CHAPTER 9

Using SQL in Applications

About this chapter Previous chapters have described SQL statements as you execute them in
Interactive SQL or in some other interactive utility.

When you include SQL statements in an application there are other questions
you need to ask. How are query result sets handled in your application? How
can you make your application efficient?

While many aspects of database application development depend on your
application development tool, database interface, and programming
language, there are some common problems and principles. These are
discussed in this chapter.

Contents .
Topic Page
Executing SQL statements in applications 200
Preparing statements 202
Introduction to cursors 205
Types of cursor 208
Working with cursors 211
Describing result sets 216
Controlling transactions in applications 218

199

Executing SQL statements in applications

Executing SQL statements in applications

200

The way you include SQL statements in your application depends on the
application development tool and programming interface you are using. This
chapter describes some principles common to most or all interfaces and
provides a few pointers for more information. It does not provide a detailed
guide for programming using any one interface.

¢

ODBC Ifyou are writing directly to the ODBC programming interface,
your SQL statements appear in function calls. For example, the
following C function call executes a DELETE statement:

SQLExecDirect (stmt,
"DELETE FROM employee
WHERE emp id = 105",
SQL_NTS);

JDBC Ifyou are using the JDBC programming interface, you can
execute SQL statements by invoking methods of the statement
object. For example:

stmt.executeUpdate (
"DELETE FROM employee
WHERE emp id = 105");

Embedded SQL If you are using Embedded SQL, you prefix your C
language SQL statements with the keyword EXEC SQL. The code is
then run through a preprocessor before it is compiled. For example:

EXEC SQL EXECUTE IMMEDIATE
'DELETE FROM employee
WHERE emp id = 105';

Sybase Open Client If you are using the Sybase Open Client
interface, your SQL statements appear in function calls. For example,
the following pair of calls executes a DELETE statement:

ret = ct command(cmd, CS LANG CMD,
"DELETE FROM employee
WHERE emp id=105"
CS_NULLTERM,
CS_UNUSED) ;
ret = ct send(cmd) ;

Application Development Tools Application development tools such
as the members of the Powersoft PowerStudio family provide their own
SQL objects, which use either ODBC (PowerBuilder, Power++) or
JDBC (Power J) under the covers.

Chapter 9 Using SQL in Applications

&~ For more
information

Applications inside
the server

For detailed information on how to include SQL in your application, see your
development tool documentation. If you are using ODBC or JDBC, consult
the software development kit for those interfaces.

For a detailed description of Embedded SQL programming, see "The
Embedded SQL Interface" on page 7 of the book Adaptive Server Anywhere
Programming Interfaces Guide.

In many ways, stored procedures and triggers act as applications or parts of
applications running inside the server. You can use many of the techniques
here in stored procedures also. Stored procedures use statements that are very
similar to Embedded SQL.

& For information about stored procedures and triggres, see "Using
Procedures, Triggers, and Batches" on page 221.

Java classes in the database can use the JDBC interface in just the same way
as Java applications outside the server. This chapter discusses some aspects
of JDBC. For other information on using JDBC, see "Data Access Using
JDBC" on page 503.

201

Preparing statements

Preparing statements

Prepared
statements can
improve
performance

Do not prepare
statements that are
used only once

202

Each time a statement is sent to a database, the server has to carry out several
tasks:

¢ Parse the statement and transforms it into an internal form

¢ Verify the correctness of all references to database objects, checking that
columns named in a query exist, for example.

¢ Ifthe statement involves joins or subqueries, the query optimizer
generates an access plan.

¢ After all these steps have been carried out, the server can execute the
statement.

The steps prior to actually executing a statement are called preparing the
statement.

If you are using the same statement repeatedly, such as to insert many rows
into a table, there is a significant and unnecessary overhead associated with
repeatedly preparing the statement.

Some database programming interfaces provide ways of using prepared
statements. Generally, using these methods requires the following steps:

1 Prepare the statement In this step you generally provide the
statement with some placeholder character instead of the values.

2 Repeatedly execute the prepared statement In this step you supply
values to be used each time the statement is executed. The statement
does not have to be prepared each time.

3 Drop the statement In this step you free the resources associated with
the prepared statement. Some programming interfaces handle this step
automatically.

In general, you should not prepare statements if they are to be executed only
once. There is a slight performance penalty for separate preparation and
execution, and it introduces an unnecessary complexity into your application.

In some interfaces, however, you do need to prepare a statement in order to
associate it with a cursor. For information about cursors, see "Introduction to
cursors" on page 205.

The calls for preparing and executing statements are not a part of SQL, and
they differ from interface to interface. Each of the Adaptive Server
Anywhere programming interfaces provides a method for using prepared
statements.

Chapter 9 Using SQL in Applications

How to use prepared statements

This section provides a brief overview of how to use prepared statements.

< To use a prepared statement:
1 Prepare the statement.

2 Set up bound parameters, which will be used to hold values in the
statement.

Assign values to the bound parameters in the statement.
Execute the statement.

Repeat steps 3 and 4 as needed.

AN Wn A W

Drop the statement when finished. This step is not required in JDBC, as
Java's garbage collection mechanisms handle the problem for you.

The general procedure is the same, but the details vary from interface to
interface. Comparing how you use prepared statements in different interfaces
illustrates this point.

Using prepared .
% To use a prepared statement in ODBC:

statements in *
OoDBC 1 Prepare the statement using SQLPrepare.
2 Bind statement parameters using SQLBindParameter.
3 Execute the statement using SQLExecute.
4 Drop the statement using SQLFreeStmt.
& For more information, see "Using prepared statements in ODBC" on
page 133 of the book Adaptive Server Anywhere Programming Interfaces
Guide and the ODBC SDK documentation.
To use a prepared You can use prepared statements with JDBC both from a client application
statement with and inside the server.
JDBC

.

% To use a prepared statement in JDBC:

1 Prepare the statement using the prepareStatement method of the
connection object. This returns a prepared statement object.

2 Set statement parameters using the appropriate set7ype methods of the
prepared statement object. Here, Type is the data type being assigned.

3 Execute the statement using the appropriate method of the prepared
statement object. For inserts, updates, and deletes this is the
executeUpdate method.

203

Preparing statements

& For more information on using prepared statements in JDBC, see
"Using prepared statements for more efficient access" on page 520.

To use a prepared . .
« To use a prepared statement in Open Client:

statement with
SYbase Open 1 Prepare the statement using the ct _dynamic function, with a
Client CS_PREPARE type parameter.

2 Set statement parameters using ct_param.

3 Execute the statement using ct_dynamic with a CS_EXECUTE type
parameter.

4 Free the resources associated with the statement using ct _dynamic
with a CS_ DEALLOC type parameter.

& For more information on using prepared statements in Open Client, see
"Using SQL in Open Client applications" on page 149 of the book Adaptive
Server Anywhere Programming Interfaces Guide.

204

Chapter 9 Using SQL in Applications

Introduction to cursors

When you execute a query in an application, the result set consists of a
number of rows. In general, you do not know how many rows you are going
to receive before the query is executed. Cursors provide a way of handling
query result sets in applications.

The way you actually use cursors, and the kinds of cursor available to you,
depends on the programming interface you are using. JDBC 1.0 does not
provide more than rudimentary handling of result sets, while ODBC and
Embedded SQL have many different kinds of cursor. Open Client cursors are
limited to moving forward through a result set.

& For information on the kinds of cursor available through different
programming interfaces, see "Availability of cursors" on page 208.

What is a cursor?

A cursor is a symbolic name that is associated with a SELECT statement or
stored procedure that returns a result set. It consists of the following parts:

¢ Cursorresult set The set of rows resulting from the execution of a
query that is associated with the cursor

¢ Cursor position A pointer to one row within the cursor result set

You can think of a cursor as a handle on the result set of a SELECT
statement. It enables you to examine and possibly manipulate one row at a
time. In Adaptive Server Anywhere, cursors support forward and backward
movement through the query results.

205

Introduction to cursors

Absolute row Absolute row
from start from end
0 Before first row -n-1
1 -n
2 -n+1
3 -n +2
n-2 -3
n-1 -2
-1
After last row
n+1 0

What you can do with cursors

With cursors, you can do the following:

¢
¢
¢

Loop over the results of a query.
Carry out inserts, updates, and deletes at any point within a result set.

Some programming interfaces allow you to use special features to tune
the way in which result sets are returned to your application. This can
provide substantial performance benefits for your application

Steps in using a cursor

The steps in using a cursor in Embedded SQL are different from in other
interfaces.

% To use a cursor in ODBC or Open Client:

1

206

Execute a statement Execute a statement using the usual method for
the interface. You can prepare and then execute the statement, or you
can execute the statement directly.

Test to see if the statement returns a result set A cursor is
implicitly opened when a statement that creates a result set is executed.
When the cursor is opened, it is positioned before the first row of the
result set.

Chapter 9 Using SQL in Applications

Prefetching rows

Fetch results A simple fetch operations moves the cursor to the next
row in the result set. Adaptive Server Anywhere permits more
complicated movement around the result set using fetches. Which of
these you can use depends on the programming interface you are using:
not all interfaces support advanced cursor-handling operations.

Close the cursor When you have finished with the cursor, you close it
to free resources associated with it.

Free the statement If you used a prepared statement, free it to reclaim
memory.

<+ To use a cursor in Embedded SQL:

1

Prepare a statement Cursors generally use a statement handle rather
than a string. You need to prepare a statement in order to have a handle
available.

Declare the cursor Each cursor refers to a single SELECT statement.
When you declare a cursor, you state the name of the cursor and the
statement it refers to.

Open the cursor Opening the cursor executes the query up to the
point where the first row is about to be obtained.

Fetch results A simple fetch operations moves the cursor to the next
row in the result set. Adaptive Server Anywhere permits more
complicated movement around the result set using fetches. Which of
these you can use depends on the programming interface you are using:
not all interfaces support advanced cursor-handling operations.

Close the cursor When you have finished with the cursor, you close
it.

Reclaim memory To free the memory associated with the cursor and
its associated statement you need to free the statement.

In some cases, the interface library may carry out performance optimizations
under the covers (such as prefetching results) so that these steps in the client
application may not correspond exactly to software operations:

207

Types of cursor

Types of cursor

You can use one of several kinds of cursor in Adaptive Server Anywhere.
You must choose from among these cursor types when you declare the
cursor.

¢

Unique cursors When a cursor is declared unique, the query is forced
to return all the columns required to uniquely identify each row. Often
this means ensuring that all the columns in the primary key are returned.
Any columns required but not specified are added to the result set.

Read only cursors A cursor declared as read only may not be used in
an UPDATE (positioned) or a DELETE (positioned) operation.

No scroll cursors When a cursor is declared NO SCROLL, fetching
operations are restricted to fetching the next row or the same row again.

Dynamic scroll cursors With dynamic scroll cursors you can carry
out more flexible fetching operations. You can move backwards and
forwards in the result set, or move to an absolute position.

Scroll cursors These are similar to dynamic scroll cursors, but behave
differently when the rows in the cursor are modified or deleted after the
first time the row is read. Scroll cursors have more predictable behavior
when changes happen.

Insensitive cursors Also called static cursors in ODBC.

A cursor declared insensitive has its membership fixed when it is
opened; a temporary table is created with a copy of all the original rows.
Fetching from an insensitive cursor does not see the effect of any other
operation from a different cursor. It does see the effect of operations on
the same cursor. Also, insensitive cursors are not affected by
ROLLBACK or ROLLBACK TO SAVEPOINT; these are not
operations on the cursor that change the cursor contents.

It is easier to write an application using insensitive cursors, since you
only have to worry about changes you make explicitly to the cursor. You
do not have to worry about actions taken by other users or by other parts
of your application.

Insensitive cursors can be expensive if the cursor is on many rows.

Availability of cursors

Not all interfaces provide support for all kinds of cursors.

208

Chapter 9 Using SQL in Applications

¢ JDBC does not use cursors, although the ResultSet object does have
anext method that allows you to scroll through the results of a query
in the client application.

¢ ODBC supports all the kinds of cursors.

ODBC provides a cursor type called a block cursor. When you use a
block cursor, you can use SQLFetch or SQLExtendedFetch to
fetch a block of rows, rather than a single row.

¢ Embedded SQL supports all available cursors.

¢ Sybase Open Client does not support scrollable (Scroll or Dynamic
Scroll) cursors. Also, using updateable cursors that are not unique has a
severe performance penalty.

Choosing a cursor type

Example

Each row fetched in a scroll cursor is remembered. If one of these rows is
deleted, either by your program or by another connection, it creates a "hole"
in the cursor. If you fetch the row at this "hole" with a SCROLL cursor, an
error is returned indicating that there is no current row, and the cursor is left
positioned on the "hole". In contrast, a dynamic scroll cursor just skips the
"hole" and retrieves the next row. Scroll cursors remember row positions
within a cursor, so that your application can be assured that these positions
will not change.

For example, an application could remember that Cobb is the second row in
the cursor for the following query:

SELECT emp lname
FROM employee

If the first employee (Whitney) is deleted while the scroll cursor is still open,
a FETCH ABSOLUTE 2 will still position on Cobb while FETCH
ABSOLUTE 1 will return an error. Similarly, if the cursor is on Cobb,
FETCH PREVIOUS will return SQLE NO CURRENT ROW.

In addition, a fetch on a SCROLL cursor returns a warning if the row has
changed since it was last read. The warning only happens once; fetching the
same row a third time will not produce the warning.

Similarly, an UPDATE (positioned) or DELETE (positioned) statement on a
row that has been modified since it was last fetched returns an error. An
application must fetch the row again before the UPDATE or DELETE is
permitted.

209

Types of cursor

210

An update to any column will cause the warning/error, even if the column is
not referenced by the cursor. For example, a cursor on a query returning
emp_Iname would report the update even if only the salary column were
modified.

No warnings or errors in bulk operations mode
These update warning and error conditions do not occur in bulk operations
mode (-b database server command-line switch).

More information is maintained about scroll cursors than dynamic scroll
cursors. Dynamic scroll cursors are therefore more efficient and should be
used unless the consistent behavior of scroll cursors is required.

There is no extra overhead for dynamic scroll cursors versus no scroll
Cursors.

Chapter 9 Using SQL in Applications

Working with cursors

This section describes how to carry out different kinds of operation using
cursors.

Configuring cursors on opening

You can configure the following aspects of cursor behavior when you open
the cursor:

¢

Isolation level You can set the isolation level of operations on a cursor
explicitly, to be different from the current isolation level of the
transaction.

Holding Unless you explicitly require that a cursor be kept open,
cursors are closed at the end of a transaction. Opening a cursor with
hold allows you to keep it open until the end of a connection.

Fetching rows through a cursor

The simplest way of processing the result set of a query using a cursor is to
loop through all the rows of the result set until there are no more rows. The
steps in this process are as follows:

1

2
3

Declare and open the cursor (Embedded SQL), or execute a statement
that returns a result set.

Fetch the next row until you get a Row Not Found error.

Close the cursor.

The way these operations are carried out depends on the interface you are
using. For example:

¢

In ODBC SQLFetch advances the cursor to the next row and returns
the data.

& For information on using cursors in ODBC, see "Working with
result sets" on page 135 of the book Adaptive Server Anywhere
Programming Interfaces Guide.

In JDBC, the next method of the Resul tSet object advances the
cursor and returns the data.

& For information on using the ResultSet object in JDBC, see
"Queries using JDBC" on page 519.

211

Working with cursors

¢ In Embedded SQL, the FETCH statement carries out the same operation.

& For information on using cursors in Embedded SQL, see "Cursors
in Embedded SQL" on page 33 of the book Adaptive Server Anywhere
Programming Interfaces Guide.

¢ InOpen Client, ct_fetch advances the cursor to the next row and
returns the data.

& For information on using cursors in Open Client applications, see
"Using cursors" on page 150 of the book Adaptive Server Anywhere
Programming Interfaces Guide.

Fetching multiple rows

Multiple-row
fetches

Using multiple-row
fetching

212

This section discusses how you can use fetching of multiple rows at a time: a
technique that can improve performance.

Some interfaces provide methods for fetching more than one row at a time
into the next several fields in an array. In general, the fewer separate fetch
operations you can execute, the fewer individual requests the server must
respond to, and the better the performance. Multiple-row fetches are also
sometimes called wide fetches. Cursors that use multiple-row fetches are
sometimes called block cursors or fat cursors.

Multiple-row fetching should not be confused with prefetching rows.
Multiple row fetches read the next several rows of the cursor into the
application at one time.

¢ In ODBC, if you are using a block cursor, several rows are fetched by
default whenever you do a SQLFetch.

¢ In ODBC, SQLFetchScroll (SQLExtendedFetch prior to
ODBC 3.0) permits multiple rows to be fetched in a single call.
SQLFetchScroll provides this control at fetch time, in contrast to
block cursors, which provide this feature when the cursor is declared.

¢ In Embedded SQL, the FETCH statement provides control over the
number of rows fetched at a time, by providing an ARRAY clause.

¢ Open Client and JDBC do not support multi-row fetches.

Chapter 9 Using SQL in Applications

Prefetching rows

Controlling
prefetching from an
appliation

Prefetches are different from multiple-row fetches. Prefetches can be carried
out without explicit instructions from the client application. Prefetching
retrieves rows from the server into a buffer on the client side, but does not
make those rows available to the client application until the appropriate row
is fetched by the application.

By default, the Adaptive Server Anywhere client library prefetches multiple
rows whenever a single row is fetched by an application. The additional rows
are stored in a buffer by the Adaptive Server Anywhere client library.

Prefetching assists performance by cutting down on client/server traffic, and
increases throughput by making many rows available without a separate
request to the server.

& For information on controlling prefetches, see "PREFETCH option" on
page 169 of the book Adaptive Server Anywhere Reference Manual.

¢ You can control whether or not prefetching occurs using the
PREFETCH option. This can be set for a single connection to ON or
OFF. By default it is set to ON. The number of rows fetched at a time is
determined by the server.

¢ In Embedded SQL, you can control prefetching when you open a cursor
and on a FETCH operation, by using the BLOCK clause. (This should
not be confused with ODBC block cursors, which fetch blocks of rows
into an application.)

The application can specify a maximum number of rows that should be
contained in a single fetch from the server by specifying the BLOCK
clause. For example, if you are fetching and displaying 5 rows at a time,
you could use BLOCK 5. Specifying BLOCK 0 causes 1 record at a
time to be fetched and also cause a FETCH RELATIVE 0 to always
fetch the row again.

¢ In Open Client, you can control prefetching behavior using
ct_cursor with CS_CURSOR_ROWS after the cursor is declared,
but before it is opened.

Fetching with scrollable cursors

ODBC and Embedded SQL provide methods for using scrollable and
dynamic cursors. These methods allow you to move several rows forward at
a time, or to move backwards through the result set.

Scrollable cursors are not supported by the JDBC or Open Client interfaces.

213

Working with cursors

Prefetching does not apply to scrollable operations. That is, if you fetch a
row before the current row, you do not get several previous rows prefetched
also.

Modifying rows through a cursor

Cursors are not only used for reading result sets from a query. You can also
modify data in the database while processing a cursor. These operations are
commonly called positioned update and delete operations, or put operations
if the action is an insert.

Not all query result sets allow positioned updates and deletes. If you carry
out a query on a non-updateable view then no changes can be made to the
underlying tables. Also, if the query involves a join then you must specify
which table you wish to delete from, or which columns you wish to update,
when you carry out the operations.

Insertions through a cursor can only be executed if any non-inserted columns
in the table allow NULL or have defaults.

ODBC, Embedded SQL, and Open Client permit data modification using
cursors, but JDBC does not. With Open Client, you can delete and update
rows, but you can only insert rows on a single-table query.

Which table are If you attempt a positioned delete on a cursor, the table from which rows are
rows deleted from? deleted is determined as follows:

1 Ifno FROM clause is included, the cursor must be on a single table
only.

2 Ifthe cursor is for a joined query (including using a view containing a
join), then the FROM clause must be used. Only the current row of the
specified table is deleted. The other tables involved in the join are not
affected.

3 Ifa FROM clause is included, and no table owner is specified, the table-
spec value is first matched against any correlation names.

4 Ifa correlation name exists, the table-spec value is identified with the
correlation name.

5 Ifacorrelation name does not exist, the table-spec value must be
unambiguously identifiable as a table name in the cursor.

6 Ifa FROM clause is included, and a table owner is specified, the table-
spec value must be unambiguously identifiable as a table name in the
Cursor.

7 The positioned DELETE statement can be used on a cursor open on a
view as long as the view is updateable.

214

Chapter 9 Using SQL in Applications

Canceling cursor operations

You can cancel a request through an interface function. From Interactive
SQL, you can cancel a request by pressing STOP.

If you cancel a request that is carrying out a cursor operation, the position of
the cursor is indeterminate. After canceling the request, you must locate the
cursor by its absolute position, or close it, following the cancel.

Bookmarks and cursors

ODBC provides bookmarks, which are values used to identify rows in a
cursor. Adaptive Server Anywhere supports bookmarks for all kinds of
cursor except dynamic cursors.

Before ODBC 3.0, a database could specify only whether it supports
bookmarks or not. There was no way for a database server to indicate for
what kind of cursor bookmarks were supported. Adaptive Server Anywhere
returns that it does support bookmarks. There is therefore nothing in ODBC
to prevent you from trying to use bookmarks with dynamic cursors; however,
you should not use this combination.

215

Describing result sets

Describing result sets

Implementation
notes

216

Some applications build SQL statements, perhaps in response to the user's
actions, which cannot be completely specified in the application. For
example, a reporting application may allow a user to select which columns
they wish to display.

In such a case, the application needs a method for retrieving information
about the nature of the result set itself (the number and type of columns), as
well as the contents of the result set. This resultset metadata information is
manipulated using descriptors. Obtaining and managing the result set
metadata is called describing.

As result sets are generally obtained from cursors, descriptors and cursors are
closely linked.

In some interfaces, use of descriptors is hidden from the user.

A sequence for using a descriptor with a cursor-based operation is as
follows:

1 Allocate the descriptor. This may be done implicitly, although explicit
allocation is allowed in some interfaces.

2 Prepare the statement.

3 Declare and open a cursor for the statement (Embedded SQL) or execute
the statement.

4 Get the descriptor and modify the allocated area if necessary. This is
often done implicitly.

Fetch and process the statement results.

5
6 Deallocate the descriptor.
7 Close the cursor.

8

Drop the statement. This is done automatically by some interfaces.

Typically, statements that need descriptors are either SELECT statements or
stored procedures that return result sets.

The data structure that holds the information concerning the expected
number and type of columns that are being returned is called a descriptor. In
different interfaces, the descriptor may be implemented in different ways.

¢ In Embedded SQL, a SQLDA (SQL Descriptor Area) structure holds the
descriptor information.

Chapter 9 Using SQL in Applications

& For more information, see "The SQL descriptor area (SQLDA)" on
page 45 of the book Adaptive Server Anywhere Programming Interfaces
Guide.

In ODBC, a descriptor handle allocated using SQLLA1locHandle
provides access to the fields of a descriptor. You can manipulate these
fields using SQLSetStmtAttr, SQLSetDescField,
SQLGetStmtAttr, and SQLGetDescField.

Alternatively, you can use SQLDescribeCol and
SQLColAttributes to obtain column information.

In Open Client, you can use ct_dynamic to prepare a statement and
ct describe to describe the result set of the statemend. However,
you can also use ct_command to send a SQL statement without
preparing it first, and use ct _results to handle the returned rows
one by one. This is the more common way of operating in Open Client
application development.

In JDBC, the java.sgl.ResultSetMetaData class provides
information about result sets.

217

Controlling transactions in applications

Controlling transactions in applications

Transactions are sets of SQL statements that are atomic. Either all the
statements in the transaction are executed, or none are.

& For information about transactions, see "Using Transactions and
Locks" on page 367.

This section describes a few aspects of transactions in applications.

Setting autocommit or manual commit mode

Using the
CHAINED
database option

Setting autocommit
mode

218

Some database programming interfaces have an autocommit mode, also
called unchained mode. In this mode, each statement is a transaction, and is
committed after execution. If you wish to use transactions in your
applications, you need to be using manual commit mode, or chained mode.

The performance and behavior of your application may change, depending
on whether you are running in an autocommit mode. Autocommit is not
recommended for most purposes.

You can control autocommit behavior in the database using the CHAINED
database option. You can also control autocommit behavior in some database
interfaces by setting an autocommit interface option.

You can set the current connection to operate in autocommit mode by setting
the CHAINED database option to OFF.

By default, CHAINED is set to ON in Adaptive Server Anywhere (manual
commit mode).

¢ ODBC By default, ODBC operates in autocommit mode. You can turn
off this mode using the SQL. ATTR AUTOCOMMIT connection
attribute. ODBC autocommit is independent of the CHAINED option.

¢ JDBC By default, JDBC operates in autocommit mode. You can turn
off this mode by using the setAutoCommi t method of the connection
object:

conn.setAutoCommit (false);
¢ Embedded SQL Embedded SQL uses the setting of the user's

CHAINED option to govern the transaction behavior. By default, this
option is set to ON (manual commit).

¢ Open Client A connection made through Open Client sets the mode to
autocommit by default. You can change this behavior by setting the
CHAINED database option to ON.

Chapter 9 Using SQL in Applications

Controlling the isolation level

The isolation level of a current connection can be set using the
ISOLATION_LEVEL database option.

Some interfaces, such as ODBC, allow you to set the isolation level for a
connection at connection time. This level can be reset later using the
ISOLATION_LEVEL database option.

Cursors and transactions

ROLLBACK and
cursors

Savepoints

Cursors and
isolation levels

In general, a cursor is closed when a COMMIT is performed. There are two
exceptions to this behavior:

¢ The CLOSE ON _ENDTRANS database option is set to OFF.
¢ A cursor is opened WITH HOLD.

If either of these two cases is true, the cursor is not closed on a COMMIT.

If a transaction is rolled back, then cursors are closed except for those
cursors opened WITH HOLD. However, the contents of any cursor after a
rollback should not be relied on.

The draft ISO SQL3 standard states that on a rollback, all cursors should be
closed. You can obtain this behavior by setting the
ANSI_CLOSE_CURSORS AT ROLLBACK option to ON.

If a transaction is rolled back to a savepoint, and if
ANSI _CLOSE_CURSORS AT ROLLBACK option is set to ON, then all
cursors opened after the SAVEPOINT are closed.

You can change the isolation level of a connection during a transaction using
the SET OPTION statement to alter the ISOLATION LEVEL option.
However, this change does not affect any cursor that is already opened.

219

Controlling transactions in applications

220

