CHAPTER 8

Adding, Changing, and Deleting Data

About this chapter This chapter describes how to modify the data in a database.

Most of the chapter is devoted to the INSERT, UPDATE, and DELETE
statements. Statements for bulk loading and unloading are also described.

Contents

Topic Page
Data modification statements 190
Adding data using INSERT 191
Changing data using UPDATE 195
Deleting data using DELETE 197

189

Data modification statements

Data modification statements

The statements you use to add, change, or delete data are called data
modification statements. The most common such statements are as follows:

¢ Insert adds new rows to a table.
¢ Update changes existing rows in a table.

¢ Delete removes specific rows from a table.

Any single INSERT, UPDATE, or DELETE statement changes the data in
only one table or view.

In addition to the common statements, the LOAD TABLE and TRUNCATE
TABLE statements are designed especially for bulk loading and deleting of
data.

Sometimes, the data modification statements are collectively called the data
modificaton language (DML) part of SQL.

Permissions for data modification

You can only execute data modification statements if you have the proper
permissions on the database tables you are modifying. The database
administrator and the owners of database objects use the GRANT and
REVOKE statements to decide who has access to which data modification
functions.

& Permissions can be granted to individual users, groups, or the public
group. For more information on permissions, see "Managing User IDs and
Permissions" on page 575.

Transactions and data modification

190

When data is modified, a copy of the old and new state of each row affected
by each data modification statement is written to the transaction log. This
means that if you begin a transaction, realize you have made a mistake, and
roll the transaction back, the database can be restored to its previous
condition.

& For more information about transactions, see "Using Transactions and
Locks" on page 367.

Chapter 8 Adding, Changing, and Deleting Data

Adding data using INSERT

INSERT using
values

INSERT from
SELECT

You add rows to the database using the INSERT statement. The INSERT
statement has two forms: you can use the VALUES keyword or a SELECT
statement:

The VALUES keyword specifies values for some or all of the columns in a
new row. A simplified version of the syntax for the INSERT statement using
the VALUES keyword is:

INSERT [INTO] table-name [(column-name, ...)]
VALUES (expression , ...)

You can omit the list of column names if you provide a value for each
column in the table, in the order in which they appear when you execute a
query using SELECT *.

You can use a SELECT statement in an INSERT statement to pull values
from one or more tables. A simplified version of the syntax for the insert
statement using a select statement is:

INSERT [INTO] table-name (column-name, ...)
select-statement

Inserting values into all columns of a row

Notes

The following INSERT statement adds a new row to the department table,
giving a value for every column in the row:

INSERT INTO department
VALUES (702, 'Eastern Sales', 902)

¢ The values are entered in the same order as the column names in the
original CREATE TABLE statement, that is, first the ID number, then
the name, then the department head ID.

¢ The values are surrounded by parentheses.
¢ All character data is enclosed in single quotes.

¢ Youneed to use a separate insert statement for each row you add.

Inserting values into specific columns

You can add data to some columns in a row by specifying only those
columns and their values. All other columns that are not included in the
column list must be defined to allow NULL or must have defaults. If you
skip a column that has a default value, the default is used.

191

Adding data using INSERT

Values for
unspecified
columns

Restricting column
data using
constraints

Explicitly inserting
NULL

Using defaults to
supply values

192

Adding data in only two columns, for example, dept_id and dept name,
requires a statement like this:

INSERT INTO department (dept id, dept name)
VALUES (703, 'Western Sales')

The dept_head_id column has no default, but can allow NULL. A NULL is
assigned to that column.

The order in which you list the column names must match the order in which
you list the values. The following example produces the same results as the
previous one:

INSERT INTO department (dept name, dept id)
VALUES ('Western Sales', 703)

When you specify values for only some of the columns in a row, one of four
things can happen to the columns with no values specified:

¢ NULL is entered This occurs if the column allows NULL and no
default value exists for the column.

¢ A default value is entered This occurs if a default exists for the
column.

¢ A unique, sequential value is entered This occurs if the column has
the AUTOINCREMENT default or the IDENTITY property.

¢ The INSERT is rejected and an error message is displayed This
occurs if the column does not allow NULL and no default exists.

By default, columns allow NULL unless you explicitly state NOT NULL in
the column definition when creating tables. You can alter the default using
the ALLOW NULLS BY DEFAULT option.

You can create constraints for a column or user-defined data type.
Constraints govern the kind of data that can or cannot be added.

& For information on constraints, see "Using table and column
constraints" on page 356.

You can explicitly insert NULL into a column by entering NULL. Do not
enclose this in quotes, or it will be taken as a string.

For example, the following statement explicitly inserts NULL into the
dept_head_id column:

INSERT INTO department
VALUES (703, 'Western Sales', NULL)

You can define a column so that, even though no value is inserted into the
column, a default value is automatically filled in whenever a row is inserted.
You do this by supplying a default for the column.

Chapter 8 Adding, Changing, and Deleting Data

& For information about defaults, see "Using column defaults" on page
352.

Adding new rows with SELECT

Example

Inserting data into
some columns

Inserting Data from
the Same Table

To pull values into a table from one or more other tables, you can use a
SELECT clause in the INSERT statement. The select clause can insert values
into some or all of the columns in a row.

Inserting values for only some columns can come in handy when you want to
take some values from an existing table. Then, you can use update to add the
values for the other columns.

Before inserting values for some, but not all, columns in a table, make sure
that a default exists or that NULL has been specified for the columns for
which you are not inserting values. Otherwise, an error is generated.

When you insert rows from one table into another, the two tables must have
compatible structures—that is, the matching columns must be either the same
data types or data types between which Adaptive Server automatically
converts.

If the columns are in the same order in their create table statements, you do
not need to specify column names in either table. Suppose you have a table
named newproduct that contains some rows of product information in the
same format as in the product table. To add to product all the rows in
newproduct:

INSERT product
SELECT *
FROM newproduct

You can use expressions in a SELECT statement inside an INSERT
statement.

You can use the SELECT statement to add data to some, but not all, columns
in a row just as you do with the VALUES clause. Simply specify the
columns to which you want to add data in the INSERT clause.

You can insert data into a table based on other data in the same table.
Essentially, this means copying all or part of a row.

For example, you can insert new items into the product table that are based
on existing products. The following statement adds new Extra Large Tee
Shirts (of Tank Top, V-neck, and Crew Neck varieties) into the product
table. The identification number is ten greater than the existing sized shirt:

INSERT INTO product
SELECT id+ 10, name, description,
'Extra large', color, 50, unit price

193

Adding data using INSERT

FROM product
WHERE name = 'Tee Shirt'

194

Chapter 8 Adding, Changing, and Deleting Data

Changing data using UPDATE

UPDATE syntax

You can use the UPDATE statement to change single rows, groups of rows,
or all rows in a table. The UPDATE statement is followed by the name of the
table or view. As in all data modification statements, you can change the data
in only one table or view at a time.

The UPDATE statement specifies the row or rows you want changed and the
new data. The new data can be a constant or an expression that you specify
or data pulled from other tables.

If an UPDATE statement violates an integrity constraint, the update does not
take place and an error message is generated. The update is canceled, for
example, if one of the values being added is the wrong data type, or if it
violates a constraint that has been defined for one of the columns or data
types involved.

A simplified version of the UPDATE syntax is:

UPDATE table-name
SET column_name = expression
WHERE search-condition

If the company Newton Ent. (in the customer table of the sample database) is
taken over by Einstein, Inc., you can update the name of the company using a
statement such as the following:

UPDATE customer
SET company name = 'Einstein, Inc.'
WHERE company name = 'Newton Ent.'

You can use any expression in the WHERE clause. If you are not sure how
the company name was entered, you could try updating any company called
Newton, with a statement such as the following:

UPDATE customer
SET company name = 'Einstein, Inc.'
WHERE company name LIKE 'Newton%'

The search condition need not refer to the column being updated. The
company ID for Newton Entertainments is 109. As the ID value is the
primary key for the table, you could be sure of updating the correct row
using the following statement:

UPDATE customer
SET company name = 'Einstein, Inc.
WHERE id = 109

195

Changing data using UPDATE

The SET clause

The WHERE
clause

The FROM clause

196

The SET clause specifies the columns to be updated, and their new values.
The WHERE clause determines the row or rows are to be updated. If you do
not have a WHERE clause, the specified columns of all rows are updated
with the values given in the SET clause.

You can provide any expression of the correct data type in the SET clause.

The WHERE clause specifies the rows to be updated. For example, the
following statement replaces the One Size Fits All Tee Shirt with an Extra
Large Tee Shirt

UPDATE product

SET size = 'Extra Large'
WHERE name = 'Tee Shirt'
AND size = 'One Size Fits All'

You can use a FROM clause to pull data from one or more tables into the
table you are updating.

Chapter 8 Adding, Changing, and Deleting Data

Deleting data using DELETE

The WHERE
clause

The FROM clause

Example

Simple DELETE statements have the following form:

DELETE [FROM] fable-name
WHERE column-name = expression

You can also use a more complex form, as follows

DELETE [FROM] fable-name
FROM table-list
WHERE search-condition

The WHERE clause specifies which rows are to be removed. If no WHERE
clause is given in the DELETE statement, all rows in the table are removed.

The FROM clause in the second position of a DELETE statement is a special
feature allowing you to select data from a table or tables and delete
corresponding data from the first-named table. The rows you select in the
FROM clause specify the conditions for the delete.

This example uses the sample database. To execute the statements in the
example, you should set the option WAIT FOR_COMMIT to OFF. The
following statement does this for the current connection only:

SET TEMPORARY OPTION WAIT FOR COMMIT = 'OFF'

This allows rows to be deleted even if they contain primary keys referenced
by a foreign key, but does not permit a COMMIT unless the corresponding
foreign key is deleted also.

The following view displays products and the value of that product that has
been sold:

CREATE VIEW ProductPopularity as
SELECT product.id,
SUM (product.unit price * sales order items.quantity)
as "Value Sold"
FROM product JOIN sales order items
ON product.id = sales order items.prod id
GROUP BY product.id

Using this view, you can delete those products which have sold less than
$20,000 from the product table.

DELETE

FROM product

FROM product NATURAL JOIN ProductPopularity
WHERE "Value Sold" < 20000

You should roll back your changes when you have completed the example:

ROLLBACK

197

Deleting data using DELETE

Deleting all rows from a table

TRUNCATE
TABLE syntax

198

You can use the TRUNCATE TABLE statement as a fast method of deleting
all the rows in a table. It is faster than a DELETE statement with no
conditions, because the delete logs each change, while truncate table
operations are not recorded individually in the transaction log.

The table definition for a table emptied with the TRUNCATE TABLE
statement remains in the database, along with its indexes and other
associated objects, unless you enter a DROP TABLE statement.

You cannot use TRUNCATE TABLE if another table has rows that
reference it through a referential integrity constraint. Delete the rows from
the foreign table, or truncate the foreign table and then truncate the primary
table.

The syntax of truncate table is:
TRUNCATE TABLE fable-name

For example, to remove all the data in the sales_order table, type the
following;:

TRUNCATE TABLE sales order

A TRUNCATE TABLE statement does not fire triggers defined on the table.

