and date columns, such as CHAR or VARCHAR.

& For the details of datatype conversions, see "Data type conversions" on
page 254 of the book Adaptive Server Anywhere Reference Manual.

133

Key joins

Key joins

The simplest way to join tables is to connect them using the foreign key
relationships built into the database. This method is particularly economical
in syntax and especially efficient.

Answer the question, "Which orders has Beth Reiser placed?"

SELECT customer.fname, customer.lname,
sales order.id, sales order.order date
FROM customer KEY JOIN sales order

WHERE customer. fname = 'Beth'
AND customer.lname = 'Reiser'’

fname Iname id order_date
Beth Reiser 2142 1993-01-22
Beth Reiser 2318 1993-09-04
Beth Reiser 2338 1993-09-24
Beth Reiser 2449 1993-12-14
Beth Reiser 2562 1994-03-17
Beth Reiser 2585 1994-04-08
Beth Reiser 2002 1993-03-20

When the option to use a key join is available, it’s generally a good idea to
use it as opposed to another type.

A key join is valid if and only if exactly one foreign key is identified
between the two tables. Otherwise, an error indicating the ambiguity is
reported. Some constraints on these joins mean that they will not always be
an available option.

¢ A foreign-key relationship must exist in the database. You cannot use a
key join to join two tables that are not related through a foreign key.

¢ Only one foreign key relationship can exist between the two tables. If
more than one such relationship exists, Adaptive Server Anywhere
cannot decide which relationship to use and will generate an error
indicating the ambiguity. You cannot specify the suitable foreign key in
your statement since the syntax of the SQL language does not provide a
means to do so.

¢ A suitable foreign key relationship must exist. You may need to create a
join using two particular columns. A foreign-key relationship between
the two tables may not suite your purpose.

134

Chapter 6 Joins: Retrieving Data from Several Tables

Key joins are the Key join is the default join type in Adaptive Server Anywhere. Anywhere
default performs a key join if you do not specify the type of join explicitly, using a
keyword such as KEY or NATURAL, or by including an ON phrase.

For example, Adaptive Server Anywhere performs a key join when it
encounters the following statement.

SELECT *
FROM product JOIN sales order items

Similarly, the following join fails because there are two foreign key
relationships between these tables.

SELECT *
FROM employee JOIN department

135

Natural joins

Natural joins

136

A natural join matches the rows from two tables by comparing the values
from columns, one in each table, that have the same name. It restricts the
results by comparing the values of columns in the two tables with the same
column name. An error is reported if there is no common column name.

For example, you can join the employee and department tables using a
natural join because they have only one column name in common.

SELECT emp fname, emp lname, dept name
FROM employee NATURAL JOIN department
ORDER BY dept name, emp lname, emp fname

emp_fname | emp_Iname dept_name
Janet Bigelow Finance
Kristen Coe Finance
James Coleman Finance
Jo Ann Davidson Finance
Denis Higgins Finance
Julie Jordan Finance
John Letiecq Finance
Jennifer Litton Finance
Mary Anne | Shea Finance
Alex Ahmed Marketing
Irene Barletta Marketing
Barbara Blaikie Marketing

Column names such as description or address often cause a NATURAL
JOIN to return different results than expected. Another means of specifying a
join is by means of a condition, supplied within an ON phrase. Here, you
have a wide number of options at your disposal.

Chapter 6 Joins: Retrieving Data from Several Tables

Joins using comparisons

Join types

You can specify a join condition for any join type except CROSS JOIN.
Alternatively you can create a join using a condition instead of a keyword,
instead of using a KEY or NATURAL JOIN. You specify a join condition by
inserting an ON phrase immediately adjacent to the join to which it applies.

Natural joins and key joins use generated join conditions; that is, the
keyword KEY or NATURAL indicates a restriction on the join results.

For a natural join, the generated join condition is based on the names of
columns in the tables being joined; for a key join, the condition is based on a
foreign key relationship between the two tables.

In the sample database, the following are logically equivalent:

SELECT *
FROM sales order JOIN customer
ON sales order.cust id = customer.id

SELECT *
FROM sales order KEY JOIN customer

The following two are also equivalent:

SELECT *
FROM department JOIN employee
ON department.dept id = employee.dept id

SELECT *
FROM department NATURAL JOIN employee

When you join two tables, the columns you compare must have the same or
similar data types.

There are several types of joins, such as equijoins, natural joins, and outer
joins. The most common join, the equijoin, is based on equality. The
following command lists each order number and the name of the customer
who placed them.

SELECT sales order.id, customer.fname, customer.lname
FROM sales order JOIN customer
ON sales order.cust id = customer.id

The condition for joining the values in two columns does not need to be
equality (=). You can use any of the other comparison operators: not equal
(<>), greater than (>), less than (<), greater than or equal to (>=), and less
than or equal to (<=).

137

Joins using comparisons

Using the WHERE clause in join statements

138

You can use the WHERE clause to determine which rows are included in the
results. In this role, it acts exactly like it does when using a single table,
selecting only the rows that interest you.

The WHERE clause can also specify the connection between the tables and
views named in the FROM clause. In this role, it acts somewhat like the ON
phrase. In fact in the case of inner joins, the behavior is identical. However,
in outer joins, for example, the same condition can produce different results
if moved from an ON phrase to the WHERE clause because null values are
treated differently in these two contexts. The ON phrase allows you to isolate
the join constraints and can make your join statement easier to read.

Chapter 6 Joins: Retrieving Data from Several Tables

Inner, left-outer, and right-outer joins

Inner joins and outer joins differ in their treatment of rows that have no
match in the other table: rows appear in an inner join only if both tables
contain at least one row that satisfies the join condition.

Because inner joins are the default, you do not need to specify the INNER
keyword explicitly. Should you wish to use it for clarity, place it
immediately before the JOIN keyword.

For example, each row of

SELECT fname, lname, order date
FROM customer

KEY INNER JOIN sales order
ORDER BY order date

contains the information from one customer row and one sales_order row.
If a particular customer has placed no orders, the join will contain no
information about that customer.

fname Iname order_date
Hardy Mums 1993-01-02
Tommie Wooten 1993-01-03
Aram Najarian 1993-01-03
Alfredo Margolis 1993-01-06
Elmo Smythe 1993-01-06
Malcolm Naddem 1993-01-07

Because inner joins are the default, you obtain the same result using the
following clause.

FROM customer JOIN sales order

By contrast, an outer join contains rows whether or not a row appears in the
opposite table to satisfy the join condition. Use the keywords LEFT or
RIGHT to identify the table that is to appear in its entirety.

¢ A LEFT OUTER JOIN contains every row in the /ef-hand table.
¢ A RIGHT OUTER JOIN contains every row in the right-hand table.

For example, the outer join

139

Inner, left-outer, and right-outer joins

SELECT fname, lname, order date
FROM customer

KEY LEFT OUTER JOIN sales order
ORDER BY order date

includes all customers, whether or not they have placed an order. If a
particular customer has placed no orders, each column in the join
corresponding to order information will contain the NULL value.

fname Iname order_date
Lewis N. Clark (NULL)
Jack Johnson (NULL)
Jane Doe (NULL)
John Glenn (NULL)
Dominic Johansen (NULL)
Stanley Jue (NULL)
Harry Jones (NULL)
Marie Curie (NULL)
Elizibeth Bordon (NULL)
Len Manager (NULL)
Tony Antolini (NULL)
Tom Cruz (NULL)
Janice O Toole (NULL)
Stevie Nickolas (NULL)
Philipe Fernandez (NULL)
Jennifer Stutzman (NULL)
William Thompson (NULL)
Hardy Mums 1993-01-02
Tommie Wooten 1993-01-03
Aram Najarian 1993-01-03

The keywords INNER, LEFT OUTER, and RIGHT OUTER may appear as
modifiers in key joins, natural joins, and joins that using a comparison. These
modifiers do not apply to cross joins.

140

Chapter 6 Joins: Retrieving Data from Several Tables

Outer joins and join conditions

A common mistake is to place a join condition, which should appear in an
ON phrase, in a WHERE clause. Here, the same condition often produces
different results. This difference is best explained through a conceptual
explanation of the way that Adaptive Server Anywhere processes a select
statement.

1 First, Adaptive Server Anywhere logically completes all joins. When
doing so, it uses only conditions placed within an ON phrase. When the
values in one table are missing or null-valued, the behavior depends
upon the type of join: inner, left-outer, or right-outer.

2 Once the join is complete, Adaptive Server Anywhere logically deletes
those rows for which the condition within the WHERE clause evaluates
to either FALSE or UNKNOWN.

Because conditions are treated differently, the effect of moving a condition
from an ON phrase to a WHERE clause is usually to convert the join to an
inner join, regardless of the type of join specified.

With INNER JOINS, specifying a join condition is equivalent to adding the
join condition to the WHERE clause. However, the same is not true for
OUTER JOINS.

For example, the following statement causes a left-outer join.

SELECT *
FROM customer LEFT OUTER JOIN sales order
ON customer.id = sales order.cust id

In contrast, the following two statements both create inner joins and select
the same set of rows.

SELECT *
FROM customer LEFT OUTER JOIN sales order
WHERE customer.id = sales order.cust id

SELECT *
FROM customer INNER JOIN sales order
ON customer.id = sales order.cust id

The first of these two statements can be thought of as follows: First, left-
outer join the customer table to the sales_order table. For those customers
who have not yet placed an order, fill the sales order fields with nulls. Next,
select those rows in which the customer id values are equal. For those
customers who have not placed orders, these values will be NULL. Since
comparing any value to NULL results in the special value UNKOWN, these
rows are eliminated and the statement reduces to an inner join.

141

Inner, left-outer, and right-outer joins

& This methodology describes the logical effect of the statements you
type, not how Adaptive Server Anywhere goes about processing them. For
further information, see "How joins are processed" on page 149.

142

Chapter 6 Joins: Retrieving Data from Several Tables

Self-joins and correlation names

Use correlation
names to
distinguish
instances of a table

Joins can compare values within the same column, or two different columns
of a single table. These joins are called self-joins. For example, you can
create a list all the employees and the name of each person’s manager by
joining the employee table to itself.

In such a join, you cannot distinguish the columns by the conventional means
because the join will contain two copies of every column.

For example, suppose you want to create a table of employees that includes
the names of their managers. The following query does not answer this
question.

SELECT *
FROM employee JOIN employee
ON employee.manager id = employee.emp id

In fact, this statement is semantically equivalent to the much simpler
statement below.

SELECT *
FROM employee

When constructing joins, Adaptive Server Anywhere treats all tables or
views that have the same name as the same instance of a view or table. The
name employee is treated as only one instance of the employee table because
the same name appears at both locations in the FROM clause.

To distinguish an individual instance of a table, use a correlation name.

A correlation name is an alias for an instance of a table or view. You define a
correlation name in the FROM clause. Once defined, you must use the
correlation name in place of the table name elsewhere within your statement,
including the selection list, wherever you refer to that instance of the table.

The following statement uses the correlation names report and manager to
distinguish the two instances of the employee table and so correctly creates
the list of employees and their managers.

SELECT report.emp fname, report.emp lname,
manager.emp fname, manager.emp lname

FROM employee AS report JOIN employee AS manager
ON report.manager id = manager.emp id

ORDER BY report.emp lname, report.emp fname

This statement produces the result shown below. The employee names
appear in the two left-hand columns and the names of their managers on the
right.

143

Self-joins and correlation names

Using correlation
names

144

emp_fname | emp_lname emp_fname emp_lname
Alex Ahmed Scott Evans
Joseph Barker Jose Martinez
Irene Barletta Scott Evans
Jeannette Bertrand Jose Martinez
Janet Bigelow Mary Anne Shea
Barbara Blaikie Scott Evans
Jane Braun Jose Martinez
Robert Breault David Scott
Matthew Bucceri Scott Evans
Joyce Butterfield Scott Evans

Choose short, concise correlation names to make your statements easier to
read. In many cases, names only one or two characters in length will suffice.

While you must use correlation names for a self-join to distinguish multiple
instances of a table, they can make many other statements more readable too.
For example, the statement

SELECT customer.fname, customer.lname,
sales order.id, sales order.order date
FROM customer KEY JOIN sales order
WHERE customer. fname = 'Beth'
AND customer.lname = 'Reiser'

becomes more compact if you use the correlation name ¢ for customer and
so for sales_order:

SELECT c.fname, c.lname, so.id, so.order date
FROM customer AS c KEY JOIN sales order AS so
WHERE c.fname = 'Beth'

AND c.lname = 'Reiser'

For brevity, you can even eliminate the keyword AS. It is redundant because
the syntax of the SQL language identifies the correlation names: they are
separated from the corresponding table name by only a space, not a comma.

SELECT c.fname, c.lname, so.id, so.order date
FROM customer c KEY JOIN sales order so
WHERE c.fname = 'Beth'

AND c.lname = 'Reiser'

Chapter 6 Joins: Retrieving Data from Several Tables

& For further details of the rules regarding correlation names and
instances of a table within a FROM clause, see "Joining more than two
tables" on page 151.

145

Cross joins

Cross joins

As for other types of joins, each row in a cross join is a combination of one
column from the first table and one column from the second table. Unlike
other joins, a cross join contains no restrictions. All possible combinations of
rows are present.

Each row of the first table appears exactly once with each row of the second
table. Hence, the number of rows in the join is the product of the number of
rows in the individual tables.

Inner and outer Except in the presence of additional restrictions, all rows of both tables
modifiers do not always appear in the result. Thus, the keywords INNER, LEFT OUTER and
apply to cross joins RIGHT OUTER are not applicable to cross joins.
The query
SELECT *

FROM tablel CROSS JOIN table2
has a result set as follows:
¢ Aslong as tablel is not the same name as table2:

¢ The result set includes all columns in tablel and all columns in
table2.

¢ There is one row in the result set for each combination of a row in
tablel and a row in table2. If tablel has »n/ rows and table2 has n2
rows, the query returns n/ x n2 rows.

¢ Iftablel is the same table as table2, and neither is given a correlation
name, the result set is simply the rows of tablel.

Self-joins and cross joins
The following self-join produces a list of pairs of employees. Each employee
names appears in combination with every employee name.

SELECT a.emp fname, a.emp lname,
b.emp fname, b.emp lname
FROM employee AS a CROSS JOIN employee AS Db

146

Chapter 6 Joins: Retrieving Data from Several Tables

emp_fname emp_Iname Emp_fname emp_Ilname
Fran Whitney Fran Whitney
Matthew Cobb Fran Whitney
Philip Chin Fran Whitney
Julie Jordan Fran Whitney
Robert Breault Fran Whitney
Melissa Espinoza Fran Whitney
Jeannette Bertrand Fran Whitney

Since the employee table has 75 rows, this join contains 75 x 75 = 5625
rows. It includes, however, rows which that list each employee with
themselves. For example, it contains the row

emp_fname | emp_Iname | emp_fname | emp_Iname

Fran ‘ Whitney | Fran | Whitney

To remove that list the same employee’s name twice, use the following
command.

SELECT a.emp fname, a.emp lname,
b.emp fname, b.emp lname
FROM employee AS a CROSS JOIN employee AS Db
WHERE a.emp lname <> b.emp lname
OR a.emp fname <> b.emp fname

Without these rows, the join contains 75 x 74 = 5550 rows.

This join contains rows that pair each employee with every other employee,
but because each pair of names can appear in two possible orders, each pair
appears twice. For example, the result of the above join contains the
following two rows.

emp_fname | emp_Iname | emp_fname | emp_Iname
Matthew Cobb Fran Whitney
Fran Whitney Matthew Cobb

If the order of the names is not important, you can produce a list of the
(75 x 74)/2! = 2775 unique pairs.

147

Cross joins

SELECT a.emp fname, a.emp lname,
b.emp fname, b.emp lname
FROM employee AS a CROSS JOIN employee AS Db
WHERE a.emp lname < b.emp lname
OR (a.emp Iname = b.emp lname
AND a.emp fname < b.emp fname)

This statement eliminates duplicate lines by selecting only those rows in
which the name of employee a is alphabetically less than that of employee b.

& For more information, see "Self-joins and correlation names" on page
143.

148

Chapter 6 Joins: Retrieving Data from Several Tables

How joins are processed

Knowing how joins are processed helps to understand them—and to figure
out why, when you incorrectly state a join, you sometimes get unexpected
results. This section describes the processing of joins in conceptual terms.
When executing your statements, Adaptive Server Anywhere uses a
sophisticated strategy to obtain the same results by more efficient means.

1

The first logical step in processing a join is to use the join condition to
form the Cartesian product of the tables—all the possible combinations
of the rows from each of the tables. The number of rows in a Cartesian
product of tables is the product of the number of rows in the individual
tables. This Cartesian product contains all the rows that satisfy your join
condition, and all of the columns from all of the tables.

The next logical step is to select the rows you want using conditions in
the WHERE clause. Whereas you may include NULL values for missing
rows using a left- or right-outer join, Adaptive Server Anywhere selects
rows only if the condition evaluates to TRUE. It omits rows if the
condition evaluates to either FALSE or UNKNOWN.

If you include a GROUP BY clause, the rows are partitioned according
to your conditions. Next, rows are selected from these partitions
according to any conditions in the HAVING clause.

If the statement includes an ORDER BY clause, then Adaptive Server
Anywhere uses it to order the remaining rows. When you do not specify
an ordering, make no assumptions regarding the order of the rows.

Finally, Adaptive Server Anywhere returns those columns you specified
in your select statement.

Tips

Adaptive Server Anywhere accepts a wide range of syntax. This
flexibility means that most queries result in an answer, but sometimes not
the one you intended. The following precautions will help you avoid this
peril.

1 Always use correlation names.

2 Try eliminating a WHERE clause when testing a new statement.
3 Avoid mixing inner joins with left-outer or right-outer joins.

4 Examine the plan for your query—does it include all the tables?

149

How joins are processed

Performance considerations

150

Generally, Adaptive Server Anywhere prefers to process joins by selecting
information in one table, then performing an indexed look-up to get the rows
it needs from another. Anywhere carefully optimizes each of your statements
before executing it. As long as your statement correctly identifies the
information you want, it usually doesn’t matter what syntax you use.

In particular, Adaptive Server Anywhere is free to reconstruct your statement
to any form that is semantically equivalent. It will almost always will do so,
so0 as to compute your result efficiently. You can determine the result of a
statement using the above methods, but Anywhere usually obtains the result
by another means.

One means by which Adaptive Server Anywhere improves performance is to
use indexes whenever doing so will improve performance. Columns that are
part of a primary or secondary key are indexed automatically. Other columns
are not. Creating additional indexes on columns involved in a join, either as
part of a join condition or in a where clause, can improve performance
dramatically.

& For further performance tips, see "Monitoring and Improving
Performance" on page 623.

Chapter 6 Joins: Retrieving Data from Several Tables

Joining more than two tables

Star joins

To carry out many queries, you need you will need to join more than two
tables. Here, you have two options at your disposal.

The first method to join multiple tables. The following command answers the
question "What items were are listed on order number 2015?"

SELECT product.name, size, sales order items.quantity
FROM sales order

KEY JOIN sales order items

KEY JOIN product
WHERE sales order.id = 2015

id name size quantity
300 Tee Shirt Small 24
301 Tee Shirt Medium 24
302 Tee Shirt One size fits all 24
700 Shorts Medium 24

When you want to join a number of tables sequentially, the above syntax
makes a lot of sense. However, sometimes you need to join a single table to
several others that surround it.

Some joins must join a single table to several others around it. This type of
join is called a star join.

As an example, create a list the names of the customers that have placed
orders with Rollin Overbey.

SELECT c.fname, c.lname, o.order date
FROM sales order AS o KEY JOIN customer AS c,
sales order AS o KEY JOIN employee AS e
WHERE e.emp fname = 'Rollin' AND e.emp lname = 'Overbey'
ORDER BY o.order date

Notice that one of the tables in the FROM clause, employee, does not
contribute any columns to the results. Nor do any of the columns that are
joined—customer id and employee id—appear in the results. Nonetheless,
this join is possible only by using the employee table.

151

Joining more than two tables

152

fname Iname order_date
Tommie Wooten 1993-01-03
Michael Agliori 1993-01-08
Salton Pepper 1993-01-17
Tommie Wooten 1993-01-23
Michael Agliori 1993-01-24

The following statement uses a star join around the sales_order table. The
result is a list that shows all the customers and the total quantity of each type
of product that they have ordered. Some customers have not placed orders,
so the other values for these customers are NULL. In addition, it shows the
name of the manager of the sales person through whom they placed the
orders.

SELECT c.fname, p.name, SUM(i.quantity), m.emp fname
FROM sales order o
KEY LEFT OUTER JOIN sales order items i
KEY LEFT OUTER JOIN product p,
sales order o
KEY RIGHT OUTER JOIN customer c,
sales order o
KEY LEFT OUTER JOIN employee e
LEFT OUTER JOIN employee m
ON e.manager id = m.emp id
WHERE c.state = 'CA'
GROUP BY c.fname, p.name, m.emp fname
ORDER BY SUM(i.quantity) DESC, c.fname

Note the following details of this statement:

¢
¢
¢

The join centers on the customer table.
The keyword AS is optional and has been omitted.

All joins must be outer joins to keep the outer join with the customer
table includes null values.

The condition e.manager id = m.emp_id must be placed in the ON
phrase instead of the WHERE clause. The result of this statement would
been inner join if this condition moved into the WHERE clause.

The statement produces the results shown in the table, below.

Chapter 6 Joins: Retrieving Data from Several Tables

fname name SUM(i.quantity) | emp_fname
Harry (NULL) (NULL) (NULL)
Jane (NULL) (NULL) (NULL)
Philipe (NULL) (NULL) (NULL)
Sheng Baseball Cap 240 Moira
Laura Tee Shirt 192 Moira

Moe Tee Shirt 192 Moira
Leilani Sweatshirt 132 Moira
Almen Baseball Cap 108 Moira

153

Joins involving derived tables

Joins involving derived tables

You can nest queries within a FROM clause. Tables created in this manner
are called derived tables. Using derived queries, you can perform grouping
of groups or construct a join with a group, without having to create a view.

In the following example, the inner SELECT statement (enclosed in
parentheses) creates a derived table, grouped by customer id values. The
outer SELECT statement assigns this table the correlation name
sales_order_counts and joins it to the customer table using a join condition.

SELECT lname, fname, number of orders
FROM customer join
(SELECT cust _id, count (*)
FROM sales order
GROUP BY cust id)
AS sales order counts (cust id, number of orders)
ON (customer.id = sales order counts.cust id)
WHERE number of orders > 3

The result is a table of the names of those customers who have placed more
than three orders, including the number of orders each has placed.

154

Chapter 6 Joins: Retrieving Data from Several Tables

Transact-SQL outer joins

Joins that include all rows, regardless of whether or not they match the join
condition, are called outer joins. Adaptive Server Anywhere supports both
left and right outer joins via the LEFT OUTER and RIGHT OUTER
keywords. For compatibility with Adaptive Server Enterprise, Anywhere
supports the Transact-SQL-language counterparts of these keywords.

In the Transact-SQL dialect, joins are accomplished by separating table
names with commas in the FROM clause. The join conditions appear in the
WHERE clause, rather than in the ON phrase. Special conditional operators
indicate the type of join.

Transact-SQL left-outer joins

Preserved and
null-supplying
tables

The left outer join operator, *=, selects all rows from the left hand table that
meet the statement's restrictions. The right hand table generates values if
there is a match on the join condition. Otherwise, the second table generates
null values.

For example, the following left outer join lists a/l customers and finds their
order dates (if any):

SELECT fname, lname, order date

FROM customer, sales order

WHERE customer.id *= sales order.cust id
ORDER BY order date

A table is either a preserved or a null-supplying table for an outer join. If
the join operator is *=, the second table is the null-supplying table; if the join
operator is =*, the first table is the null-supplying table.

You can compare a column from the inner table to a constant as well as using
it in the outer join. For example, you can use the following statement to find
information about customers in California.

SELECT fname, lname, order date
FROM customer, sales order
WHERE customer.state = 'CA'
AND customer.id *= sales order.cust id
ORDER BY order date

However, the inner table in an outer join cannot also participate in a regular
join clause.

155

Transact-SQL outer joins

Bit columns

Since bit columns do not permit null values, a value of 0 appears in an
outer join when there is no match for a bit column that is in the inner
table.

Transact-SQL right-outer joins

The right outer join, =*, selects all rows from the second table that meet the
statement's restrictions. The first table generates values if there is a match on
the join condition. Otherwise, the first table generates null values.

The right outer join is specified with the comparison operator =*, which
indicates that all the rows in the second table are to be included in the results,
regardless of whether there is matching data in the first table.

Substituting this operator in the outer join query shown earlier gives this
result:

SELECT fname, lname, order date

FROM sales order, customer

WHERE sales order.cust id =* customer.id
ORDER BY order date

You can further restrict an outer join by comparing it to a constant. This
means that you can zoom in on precisely the values you really want to see
and use the outer join to list the rows that did not make the cut.

Transact-SQL outer join restrictions

156

There are several restrictions for Transact-SQL outer joins:

¢ You cannot mix SQL/92 syntax and Transact-SQL outer join syntax in a
single query. This applies to views used by a query also: if a view is
defined using one dialect for an outer join, the same dialect must be used
for any outer-join queries on that view.

¢ A table cannot participate in both a Transact-SQL outer join clause and a
regular join clause. For example, the following WHERE clause is not
allowed:

WHERE R.x *= S.x
AND S.y = T.y

When you cannot rewrite your query to avoid using a table in both an
outer join and a regular join clause, you must divide your statement into
two separate queries.

Chapter 6 Joins: Retrieving Data from Several Tables

¢ You cannot use a subquery that contains the null-supplying table of an
outer join. For example, the following WHERE clause is not allowed:

WHERE R.x *= S.y
AND EXISTS (SELECT *
FROM T
WHERE T.x = S.x)

¢ Ifyou submit a query with an outer join and a qualification on a column
from the null-supplying table of the outer join, the results may not be
what you expect. The qualification in the query does not restrict the
number of rows returned, but rather affects which rows contain the null
value. For rows that do not meet the qualification, a null value appears
in the inner table's columns of those rows.

Views used with Transact-SQL outer joins

If you define a view with an outer join, and then query the view with a
qualification on a column from the inner table of the outer join, the results
may not be what you expect. The query returns all rows from the null-
supplying table. Rows that do not meet the qualification show a NULL value
in the appropriate columns of those rows.

The following rules determine what types of updates you can make to
columns through join views:

¢ DELETE statements are not allowed on join views.

¢ INSERT statements are not allowed on join views created WITH
CHECK OPTION.

¢ UPDATE statements are allowed on join views WITH CHECK
OPTION. The update fails if any of the affected columns appears in the
WHERE clause, in an expression that includes columns from more than
one table.

¢ Ifyou insert or update a row through a join view, all affected columns
must belong to the same base table.

How NULL affects Transact-SQL joins

NULL values in tables or views being joined will never match each other.
Since bit columns do not permit NULLs, a value of 0 appears in an outer join
when there is no match for a bit column that is in the inner table.

The result of a join of NULL with any other value is NULL. Because null
values represent unknown or inapplicable values, Transact-SQL has no
reason to believe that one unknown value matches another.

157

Transact-SQL outer joins

You can detect the presence of null values in a column from one of the tables
being joined only by using an outer join. If there are two tables, each of
which has a NULL in the column that will participate in the join. A left outer
join displays the NULL in the first table.

158

