CHAPTER 7

Using Subqueries

About this chapter

Before your start

Contents

When you create a query, you use WHERE and HAVING clauses to restrict
the rows that the query will display.

Sometimes, the rows you select depend on information stored in more than
one table. A subquery in the WHERE or HAVING clause allows you to
select rows from one table according to specifications obtained from another
table. Additional ways to do this can be found in "Joins: Retrieving Data
from Several Tables" on page 129

This chapter assumes some knowledge of queries and the syntax of the select
statement. Information about queries is located in "Queries: Selecting Data
from a Table" on page 85.

Topic Page
What is a subquery? 160
Using Subqueries in the WHERE clause 161
Subqueries in the HAVING clause 162
Subquery comparison test 164
Quantified comparison tests with ANY and ALL 166
Testing set membership with IN conditions 169
Existence test 171
Outer references 173
Subqueries and joins 174
Nested subqueries 177
How subqueries work 179

159

What is a subquery?

What is a subquery?

Structure of the
subquery

160

A relational database stores information about different types of objects in
different tables. For example, you should store information particular to
products in one table, and information that pertains to sales orders in another.
The product table contains the information about the various products. The
sales order items table contains information about one customers' orders.

In general, only the simplest questions can be answered using only one table.
For example, if the company reorders products when there are fewer than 50
of them in stock, then it is possible to answer the question "Which products
are nearly out of stock?" with this query:

SELECT id, name, description, quantity
FROM product
WHERE quantity < 50

However, if "nearly out of stock" depends on how many items of each type
the typical customer orders, the number "50" will have to be replaced by a
value obtained from the sales_order_items table.

A subquery is structured like a regular query, and appears in the main query's
WHERE or HAVING clause. In the above example, for instance, you can
use a subquery to select the average number of items that a customer orders,
and then use that figure in the main query to find products that are nearly out
of stock. The following query finds the names and descriptions of the
products which number less than double the average number of items of each
type that a customer orders.

SELECT name, description

FROM product

WHERE quantity < 2 * (
SELECT avg (quantity)
FROM sales order items

)

SQL subqueries always appear in the WHERE or HAVING clauses of the
main query. In the WHERE clause, they help select the rows from the tables
listed in the FROM clause that appear in the query results. In the HAVING
clause, they help select the row groups, as specified by the main query's
GROUP BY clause, that appear in the query results.

Chapter 7 Using Subqueries

Using Subqueries in the WHERE clause

Example

The query in two
steps

Purpose of a
subquery in the
WHERE clause

Subqueries in the WHERE clause work as part of the row selection process.
You use a subquery in the where clause when the critieria that you use to
select rows depend on the results of another table.

Find the products whose in-stock quantities are less than double the average
ordered quantity.

SELECT name, description

FROM product

WHERE quantity < 2 * (
SELECT avg (quantity)
FROM sales order items)

This query is executed in two steps: first, find the average number of items
requested per order; and then find which products in stock number less than
double that quantity.

The number of items requested per item type, customer, and order is stored
in the quantity column of the sales_order_items table. The subquery is

SELECT avg (quantity)
FROM sales order items

It returns the average quantity of items in the sales_order_items table,
which is the number 25.851413.

The next query returns the ID numbers, names, and descriptions of the items
whose in-stock quantities are less than twice the previously-extracted value

SELECT name, description
FROM product
WHERE quantity < 2*25.851413

Using a subquery combines the two steps into a single operation.

A subquery in the WHERE clause is part of a search condition. The chapter
"Queries: Selecting Data from a Table" on page 85 describes simple search
conditions that can be used in the WHERE clause.

161

Subqueries in the HAVING clause

Subqueries in the HAVING clause

Example

Outer references in
the HAVING

Eause
Xample

162

Although subqueries are usually used as search conditions in the WHERE
clause, they are occasionally found in the HAVING clause of a query. When
a subquery appears in the HAVING clause, it, like any expression in the
HAVING clause, is used as part of the row group selection.

Here is a request that lends itself naturally to a query with a subquery in the
HAVING clause: "Which products' average in-stock quantity is less than
double the average number of each item ordered per customer?"

SELECT name, avg (quantity)

FROM product

GROUP BY name

HAVING avg (quantity) > 2* (
SELECT avg (quantity)
FROM sales order items

)

avg(quantity)
name
Baseball Cap ‘ 62.000000
Shorts ‘ 80.000000
Tee Shirt ‘ 52.333333

The query is executed as follows:

¢ The subquery calculates the average quantity of items in the
sales_order_items table.

¢ The main query then goes through the product table, calculating the
average quantity product, grouping by product name.

¢ The HAVING clause then checks if that quantity is more than double the
quantity found by the subquery. If so, the main query returns that row
group; otherwise, it doesn't.

¢ The SELECT clause produces one summary row for each group,
showing the name of each product and its in-stock quantity.

You can also use outer references in a HAVING clause, as shown in this
request, a slight variation on the one above:

"Find the ID numbers and line ID numbers of those products whose average
ordered quantities is less more than half the in-stock quantities of those
products."

Chapter 7 Using Subqueries

A subquery with a
comparison returns
a single value

Subquery tests

SELECT prod id, line id
FROM sales order items
GROUP BY prod_id, line id
HAVING 2* avg (quantity) > (
SELECT quantity
FROM product
WHERE product.id = sales order items.prod id)

prod_id line_id
300 1
401 2
500 1
501 2
600 1

In this example, the subquery must produce the average in-stock quantity of
the product corresponding to the row group being tested by the HAVING
clause. The subquery selects records for that particular product, using the
outer reference sales_order_items.prod_id.

This query uses the comparison ">", suggesting that the subquery must
return exactly one value. In this case, it does, as the id field of the product
table is a primary key, so there is only one record in the product table
corresponding to any particular product id.

The chapter "Queries: Selecting Data from a Table" on page 85 describes
simple search conditions that can be used in the HAVING clause. As a
subquery is just an expression that appears in the WHERE or HAVING
clauses, the search conditions on subqueries may look familiar.

They are:

¢ Subquery comparison test For each record in the table(s) in the main
query, compares the value of an expression to a single value produced
by the subquery.

¢ Quantified comparison test Compares the value of an expression to
each of the set of values produced by a subquery.

¢ Subquery set membership test Checks if the value of an expression
matches one of the set of values produced by a subquery.

¢ Existence test Checks if the subquery produces any rows of query
results.

163

Subquery comparison test

Subquery comparison test

Example

A subquery in a
comparison test
returns one value

164

The subquery comparison test (=, <>, <. <=, >, >=) is a modified version of
the simple comparison test; the only difference between the two is that in the
former, the expression following the operator is a subquery. This test is used
to compare a value from a row in the main query to a single value produced
by the subquery.

This query contains an example of a subquery comparison test

SELECT name, description, quantity
FROM product
WHERE quantity < 2 * (

SELECT avg (quantity)

FROM sales order items)

Name description quantity
Tee Shirt Tank Top 28
Baseball Cap Wool cap 12
Visor Cloth Visor 36
Visor Plastic Visor 28
Sweatshirt Hooded Sweatshirt 39
Sweatshirt Zipped Sweatshirt 32

The following subquery retrieves a single value — the average quantity of
items of each type per customer's order — from the sales_order_items table.

SELECT avg (quantity)
FROM sales order items

Then the main query compares the quantity of each in-stock item to that
value.

A subquery in a comparison test must return exactly one value. Consider this
query, whose subquery extracts two columns from the sales_order_items
table:

SELECT name, description, quantity

FROM product

WHERE quantity < 2 * (
SELECT avg (quantity), max (quantity)
FROM sales order items)

It returns the error
subquery allowed only one select list item

Similarly, this query returns multiple values from the quantity column — one
for each row in the sales_order_items table.

Chapter 7 Using Subqueries

The subquery must
appear to the right
of a comparison
operator

SELECT name, description, quantity
FROM product
WHERE quantity < 2 * (

SELECT quantity

FROM sales order items)

It returns the error
subquery cannot return more than one result

The subquery comparison test allows a subquery only on the right side of the
comparison operator. Thus the comparison

main-query-expression < subquery
is allowed, but the comparison
subquery < main-query-expression

is not.

165

Quantified comparison tests with ANY and ALL

Quantified comparison tests with ANY and ALL

The ANY test

Example

166

The quantified comparison test is broken into two categories, the ALL test
and the ANY test:

The ANY test is used in conjunction with one of the SQL comparison
operators (=, <>, <, <=, >, >=) to compare a single value to the column of
data values produced by the subquery. To perform the test, SQL uses the
specified comparison operator to compare the test value to each data value in
the column. If any of the comparisons yields a TRUE result, the ANY test
returns TRUE.

A subquery used with ANY must return a single column.

Find the customer and product ID's of those products that were ordered after
the first order of product #2005 was shipped.

SELECT id, cust_id

FROM sales order

WHERE order date > ANY (
SELECT ship date
FROM sales order items
WHERE 1d=2005)

id cust_id
2006 105
2007 106
2008 107
2009 108

In executing this query, the main query tests the order dates for each order
against the shipping dates of every order of product #2005. If an order date is
greater than the shipping date for one shipment of product #2005, then the id
and customer id from the sales_order table are displayed. The ANY test is
thus analogous to the OR operator: the above query can be read, "Was this
sales order placed after the first order of product #2005 was shipped, or after
the second order of product #2005 was shipped, or..."

Chapter 7 Using Subqueries

Understanding the
ANY operator

Notes about the
ANY operator

The ALL test

Example

The ANY operator can be a bit confusing. It is tempting to read the query as
"Return those orders which were placed after any orders of product #2005
were shipped". But this means that the query will return the order ID's and
customer ID's for the orders placed after a// orders of product #2005 were
shipped — which is not what the query does!

Instead, try reading the query like this: "Return the order ID's and customer
ID's for those orders which were placed after af least one order of product
#2005 were shipped." Using the keyword SOME may provide a more
intuitive way to phrase the query; the following query is equivalent to the
previous query.

SELECT id, cust_id

FROM sales order

WHERE order date > SOME (
SELECT ship date
FROM sales order items
WHERE 1d=2005)

The keyword SOME is equivalent to the keyword ANY.
There are two additional important characteristics of the ANY test:

¢ Empty subquery results If the subquery produces an empty column
of query results, the ANY test returns FALSE. This makes sense, as if
there are no results, then it is not true that at least one result satisfies the
comparison test.

¢ NULL values in column If the comparison test is not FALSE for any
data value in the column, and is NULL for one or more values, the ANY
search returns NULL. This is because in this situation, you cannot
conclusively state whether there is a value for the subquery for which
the comparison test holds; there may or may not be, depending on the
"correct" values for the NULL data.

Like the ANY test, the ALL test is used in conjunction with one of the six
SQL comparison operators (=, <>, <, <=, >, >=) to compare a single value to
the column of data values produced by the subquery. To perform the test,
SQL uses the specified comparison operator to compare the test value to
each data value in the column. If all of the comparisons yield TRUE results,
the ALL test returns TRUE.

Here is a request that is naturally handled with the ALL test: "Find the
customer and product ID's of those products that were ordered after all orders
of product #2001 were shipped.”

167

Quantified comparison tests with ANY and ALL

SELECT id, cust_id

FROM sales order

WHERE order date > ALL (
SELECT ship date
FROM sales order items
WHERE 1id=2001)

id cust_id
2002 102
2003 103
2004 104
2005 101

In executing this query, the main query tests the order dates for each order
against the shipping dates of every order of product #2001. If an order date is
greater than the shipping date for every shipment of product #2001, then the
id and customer id from the sales_order table are returned. The ALL test is
thus analogous to the AND operator: the above query can be read, "Was this
sales order placed before the first order of product #2001 was shipped, and
before the second order of product #2001 was shipped, and..."

Notes about the There are three additional important characteristics of the ALL test:

ALL operator ¢ Empty subquery results If the subquery produces an empty column

of query results, the ALL test returns TRUE. This makes sense, as if
there are no results, then it is true that the comparison test holds for
every value in the result set.

¢ NULL values in column If the comparison test is not FALSE for any
data value in the column, and is NULL for one or more values, the ALL
search returns NULL. This is because in this situation, you cannot
conclusively state whether the comparison test holds for every value in
the subquery result set; it may or may not, depending on the "correct"
values for the NULL data.

¢ Negating the ALL test The following expressions are not equivalent.
NOT a = ALL (subquery)

a <> ALL (subquery)

& This is explained in detail in "Quantified comparison test" on page
181.

168

Chapter 7 Using Subqueries

Testing set membership with IN conditions

Example

Negation of the set
membership test

Example

You can use the subquery set membership test to compare a value from the
main query to more than one value in the subquery.

The subquery set membership test compares a single data value for each row
in the main query to the single column of data values produced by the
subquery. If the data value from the main query matches one of the data
values in the column, the subquery returns TRUE.

Select the names of the employees who head the Shipping or Finance
departments:

SELECT emp fname, emp lname
FROM employee
WHERE emp id IN (
SELECT dept head id
FROM department
WHERE (dept name='Finance' or dept name =

'Shipping'))
emp_fname |emp_hame
David Scott
Jose Martinez

The subquery in this example

SELECT dept head id
FROM department
WHERE (dept name='Finance' OR dept name = 'Shipping')

extracts from the department table the id numbers that correspond to the
heads of the Shipping and Finance departments. The main query then returns
the names of the employees whose id numbers match one of the two found
by the subquery.

The subquery set membership test can also be used to extract those rows
whose column values are not equal to any of those produced by a subquery.
To negate a set membership test, insert the word NOT in front of the
keyword IN.

The subquery in this query returns the first and last names of the employees
that are not heads of the Finance or Shipping departments.

169

Testing set membership with IN conditions

SELECT emp fname, emp lname

FROM employee

WHERE emp_id NOT IN (
SELECT dept head id
FROM department

WHERE (dept name='Finance' OR dept name
'Shipping'))

170

Chapter 7 Using Subqueries

Existence test

Example

Explanation of the
existence test

Subqueries used in the subquery comparison test and set membership test
both return data values from the subquery table. Sometimes, however, you
are not concerned with which results the subquery returns, but simply with
whether the subquery returns any results. The existence test (EXISTS)
checks whether a subquery produces any rows of query results. If the
subquery produces one or more rows of results, the EXISTS test returns
TRUE; otherwise, it returns FALSE.

Here is an example of a request that can be expressed using a subquery:
"Which customers placed orders after July 13, 1994?"

SELECT fname, lname
FROM customer
WHERE EXISTS (
SELECT *
FROM sales order
WHERE (order date > '1994-07-13') AND (customer.id =
sales order.cust id))

fname Iname
Grover Pendelton
Ling Ling Andrews
Bubba Murphy
Almen de Joie

Here, for each row in the customer table, the subquery checks if that record's
customer ID corresponds to one that has placed an order after July 13, 1994.
If it does, the query extracts the first and last names of that customer from
the main table.

The EXISTS test does not use the results of the subquery; it just checks if the
subquery produces any rows. So the following two subqueries both produce
the same results:

SELECT *

FROM sales order

WHERE (order date > '1994-07-13') AND (customer.id
sales order.cust id)

SELECT ship date

FROM sales order

WHERE (order date > '1994-07-13"') AND (customer.id
sales order.cust id)

171

Existence test

Negating the
existence test

Correlated
subqueries

172

It does not matter which columns from the sales_order table appear in the
SELECT statement, though by convention, the "SELECT *" notation is used.

You can reverse the logic of the EXISTS test using the NOT EXISTS form.
In this case, the test returns TRUE if the subquery produces no rows, and
FALSE otherwise.

You may have noticed that the subquery contains a reference to the id
column from the customer table. References to columns or expressions in
the main table(s) are called outer references. Conceptually, SQL processes
the above query by going through the customer table, and performing the
subquery for each customer. If the order date in the sales_order table is after
July 13, 1994, and the customer ID in the customer and sales_order tables
match, then the first and last names from the customer table are displayed.
Since the subquery references the main query, the subquery in this section,
unlike those from previous sections, will return an error if you attempt to run
it by itself.

Chapter 7 Using Subqueries

Outer references

Description of an
outer reference

Within the body of a subquery, it is often necessary to refer to the value of a
column in the active row of the main query. Consider the following query:

SELECT name, description
FROM product
WHERE quantity < 2 * (
SELECT avg (quantity)
FROM sales order items
WHERE product.id = sales order items.prod id)

This query extracts the names and descriptions of the products whose in-
stock quantities are less than double the average ordered quantity of that
product — specifically, the product being tested by the WHERE clause in the
main query. The subquery does this by scanning the sales_order_items
table. But the product.id column in the WHERE clause of the subquery
refers to a column in the table named in the FROM clause of the main query
— not the subquery. As SQL moves through each row of the product table,
it uses the id value of the current row when evaluates the WHERE clause of
the subquery.

The product.id column in this subquery is an example of an outer
reference. A subquery that uses an outer reference is called a correlated
subquery. An outer reference is a column name that does not refer to any of
the columns in any of the tables in the FROM clause of the subquery.
Instead, the column name refers to a column of a table specified in the
FROM clause of the main query. As the above example shows, the value of a
column in an outer reference comes from the row currently being tested by
the main query.

173

Subqueries and joins

Subqueries and joins

Example

Replacing a
subquery with a
join

174

Many queries that make use of subqueries are automatically rewritten by the
subquery optimizer as joins.

Consider the request, "When did Mrs. Clarke and Suresh place their orders,
and by which sales representatives?" It can be handled by this query:

SELECT order date, sales rep
FROM sales order
WHERE cust id IN (

SELECT id

FROM customer

WHERE lname = 'Clarke' OR fname = 'Suresh')
order_date sales_rep
1994-01-05 1596
1993-01-27 667
1993-11-11 467
1994-02-04 195
1994-02-19 195
1994-04-02 299
1993-11-09 129
1994-01-29 690
1994-05-25 299

The subquery yields a list of customer ID's that correspond to the two
customers whose names are listed in the WHERE clause, and the main query
finds the order dates and sales representatives corresponding to those two
people's orders.

The same question can be answered using joins. Here is an alternative form
of the query, using a two-table join:

SELECT order date, sales rep

FROM sales order, customer

WHERE cust id=customer.id AND (lname = 'Clarke' OR fname
= 'Suresh')

This form of the query joins the sales_order table to the customer table to
find the orders for each customer, and then returns only those records for
Suresh and Mrs. Clarke.

Chapter 7 Using Subqueries

Some joins cannot
be written as
subqueries

Some subqueries
cannot be written
as joins

Both of these queries will find the correct order dates, and sales
representatives, and neither is more right than the other. Many people will
find the subquery form more natural, because the request doesn't ask for any
information about customer ID's, and because it might seem odd to join the
sales_order and customer tables together to answer the question. If,
however, the request is changed to include some information from the
customer table, the subquery form will no longer work. For example, the
request "When did Mrs. Clarke and Suresh place their orders, and by which
representatives, and what are their full names?", it is necessary to include the
customer table in the main WHERE clause:

SELECT fname, lname, order date, sales rep
FROM sales order, customer

WHERE cust id=customer.id AND (lname = 'Clarke' OR fname
= 'Suresh')
fname Iname order_date sales_rep
Belinda Clarke 1994-01-05 1596
Belinda Clarke 1993-01-27 667
Belinda Clarke 1993-11-11 467
Belinda Clarke 1994-02-04 195
Belinda Clarke 1994-02-19 195
Suresh Naidu 1994-04-02 299
Suresh Naidu 1993-11-09 129
Suresh Naidu 1994-01-29 690
Suresh Naidu 1994-05-25 299

Similarly, there are cases when a subquery will work, but a join will not. One
example is the following query:

SELECT name, description, quantity
FROM product
WHERE quantity < 2 * (

SELECT avg (quantity)

FROM sales order items)

name description quantity
Tee Shirt Tank Top 28
Baseball Cap Wool cap 12
Visor Cloth Visor 36

175

Subqueries and joins

In this case, the inner query is a summary query and the outer query is not, so
there is no way the two queries can be combined by a simple join.

& For more on joins, see. "Queries: Selecting Data from a Table" on page
85

176

Chapter 7 Using Subqueries

Nested subqueries

Examples

Explanation of the
nested subqueries

As we have seen, subqueries always appear in the HAVING clause or the
WHERE clause of a query. A subquery may itself contain a WHERE clause
and/or a HAVING clause, and, consequently, a subquery may appear in
another subquery. Subqueries inside other subqueries are called nested
subqueries.

List the product ID's and line ID's of those items that were shipped when any
item in the fees department was ordered.

SELECT id, line_ id
FROM sales order items
WHERE ship date = ANY (
SELECT order date
FROM sales order
WHERE fin code id IN (
SELECT code
FROM fin code

WHERE (description = 'Fees')))
Id line_id
2001 1
2001 2
2001 3
2002 1
2002 2

¢ In this example, the innermost subquery produces a column of financial
codes whose descriptions are "Fees":

SELECT code
FROM fin code
WHERE (description = 'Fees')

¢ The next subquery finds the order dates of the items whose codes match
one of the codes selected in the innermost subquery:

SELECT order date
FROM sales order
WHERE fin code id IN (subquery)

¢ Finally, the outermost query finds the product ID's and line ID's of the
items that were shipped on one of the dates found in the subquery.

177

Nested subqueries

SELECT id, line_ id
FROM sales order items
WHERE ship date = ANY (subquery)

Nested subqueries can also have more than three levels. Though there is no
maximum number of levels, queries with three or more levels take
considerably longer to run than do smaller queries.

178

Chapter 7 Using Subqueries

How subqueries work

Understanding which queries are valid and which ones aren't can be
complicated when a query contains a subquery. Similarly, figuring out what
a multi-level query does can also be very involved, and it helps to understand
how SQL processes subqueries. For general information about how queries
are processed, see "Summarizing, Grouping, and Sorting Query Results" on
page 109

Correlated subqueries

Uncorrelated
subqueries

Correlated
subqueries

In a simple query, SQL evaluates and processes the query's WHERE clause
once for each row of the query. Sometimes, though, the subquery returns
only one result, making it unnecessary for SQL to evaluate it more than once
for the entire result set.

Consider this query:

SELECT name, description

FROM product

WHERE quantity < 2 * (
SELECT avg (quantity)
FROM sales order items)

In this example, the subquery calculates exactly one value: the average
quantity from the sales_order_items table. In evaluating the query, SQL
computes this value once, and compares each value in the quantity field of
the product table to it to determine whether the corresponding row is
selected.

When a subquery contains an outer reference, this shortcut can no longer be
used. For instance, the subquery in the query

SELECT name, description
FROM product
WHERE quantity < 2 * (
SELECT avg (quantity)
FROM sales order items
WHERE product.id=sales order items.prod id)

returns a value that is dependent upon the active row in the product table.
Such subqueries are called correlated subqueries. In these cases, there the
subquery might return a different value for each row of the outer query,
making it necessary for SQL to perform more than one evaluation.

179

How subqueries work

Converting subqueries in the WHERE clause to joins

In general, a query that uses joins is executed faster than is a multi-level
query. For this reason, whenever possible, the Adaptive Server Anywhere
query optimizer will convert a multi-level query to a query that uses joins.
The conversion is carried out without any user action. This section describes
which subqueries can be converted to joins so that you can understand the
performace of queries in your database.

Example The question "When did Mrs. Clarke and Suresh place their orders, and by
which sales representatives?" can be written as a two-level query:

SELECT order date, sales rep
FROM sales order
WHERE cust id IN (
SELECT id
FROM customer
WHERE lname = 'Clarke' OR fname = 'Suresh')

An alternate, and equally correct way to write the query uses joins:

SELECT fname, lname, order date, sales rep

FROM sales order, customer

WHERE cust id=customer.id AND (lname = 'Clarke' OR fname
= 'Suresh')

The criteria that must be satisfied in order for a multi-level query to be able
to be rewritten with joins differ for the various types of operators. Recall that
when a subquery appears in the query's WHERE clause, it is of the form

SELECT select-list

FROM fable

WHERE [NOT] expression comparison-operator (subquery) |
[NOT] expression comparison-operator ANY / SOME

(subgquery) |

[NOT] expression comparison-operator ALL (subquery) |
[NOT] expression IN (subquery) |
[NOT] EXISTS (subquery)

GROUP BY group-by-expression

HAVING search-condition

Whether a subquery can be converted to a join depends on a number of
factors, such as the type of operator and the structure of the query.

180

Chapter 7 Using Subqueries

Comparison operators

Example

A subquery that follows a comparison operator (=, <>, <, <=, >, >=) must
satisfy certain conditions if it is to be converted into a join. Subqueries that
follow comparison operators in general are valid only if they return exactly
one value for each row of the main query. In addition to this criterion, a
subquery is converted to a join only if

¢ It does not contain a GROUP BY clause

¢ It does not contain the keyword DISTINCT
¢ Itis nota UNION query

¢ Itis not an aggregate query

Suppose the request "When were Suresh's products ordered, and by which
sales representative?" were phrased as the subquery

SELECT order date, sales rep
FROM sales order
WHERE cust id = (

SELECT id

FROM customer

WHERE fname = 'Suresh')

This query satisfies the criteria, and therefore, it would be converted to a
query that uses a join:

SELECT order date, sales rep

FROM sales order

WHERE cust id=customer.id AND (lname = 'Clarke' OR fname
= 'Suresh')

However, the request, "Find the products whose in-stock quantities are less
than double the average ordered quantity" cannot be converted to a join, as
the subquery contains the aggregate function AVG:

SELECT name, description

FROM product

WHERE quantity < 2 * (
SELECT avg (quantity)
FROM sales order items)

Quantified comparison test

A subquery that follows one of the keywords ALL, ANY and SOME is
converted into a join only if it satisfies certain criteria.

¢ The subquery does not contain a GROUP BY clause
¢ The subquery does not contain the keyword DISTINCT

181

How subqueries work

Example

A subquery with
the ALL operator
that can be
converted to a join

182

¢ The subquery is not a UNION query
¢ The subquery is not an aggregate query

¢ Ifthe subquery follows the keywords ANY or SOME, it must not be
negated; if it follows the keyword ALL, it must be negated.

The first four of these conditions are relatively straightforward.

The request "When did Mrs. Clarke and Suresh place their orders, and by
which sales representatives?" can be handled in subquery form:

SELECT order date, sales rep
FROM sales order
WHERE cust id = ANY (
SELECT id
FROM customer
WHERE lname = 'Clarke' OR fname = 'Suresh')

Alternately, it can be phrased in join form

SELECT fname, lname, order date, sales rep

FROM sales order, customer

WHERE cust id=customer.id AND (lname = 'Clarke' OR fname
= 'Suresh')

However, request, "When did Mrs. Clarke, Suresh, and any employee who is
also a customer, place their orders?" would be phrased as a union query, and
thus cannot be converted to a join:

SELECT order date, sales rep
FROM sales order
WHERE cust id = ANY (
SELECT id
FROM customer
WHERE Ilname = 'Clarke' OR fname = 'Suresh'
UNION
SELECT id
FROM employee)

Similarly, the request "Find the customer and product ID's of those products
that were not ordered after all orders of product #2001 were shipped," is
naturally expressed with a subquery

SELECT id, cust_id

FROM sales order

WHERE NOT order date > ALL (
SELECT ship date
FROM sales order items
WHERE 1d=2001)

It would be converted to the join:

Chapter 7 Using Subqueries

Negating
subqueries with the
ANY and ALL
operators

Logical
equivalence of
ANY and ALL
expressions

SELECT sales order.id, cust id

FROM sales order, sales order items

WHERE (sales_order items.id=2001) and (order date <=
ship date)

However, the request "Find the customer and product ID's of those products
that were not shipped after the first shipping dates of all the products" would
be phrased as the aggregate query

SELECT id, Custiid

FROM sales order

WHERE NOT order date > ALL (
SELECT first (ship date)
FROM sales order items)

Therefore, it would not be converted to a join.
The fifth criterion is a little more puzzling: queries of the form

SELECT select-list
FROM fable
WHERE [NOT] expression comparison-operator ALL (subquery)

are converted to joins, as are queries of the form

SELECT select-list
FROM table
WHERE expression comparison-operator ANY (subquery)

but the queries

SELECT select-list
FROM fable
WHERE expression comparison-operator ALL (subquery)

and

SELECT select-list
FROM fable
WHERE NOT expression comparison-operator ANY (subquery)

are not.

This is because the first two queries are in fact equivalent, as are the last two.
Recall that the any operator analogous to the or operator, but with a variable
number of arguments; and that the ALL operator is similarly analogous to
the AND operator. Just as the expression

NOT ((> A) AND (> B))
is equivalent to the expression
(<= A) OR (<= B)

the expression

183

How subqueries work

NOT order date > ALL (
SELECT first (ship date)
FROM sales order items)

is equivalent to the expression

order date <= ANY (
SELECT first (ship date)
FROM sales order items)

Negating the ANY In general, the expression
and ALL

X NOT column-name operator ANY (subquery)
expressions

is equivalent to the expression

column-name inverse-operator ALL (subquery)
and the expression

NOT column-name operator ALL (subquery)
is equivalent to the expression

column-name inverse-operator ANY (subquery)

where inverse-operator is obtained by negating operator, as shown in the

table:
Table of operators The following table lists the inverse of each operator.
and their inverses

Operator inverse-operator

= <>

< ==

> =<

=< >

== <

<> =

Set membership test

A query containing a subquery that follows the keyword IN is converted into
a join only if:

¢ The subquery does not contain a GROUP BY clause
¢ The subquery does not contain the keyword DISTINCT
¢ The subquery is not a UNION query

184

Chapter 7 Using Subqueries

Example

A UNION query
following the IN
operator can't be
converted

¢ The subquery is not an aggregate query
¢ The subquery must not be negated

So, the request "Find the names of the employees who are also department
heads", which is expressed by the query

SELECT emp fname, emp lname
FROM employee
WHERE emp id IN (
SELECT dept head id
FROM department
WHERE (dept name='Finance' or dept name =
'Shipping'))

would be converted to a joined query, as it satisfies the conditions; however,
the request, "Find the names of the employees who are also either
department heads or customers" would not be converted to a join if it were
expressed by the UNION query

SELECT emp fname, emp lname
FROM employee
WHERE emp id IN (
SELECT dept head id
FROM department
WHERE (dept name='Finance' or dept name = 'Shipping')
UNION
SELECT cust id
FROM sales order)

Similarly, the request "Find the names of employees who are not department
heads" is formualted as the negated subquery

SELECT emp fname, emp lname
FROM employee
WHERE NOT emp_id IN (
SELECT dept head id
FROM department
WHERE (dept name='Finance' OR dept name =
'Shipping'))

and would not be converted.

The conditions that must be fulfilled in order for a subquery that follows the
must be fulfilled in order for a subquery that follows the must be fulfilled in
order for a subquery that follows the IN keyword to be converted to a join
are identical to those that must be fulfilled in order for a subquery that
follows the ANY keyword to be converted. This is not a coincidence, and the
reason for this is that the expression

185

How subqueries work

) WHERE column-name IN (subquery)
A query with an IN

operator can be is logically equivalent to the expression
cqnverted to one WHERE column-name = ANY (subquery)
with an ANY

operator So the query

SELECT emp fname, emp lname
FROM employee
WHERE emp id IN (
SELECT dept head id
FROM department
WHERE (dept name='Finance' or dept name =
'Shipping'))

is equivalent to the query

SELECT emp fname, emp lname
FROM employee
WHERE emp id = ANY (
SELECT dept head id
FROM department
WHERE (dept name='Finance' or dept name =
'Shipping'))
Conceptually, SQL converts a query with the IN operator to one with an

ANY operator, and decides accordingly whether to convert the subquery to a
join.

Existence test

A subquery that follows the keyword EXISTS is converted to a join only if it
satisfies the following two conditions:

¢ The subquery is not negated
¢ The subquery is correlated; that is, it contains an outer reference.

Example Therefore, the request, "Which customers placed orders after July 13,
1994?", which can be formulated by this query whose non-negated subquery
subquery contains the outer reference customer.id = sales_order.cust_id,
could be converted to a join.

SELECT fname, lname
FROM customer
WHERE EXISTS (
SELECT *
FROM sales order
WHERE (order date > '1994-07-13') AND (customer.id =
sales order.cust id))

186

Chapter 7 Using Subqueries

The EXISTS keyword essentially tells SQL to check for NULLs. When inner
joins are used, SQL automatically only displays the rows in which there is
data from all of the tables in the FROM clause; that is, SQL only returns the
rows that do not contain NULLSs. So this query returns the same rows as does
the one with the subquery:

SELECT fname, lname

FROM customer, sales order

WHERE (sales order.order date > '1994-07-13') AND
(customer.id = sales order.cust id).

187

How subqueries work

188

